Contributors

A. J. CLARK Department of Chemistry, University of Warwick, Coventry CV4 7AL
R. G. COOMBES Chemistry Unit, Institute of Physical and Environmental Sciences, Brunel University, Uxbridge, Middlesex UB8 3PH
R. A. COX Chemistry Department, University of Toronto, Ontario M5S 1A1, Canada
M. R. CRAMPTON Chemistry Department, University of Durham, South Road, Durham DH1 3LE
B. G. DAVIS Chemistry Department, University of Durham, South Road, Durham DH1 3LE
N. DENNIS University of Queensland GPO Box 6382, Brisbane, Queensland 4067, Australia
A. P. DOBBS Department of Chemistry, Open University, Walton Hall, Milton Keynes MK6 6AA
R. P. FILIK Department of Chemistry, University of Warwick, Coventry CV4 7AL
J. G. KNIGHT Department of Chemistry, Bedson Building, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE1 7RU
A. C. KNIPE School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine, Co. Londonderry BT52 1SA
P. KOCHOVSKY Department of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ
J. N. MARTIN Department of Chemistry, Open University, Walton Hall, Milton Keynes MK6 6AA
A. W. MURRAY Chemistry Department, University of Dundee, Perth Road, Dundee DD1 4HN
B. A. MURRAY Department of Applied Sciences, Institute of Technology, Tallaght, Dublin 24, Ireland
J. SHORTER 29 Esk Terrace, Whitby, North Yorkshire YO21 1PA
W. J. SPILLANE Chemistry Department, National University of Ireland, Galway, Ireland
J. A. G. WILLIAMS Chemistry Department, University of Durham, South Road, Durham DH1 3LE
Preface

The present volume, the thirty-third in the series, surveys research on organic reaction mechanisms described in the literature dated December 1996 to November 1997. In order to limit the size of the volume, we must necessarily exclude or restrict overlap with other publications which review specialist areas (e.g. photochemical reactions, biosynthesis, electrochemistry, organometallic chemistry, surface chemistry, and heterogeneous catalysis). In order to minimize duplication, while ensuring a comprehensive coverage, the Editors conduct a survey of all relevant literature and allocate publications to appropriate chapters. While a particular reference may be allocated to more than one chapter, we do assume that readers will be aware of the alternative chapters to which a borderline topic of interest may have been preferentially assigned.

We regret that publication has been delayed by late arrival of manuscripts, but once again wish to thank the production staff of John Wiley & Sons and our team of experienced contributors (now joined by Drs A. Dobbs and J. Martin as authors of Radical Reactions: Part 2) for their efforts to ensure that the standards of this series are sustained.

A.C.K.
W.E.W.
CHAPTER 1

Reactions of Aldehydes and Ketones and their Derivatives

B. A. Murray

Department of Applied Sciences, Institute of Technology Tallaght, Dublin, Ireland

Formation and Reactions of Acetals and Related Species 1
Reactions of Glucosides and Nucleosides .. 4
Reactions of Ketenes ... 5
Formation and Reactions of Nitrogen Derivatives 6
 Imines .. 6
 Iminium ions and Related Species ... 8
 Oximes, Hydrazones, and Related Species 9
C—C Bond Formation and Fission: Aldol and Related Reactions 10
 Regio-, Enantio-, and Diastereo-selective Aldol Reactions 10
 Miscellaneous Aldol-type Reactions .. 12
 Allylation Reactions ... 15
Other Addition Reactions .. 17
 General and Theoretical ... 17
 Protonation ... 18
 Hydration and Hydrate Anions ... 19
 Addition of Organometallics .. 20
 Addition of Carbon Nucleophiles containing N, S, P, or Bi substituents 21
 Miscellaneous Additions ... 22
Enolization and Related Reactions .. 23
 Enolates .. 26
Oxidation and Reduction of Carbonyl Compounds 27
 Regio-, Enantio-, and Diastereo-selective Redox Reactions 27
 Other Redox Reactions .. 28
Other Reactions .. 29
References ... 31

Formation and Reactions of Acetals and Related Species

Intramolecular general acid catalysis has been reported for hydrolysis of simple dialkyl acetals of benzaldehyde, with both carboxylic acid and ammonium catalytic functions,1 e.g. (1) and (2). Effective molarities of the order of 10^3 mol dm$^{-3}$ are reported for both, with (1) showing a high absolute reactivity: $t_{1/2} = 1.15$ s at 20 °C, with significant build-up of hemiacetal intermediate. Efficient catalysis depends on the development of a strong transition-state hydrogen bond, but such bonding should not be present in the reactant. Hence it can be ‘designed in’ by having such a bond in the product. The implications for enzyme catalytic systems are discussed.
pH–rate profiles have been constructed for the hydrolysis of o-carboxybenzaldehyde 1,2-cyclohexanediyl acetics\(^2\) (3; cis- and trans-isomers) in water at 50 °C. The complex behaviour observed is consistent with neighbouring-group participation in the ring opening of the acetal. This is supported by the fact that the analogous para-substituted compound has a much simpler rate profile, and ring opens 220 times slower. The implications for the mechanism of lysozyme-catalysed reactions are discussed.

![Chemical structures](image)

Acetal (4) undergoes \(S_N 1\) hydrolysis in aqueous solution; at high pH, it is easily monitored via the \(p\)-nitrophenoxide chromophore produced.\(^3\) The reaction has been used to probe hydration effects in ‘co-solvents’: alcohols, amino acids, and peptides—the last two as models for such effects in enzymes. Primary alcohols retard the reaction in proportion to their carbon number, but the amino acids and peptides show more complex effects, which are interpreted in terms of interactions between the overlapping hydration shells of the amino and carboxylate groups.

The kinetics of the aqueous formaldehyde–ethylene glycol–1,3-dioxolane system have been investigated, including its acid catalysis.\(^4\)

Equilibrium constants for hydration and hemiacetal formation have been calculated for representative highly fluorinated ketones.\(^5\) Both reactions were substantially more favourable in cyclic than acyclic systems.

Free energies of hemi(thio)acetals of hydrated aldehydes have been measured by a \(^1\)H-NMR method, and compared with AM1 calculations.\(^6\) The role of \(n \rightarrow \sigma^*\) delocalizations in determining the overall free energy is discussed. The reactions are disfavoured by electronegative substituents in either reactant; when present in both, the effects are synergistic.

Acylphosphonates, e.g. (5), possess highly reactive carbonyl groups and—somewhat like trihalomethyl ketones—exhibit both ketone and carboxy character, forming oximes and adducts, and also carboxylate derivatives via C—P bond cleavage.\(^7\) Their hemiacetal derivatives have been studied by \(^31\)P-NMR in the presence of alcohols, for the representative acetyl and benzoyl compounds (5; \(R = \text{Me, Ph}\)). Equilibrium and
forward and reverse rate constants have been measured. These results, and a separation of the enthalpic and entropic contributions, suggest a substantially reactant-like transition state. The contribution of the PO(OMe)₂ group to the reactivity is underlined by an MNDO calculation of σ* = 2.65 for this moiety.

‘Ionic ketals’ (6), more strictly acetal cations, can be formed in the gas phase by reaction of acylium ions \(R-C=O \) with diols or other difunctional molecules \(\text{HO(CH}_2)_n\text{CH}_2X \ (n = 1–3, X = \text{OH, OMe, NH}_2) \). Identified by MS, the method has applications in the detection of functional groups that give rise to acylium ions, or in the protection or elimination of such ions.

Crotonaldehyde dimethyl acetal (7; Scheme 1) can undergo metallo-dehydrogenation or nucleophilic addition for the example of \(n \)-butyllithium, the products of different experimental conditions are shown. The alternative pathways have been modelled computationally by examining the reactions of (7) with methyllithium and methylpotassium. The role of the potassium alkoxide in diverting the reaction towards diene is twofold: it de-aggregates \((\text{RLi})_n\), and promotes a partial cleavage of the carbon–lithium bond.

\[
\begin{align*}
\text{M} & \quad \text{Bu}^n\text{Li} \quad \text{Bu}^n\text{OK} \\
\text{(7)} & \quad 2 \text{Bu}^n\text{Li} \quad \text{TMEDA} \\
& \quad \text{Bu}^n\text{Li} \\
\text{Bu}^n & \\
\end{align*}
\]

Scheme 1

\(\alpha \)-Ketoacetals (8) undergo diastereoselective addition of alkylmagnesium bromides to give hydroxyacetals. The role of the magnesium coordination of the carbonyl and one or other of the acetal oxygens is discussed.

\[
\begin{align*}
\text{R} & \quad \text{O} \\
\text{Ph} & \\
\text{(8)} & \\
\end{align*}
\]

Pyrolysis of the ethylene acetal of bicyclo[4.2.0]octa-4,7-diene-2,3-dione yields \(\alpha \)-(2-hydroxyphenyl)-\(\gamma \)-butyrolactone, a mechanism involving a phenyl ketene acetal is proposed. Tartrate reacts with methanediol (formaldehyde hydrate) in alkaline solution to give an acetal-type species (9), the formation constant was measured as ca 0.15 by \(^1\text{H-NMR} \). Hydroxyacetal (10a) exists mainly in a boat–chair conformation (boat cycloheptanol ring), whereas the methyl derivative (10b) is chair–boat, as shown by \(^1\text{H-NMR} \), supported by molecular mechanics calculations.
Reactions of Glucosides and Nucleosides

A number of fundamental studies of the nature of the anomeric effect have been undertaken, probed via kinetics and exo-/endo-regioselectivities.

Rates of acetylation have been measured for methyl 2,3,6-tri-O-methyl-α-D-galacto-(11a) and -gluco-pyranoside (11b), with substituents X = OMe, OAc, and NHAc in the 4-position. In both series, the most electronegative substituent (methoxy) is associated with the fast rates, and the least electronegative (acetamido) is the slowest. However, the ratio of fastest to slowest is only ca 3 in the gluco series, but is over 40 for the galactosides. This much greater sensitivity to substituent electronegativity when they are axially oriented is explained by an electron-donation process to the incipient oxocarbenium ion. It is thus claimed that the data strongly support the antiperiplanar lone-pair hypothesis.

The roles of nucleophilic assistance and stereoelectronic control in determining endo-versus exo-cyclic cleavage of pyranoside acetals have been investigated for a series of α- and β-anomers. Exocyclic cleavage of α-anomers, via a cyclic oxocarbenium ion, is predicted by the stereoelectronic control, and was found exclusively for the cases studied. The endocyclic route, with an acyclic ion, is predicted for the β-structures, and a measurable amount was found in all cases, but its extent was dependent on temperature, solvent, and the nature of the aglycone group.

![Chemical structures](image)

The relative nucleophilicity of the two sulfur atoms in a dithioglycoside has been probed in a study of the anomeric effect in sulfur analogues of pyranoses. In a previous study, the regioselectivity of the S-oxidation of α- and β-1,5-dithioglycopyranosides (12; X = S, Y = H) by m-chloroperbenzoic acid was shown to switch from predominantly exo-S for the α-anomer to endo-S for the β-anomer. Now, the origin of the differences in nucleophilicity has been further investigated by a kinetic study of the peracetic acid oxidation of the 5-thio compounds (12; X = O) with a range of Y substituents. The results are explained by a combination of classical anomeric arguments involving the relative n → σ* endo and exo effects in the α- and β-structures, together with the inherently reduced nucleophilicity of the ring heteroatoms.

In other studies, analysis of the products of reaction between formaldehyde and guanosine at moderate pH shows a new adduct—formed by condensing two molecules of each reactant—which has implications for the mechanism of DNA cross-linking by formaldehyde, while the kinetics of the mutarotation of N-(p-chlorophenyl)-β-D-glucopyranosylamine have been measured in methanolic benzoate buffers. For a stereoselective aldol reaction of a ketene acetal, see the next section.
Reactions of Ketenes

Acetylketene (MeCOCH=CH)=—generated by flash photolysis—showed the following selectivities towards functional groups: amines > alcohols (primary > secondary > tertiary) ≫ aldehydes ≈ ketones. The results accord with the ab initio calculations, which suggest planar, pseudo-pericyclic transition states. An imidoylketene, PrN=C(Me)CH=CH=O, was also generated and showed similar selectivities.

Nucleophilic additions to mesitylphenylketene [Ph(Mes)C=CH=O, Mes = 2,4,6-Me3C6H2] and the related vinyl cation, Ph(Mes)+C=CMes, proceed as if the mesityl group was effectively smaller than the phenyl group. The effect is explained by calculations that show that the phenyl is coplanar with the carbon–carbon double bond, while the mesityl is twisted: the in-plane nucleophilic attack prefers the mesityl side.

Acidic hydrolysis of ketimine [13; Scheme 2 (adapted)] proceeds via either (i) rate-determining β-C-protonation to nitrilium ion (14a) followed by formation of iminol (15a) or (ii) pre-equilibrium N-protonation to give keteniminium ion (14b), then rate-determining hydration to give a hemiaminal (15b), formally an enol of an amide. The final step in both routes is tautomerization to the amide (16). The C-protonation route is the ‘normal’ one, and is observed for e.g. diphenylketenimines (13; R1 = Ph). However, highly hindered substrates with R1 = mesityl or pentamethylphenyl switch over to the N-route, involving the hemiaminal (15b). This is confirmed by isotope effects, and also the observation of the corresponding ethane-1,1-diol, a product of the fragmentation of (15b), which competes with tautomerization to (16).

![Scheme 2](image)

The cycloaddition of formaldehyde and ketene has been studied by ab initio methods. A two-step zwitterionic mechanism is suggested for dichloromethane solvent, while the gas-phase reaction is concerted but asynchronous.
A stereoselective Mukaiyama-type aldol reaction of bis(trimethylsilyl)ketene acetals produces silyl aldols with \textit{syn} stereoselectivity, predominantly due to steric effects.23

Formation and Reactions of Nitrogen Derivatives

Imines

Propanal reacts with ammonia in acetonitrile to give a hexahydrotriazine (17; R = Et); chloroethanal (17; R = CH₂Cl) reacts similarly, but in lower yield.24 The reactions proceed via carbinolamines, but increasing chloro substitution (17; R = CHCl₂/CCl₃) stabilizes the intermediate and disfavours trimerization. In the case of propanal, forward and reverse rate and equilibrium data are reported, with dehydration of the carbinolamine rate determining. The course of the reactions with some primary amines is also reported.

A kinetic study of the Schiff base condensation of \textit{m}-toluidine with salicylaldehyde has examined the effects of proton, hydroxide, general base, and transition metal catalysts, and also solvent effects.25

\[
\begin{align*}
\text{(17)} & \\
\text{(18b)} & \\
\text{(18b)}
\end{align*}
\]

Rates of [1,3]-proton shift isomerization in imines derived from PhCH₂COCF₃ have been measured, with electron-withdrawing ring substituents in \textit{N}-benzylimines being particularly activating.26

Semiempirical calculations have been used to calculate kinetic, transition-state, thermodynamic, and physicochemical parameters for acridin-9-amine (18a) and its tautomer, acridin-9(10\textit{H})-imine (18b).27

Several reports deal with the aziridination of imines. Metal-catalysed aziridination—using ethyl diazoacetate as the carbene fragment donor—has been explored, particularly with respect to the catalytic properties of different Lewis acids, and the stereoselectivity of the reactions.28 A variety of imines, activated by Lewis acids, react with the ‘semi-stabilized’ sulfonium ylid, Ph₂\textgreek{S} —CHR (R = CH=CHSiMe₃, C≡CSiMe₃) to yield \textit{cis}-vinyl- or \textit{cis}-ethynyl-aziridines in high yields.29 For many \textit{N}-arylimines, no \textit{trans} isomer was detected. The origin of the \textit{cis} selectivity is discussed. Aziridines have been prepared by Lewis acid-catalysed reaction of simple imines with ethyl aminoacetate,30 with two isomeric \textit{\beta}-imino esters being formed as by-products: these in turn tautomerize to hydrogen-bonded \textit{cis}-amino-\textit{\alpha}, \textit{\beta}-unsaturated esters. Chiral \textit{N}-sulfinyl-imines have been aziridinated diastereoselectively.31
Activation of aldimines with lanthanide Lewis acid catalysts has received considerable attention in recent years.32a Aldehydes are typically more reactive towards nucleophilic addition, but this order is reversed using ytterbium(III) triflate.32b This reagent complexes selectively with aldimines (as shown by 13C-NMR), and catalysis is sufficiently efficient that high yields of aldimine adduct are obtained with modest amounts of catalyst, even in the presence of aldehydes. The reversal in reactivity clearly depends on this complexation, as the effect is very general: additions of silyl enol ethers, ketene silyl acetics, allyltributylsilane, and cyanotrimethylsilane all proceed with $>99:1$ ratio of aldimine adduct:aldehyde adduct, under conditions where other Lewis acids give the exact opposite result. While claiming the aldimine-selectivity as ‘unprecedented’, the authors do acknowledge a related aldehyde/imine reactivity reversal in a palladium-catalysed allylation.32a Not surprisingly, the reversal is optimized at low temperature.33 The scope for such reversals in other nucleophilic additions—and with other substrate types—is clearly considerable. A further related case of lanthanide catalysis of a Baylis–Hilman condensation is described later under Aldol and Related Reactions.

Hydrolysis of Schiff bases derived from benzidine (4,4′-diaminobiphenyl) and from substituted benzaldehydes has been studied in aqueous ethanol;34 attack of water molecules on the protonated substrates is suggested as the rate-determining step.

Addition of phosphates to chiral sulfinimines derived from aromatic aldehydes has been used to prepare α-amino phosphonate esters asymmetrically.35 The sulfinimines employed, p-MePhS*(=O)N=CHAR, have sufficiently bulky substituents to prevent inversion, as shown by 1H-NMR over a wide range of temperatures.

Stoichiometric and catalytic asymmetric reactions of lithium enolate esters with imines have been developed using an external chiral ether ligand that links the components to form a ternary complex.36 The method affords β-lactams in high enantiomeric excess.

Extensive kinetic studies of addition of thiophenols to an N-acridinyl quinonediimide (19) are interpreted in terms of: (i) acridine nitrogen protonation followed by thiophenol addition at low pH and (ii) thiophenolate addition to neutral (19) at moderate to high pH.37 For hydrolysis, a similar mechanistic competition was observed,38 i.e. (i) water attack on acridinium substrate at low pH and (ii) hydroxide attack on (19) at higher pH.

\textit{Ab initio} MO calculations have been used to predict the stereochemistry of aldol-type addition of boron enolates to imines, with due allowance for the degree and type of substitution, and the geometry (E or Z) of both the enolate and imine reactants.39 Only two important transition states were identified—both cyclic—one chair-like and the other boat-like. The results are compared with the stereoselections reported in various experimental methodologies.

N-Benzyalamines derived from di-O-protonated glyceraldehydes react with phenylmagnesium bromide to give protected aminodiols with total diastereoselectivity: the nature of the O-protecting group determines the direction of the selectivity.40

An azomethine intermediate has been implicated in the reaction of N-methylene-t-butylamine with octafluoroisobutylene to give (20) in wet diethyl ether;41 (20) is not formed under anhydrous conditions.
\[\text{N-Arylimines (21a) can be oxidatively rearranged to formamides (21b) with sodium perborate.}^{42} \] The reaction works best for secondary or aryl R groups. An oxaziridine intermediate is proposed. Results with chiral secondary R groups indicate epimerization, suggested to occur via equilibration of (21a) with its enamine tautomer.

Treatment of arylimine (22) with alkyllithiums results in a range of single-electron-transfer reactions, substitution on the phenyl ring, and nucleophilic addition to the imine bond.\(^{43}\)

Iminium Ions and Related Species

Rate constants have been determined for the reaction of four iminium ions (Me\(_2\)N=CH\(_2\), Pr\(_2\)N=CH\(_2\), Ph(Me)N=CH\(_2\), and Me\(_2\)N=CHCl) with a range of nucleophiles.\(^{44}\) The results allow calculation of electrophilicity parameters for these ions, helping to predict whether a particular aminomethylation reaction is likely to work.

\(\alpha\)-Acetoxydialkyl nitrosamines (23a) can generate the corresponding \(\alpha\)-hydroxynitrosamines (23b) *in vivo* and *in vitro*,\(^{45}\) the latter compounds being of interest as the products of enzymatic activation of dialkyl nitrosamines, R\(^1\)N(NO)CH\(_2\)R\(^2\); (23b), in turn, can ultimately cleave to yield a diazonium ion (which can alkylate DNA), plus hydroxide and aldehyde. Four acetoxy substrates (R\(^1\) = Pr\(^t\) / Bu\(^t\); R\(^2\) = H / Et) and their mono- / di-deuterated analogues have been examined in aqueous solution, and their pH-independent rates of decay have been measured. Secondary isotope effects of 1.1–1.2 (\(k_H / k_D\), per hydrogen) suggest the formation of \(N\)-nitrosonium ions (24) in—or prior to—the rate-limiting step.
The Biginelli synthesis (Scheme 3) is an important route to dihydropyrimidines, e.g. (25),46a with many variants of the original reactants now established. The mechanism has now been re-investigated using 1H- and 13C-NMR.46b The first step does \textit{not} appear to involve aldol condensation or a carbenium-ion intermediate; rather, condensation of benzaldehyde and urea gives an \textit{N}-acyliminium ion intermediate (26), which \textit{then} goes on to react with ethyl acetoacetate.

\textbf{Oximes, Hydrazones, and Related Species}

Diethylaminosulfur trifluoride (DAST, Et$_2$NSF$_3$) \(\alpha\)-cleaves cyclic ketoximes to give fluorinated carbonitriles,47 e.g. (27)\(\rightarrow\)(28). Two mechanisms are proposed, one for substrates with substituents that can stabilize an \(\alpha\)-carbocation, and an iminium cation route for ketoximes without such groups.

Three \(O\)-substituted benzophenone oximes (29; \(X = \text{OMe}, \text{F}, \text{Cl}\)) have been subjected to aminolysis by pyrrolidine and piperidine, in benzene solution.48a Kinetics were third order in amine, and involved two routes: one accelerates with a rise in temperature, the other decelerates. Of the many mechanisms proposed for this reaction in non-polar media, the results support Hirst’s mechanism of electrophilic catalysis48b in this instance.

1,4-Benzquinone oximes (30) exhibit ‘sidedness’: the structures exhibit anomalous \(1H\)-NMR coupling constants \((J_{23} \text{ can exceed } J_{56} \text{ by } 0.6 \text{ Hz})\), and its additions show a \textit{syn} selectivity.49 The apparent stereoelectronic effect is concluded to be primarily steric in origin.

Synthesis of \(\alpha\)-substituted and \(\alpha, \beta\)-disubstituted amines with high stereoselectivity has been achieved by addition of alkyl lithiums to chiral hydrazones.50

Kinetics of reactions of cyclic secondary amines with benzohydrazonyl halides (31) have been measured in benzene51 at 30 \(^\circ\text{C}\). The products result from nucleophilic substitution at the halo-carbon via an associative addition–elimination mechanism. For \(X = \text{Cl}\) or \(\text{Br}\), the rate equation has significant terms that are both first and second order in amine, whereas two amine molecules are essential for the fluoro compounds to react.
C—C Bond Formation and Fission: Aldol and Related Reactions

Regio-, Enantio-, and Diastereo-selective Aldol Reactions

Formyl hydrogen bonds, in which the C—H bond of a formyl group acts as an acceptor (typically to oxygen), have recently been identified in Lewis acid-catalysed reactions of aldehydes. An X-ray crystal structure of such a complex has been reported. This type of hydrogen bond is now suggested as a likely organizing stereochemical element in a variety of enantioselective aldol, allylation, and Diels–Alder reactions catalysed by Lewis acids reported in the literature. Further examples of such reactions are also discussed.

Asymmetric aldol additions of geometrically defined trichlorosilyl enolates of ketones to aliphatic and aromatic aldehydes have been carried out uncatalysed, and with a chiral phosphoramidate as Lewis base promoter. Significant differences in rates and diastereoselectivities are interpreted in terms of the changeover from a boat-like transition state, with pentacoordinate siliconate, to a chair-like transition state with hexacoordination.

1,5-Asymmetric induction is reported in the addition of enolates of methyl ketones to aldehydes. Double stereo-differentiation—in which simultaneous 1,3-control can be obtained in the aldehyde moiety—is shown to be achievable with proper selection of the aldol type.
π-Stacking interactions in the transition state are one factor suggested for the highly
diastereoselective synthesis of syn- and anti-aldols from the reaction of an
arylsulfonamidodindanyl titanium enolate with ‘bidentate’ aldehydes.56

Chiral 2-sulfinylcyclohexanones react with lithium alkyl acetates (i.e. lithium ester
enolates) to produce alcohols with four contiguous chiral centres.57 This stereoselective
aldol reaction is proposed to depend upon tricoordination by lithium of the enolate,
sulfinyl, and carbonyl oxygens of the substrates.

Boron aldol reactions have been used to stereoselectively construct the anti-3-
hydroxy-2-methylcarbonyl system from carboxylate esters,58 and to combine α-hetero-
substituted thioacetates with aldehydes or silyl imines enantio- and/or diastereo-
selectively.59

Rate and equilibrium constants have been measured for representative intramolecular
aldol condensations of dicarbonyls.60a For the four substrates studied (32; \(n = 2,\)
\(R = \text{Me}; n = 3, R = \text{H}/\text{Me}/\text{Ph}), results have been obtained for both the aldol addition
to give ketol (33), and the elimination to the enone (34). A rate–equilibrium mismatch
for the overall process is examined in the context of Baldwin’s rules. The data are also
compared with Richard and co-workers’ study of 2-(2-oxopropyl)benzaldehyde (35),
for which the enone condensation product tautomerizes to the dienol60b (i.e. β-
naphthol). In all cases, Marcus theory can be applied to these intramolecular aldol
reactions, and it predicts essentially the same intrinsic barrier as for their intermolecular
counterparts.

![Diagrams](image1)

Base-catalysed cyclization of proximate diacetyl aromatics [e.g. \(\alpha\)-diacetylbenzene
(36)] gives the corresponding enone (37). Relative rates, activation parameters, and
isotope effects are reported for (36), and also for 1,8-diacetylnaphthalene, 4,5-
diacetylphenanthrene, and 2,2′-diacetylbiphenyl, in aqueous DMSO.61 Reaction
proceeds via enolate formation (rate determining for the latter three substrates),
followed by intramolecular nucleophilic attack [rate determining for (36)], and finally
dehydration.
Miscellaneous Aldol-type Reactions

In the Weiss reaction (Scheme 4), an α-dicarbonyl compound (38) condenses with two molecules of dimethyl 3-oxoglutarate (39; E = CO₂Me) to give a cis-bicyclo[3.3.0]octane-3,7-dione tetraester (40); the one-pot reaction produces considerable complexity, with the sequential formation of four C—C bonds. Simple acid treatment removes the carbomethoxy groups, if desired. While the reaction involves aldol and Michael sequences, the intermediacy of a cyclopentenone [4-hydroxycyclopent-2-enone (41)] has up to now been unproven. A series of such 1:1 adducts has now been reported for a variety of diketones, together with evidence that they are indeed intermediates en route to the bicyclic system.⁶² Electronic and steric effects on the reaction are also discussed in detail.

![Scheme 4](image)

A clean, high-yielding asymmetric Baylis–Hillman reaction has been reported: employing Oppolzer's sultam,⁶³a,b it couples acrylates with a variety of aldehydes at 0 °C, with >99% ee in all cases described.⁶³c Another new, practical variant of the reaction employs a phosphine catalyst,⁶⁴ and here the temperature effect is critical: the rate increases in either direction from room temperature, with a dramatic improvement observed at 0 °C. This unusual observation is explained in terms of a temperature-dependent equilibrium between efficient and inefficient intermediates.

Some Baylis–Hillman reactions are very slow: for example, condensation of t-butyl acrylate (42) with representative aldehydes can take 28 days to complete the formation of vinyl ester (43).⁶⁵a Another new approach to achieving practical rates of conversion is to combine the usual tertiary amine catalyst, 1,4-diazabicyclo[2.2.2]octane (DABCO), with a Lewis acid catalyst, in order to activate the aldehyde. However, sometimes this slows the reaction further, as many acids just sequester the amine. Several lanthanide(III) triflates (especially La, Sm) give modest accelerations,⁶⁵b so they are ‘amine-compatible’ catalysts, contributing to a type of ‘push-pull’ catalysis via an intermediate such as (44). The strategy of avoiding deceleration by using the oxophilic lanthanide is further emphasized by the effect of adding diols, such as binaphthol; the reaction is further accelerated. Presumably, the O-ligand displaces the N-ligand [in (44)], with a chelate effect also contributing. Although the total acceleration achieved was only a factor of 18, this is of practical significance for such an intrinsically slow reaction.
The McMurry alkene synthesis reductively couples two molecules of ketone. It has recently been reviewed. The same authors have claimed that the reaction proceeds via a nucleophilic (rather than a radical) mechanism when carried out with Zn/Cu in dimethoxyethane solvent. Calculations using density functional theory now support their hypothesis, at least for the stated reaction conditions. The reaction is also frequently carried out using low-valency titanium reagents, and is presumed to proceed in such cases via a metallopinacol intermediate, formed by dimerization of a ketyl radical. Evidence has now been presented that even if metallopinacols are present, they are not necessarily precursors to the alkene. Rather, the ketyl radical could be deoxygenated to a (metallo)carbinol, which could then couple to the second molecule of ketone. The replacement of titanium(or samarium)(II) with uranium species has also been explored: UCl₃ and Cp₃U(THF) have been used to couple benzyol compounds. PhCOR (R = H, Me, Pr, and Bu') After deuterolysis of the organometallic products, pinacol (45) was obtained, but so also was keto alcohol (46)—the product of para coupling. The organometallic precursors of these products appear to be in equilibrium under the reaction conditions, with the product ratio being determined by steric factors.

The mechanism of addition of lithium pinacolone enolate, H₂C≡C(OLi)Bu', to benzaldehyde has been investigated by the determination of kinetic isotope effects (phenyl-⁻d₅ and carbonyl-¹³C); C—C bond formation occurs in the rate-determining step (a result supported by MO calculations), in contrast to addition of MeLi or PhLi, which proceed via electron transfer. Further carbonyl-¹³C isotopic studies on substituted benzaldehydes (including equilibrium effects) by the same authors confirmed these conclusions.

Horner–Wadsworth–Emmons reactions of ketones and aldehydes with phosphonoacetate esters, (R²O₂)₂P(=O)CH₂CO₂R, produce E/Z mixtures of α, β-unsaturated esters. Use of the conventional reagent, sodium hydride, gives some selectivity. The combination of tin(II) triflate and N-ethylpiperidine enhances—and sometimes also reverses—the selectivity in most cases studied. Six-membered oxo-coordinated tin intermediates are proposed to control the selectivities observed. A similarly selective synthesis of trisubstituted exocyclic alkenes from cyclic ketones has been reported.

1 Reactions of Aldehydes and Ketones and their Derivatives

\[
\begin{align*}
 \text{O} & \quad \text{Bu'} \\
\longrightarrow & \quad \text{RCHO} \\
\text{(42)} & \quad \text{O} \\
\text{OH} & \quad \text{O} \\
\text{Bu'} & \quad \text{R} \\
\text{(43)} & \\
\text{O} & \quad \text{Bu'} \\
\text{O} & \quad \text{Bu'} \\
\text{(44)} & \\
\text{N} & \quad \text{Bu'} \\
\text{(45)} & \\
\text{D} & \quad \text{D} \\
\text{Ph} & \quad \text{R} \\
\text{(46)} & \\
\end{align*}
\]
The Henry reaction (addition of a nitroalkane to a carbonyl) is synthetically very useful, as the nitro group of the nitro alcohol product provides many routes to a variety of functional groups. An ab initio study of the stereochemical outcomes of the reaction yields the following:73

(i) with free nitronate anions and aldehydes, an antiperiplanar transition state is predicted, with carbonyl and nitro dipoles anti-parallel, leading to an anti product;
(ii) lithium nitronates and aldehydes produce syn product, but stereo-control is difficult;
(iii) reaction with a di-metalated nitronate has a lower barrier, allowing less electrophilic carbonyls, such as ketones, to react.

Bis(1,2-diamine)copper(II) complexes undergo condensations with formaldehyde and nitroethane to give acyclic/macrocyclic products containing —NHCH₂C(Me) (NO₂)CH₂NH—linkages: steric effects in the copper ligands significantly affect the product ratio.74

The mechanism, stereoselectivity, and synthetic applications of the nitrile aldol reaction have been reviewed.75

A Michael-type addition has been used76 to insert suitable Michael acceptors (47; R = CN, COMe, CO₂Me/Et) between the carbonyls of benzils (48), to give a range of 1,4-diketones (49). The reaction is catalysed by cyanide (typically as Bu₄NCN), and the aryl rings can bear substituents such as chloro or methoxy. Reminiscent of the Benzoin condensation, the reaction proceeds through an O-aroylmandelonitrile anion (50). The reaction has also been extended to C—O rather than C—C insertion: benzaldehyde inserts into benzil under the same conditions to give an α-aroyloxy-ketone (51).

\[
\begin{align*}
\text{H}_2\text{C} &\equiv \text{CHR} + \\
\text{O} & \quad \text{O} \\
\text{Ar}^1 & \quad \text{Ar}^2 \\
\text{Ar}^1 & \quad \text{R} \\
\text{Ar}^1 & \quad \text{O} \\
\text{C} & \quad \text{O} \\
\text{Ar}^2 & \\
\text{CN} & \\
\text{O} & \quad \text{Ar}^1 \\
\text{O} & \quad \text{Ar}^2
\end{align*}
\]

(47) (48) (49) (50)

\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \\
\text{CH} & \quad \text{O} \\
\text{Ph} & \\
\text{O} & \quad \text{O}
\end{align*}
\]

(51)

A chiral enolate derived from a bromoacetyl camphor sultam [(52); in turn prepared from Oppolzer’s sultam63a,b] undergoes an aza-Darzens reaction with modified amines to produce aziridine derivatives in high de.77 Cleavage yields aziridine carboxylates.

An open-transition-state model is proposed for the Darzens condensation of ketones with (−)-8-phenylmenthyl α-chloroacetate: the diastereoselectivity observed is explained in terms of a π-aryl interaction between the enolate and phenyl moieties.78
1,3-Allylic strain is employed in the Paterno–Büchi reaction of a silyl enol ether and benzaldehyde.\(^8^9\) Using a bulky or polar substituent \(\gamma\) to the ether as stereogenic locus, diastereomerically pure oxetanes with four contiguous chiral centres have been prepared.

A mechanism has been proposed for the enantioselective Mikami ene reaction of a terminal alkene with a glyoxylic aldehyde using a chiral binaphthol as Lewis acid.\(^8^0\)

Stereoselective synthesis of \(\beta\)-amino esters via asymmetric aldol-type and aza-Diels–Alder reactions has been reviewed.\(^8^1\) Siliranes react cleanly with benzaldehyde to produce oxaasilacyclopentanes—with inversion—under conditions of Bu'OK catalysis; enolizable aldehydes yield silyl enol ethers.\(^8^2\)

Copper(II) triflate—a Lewis acid that is stable in aqueous media—has been employed as a catalyst for a variety of aldol and allylation reactions.\(^8^3\)

For a stereoselective aldol of bis(trimethylsilyl)ketene acetics,\(^2^3\) see Reactions of Ketenes earlier.

Allylation Reactions

Many allylations are still built around stannanes, but other metals are becoming more widely used.

The SnCl\(_4\)-mediated addition of alkoxyallylstannanes can be carried out with 1,5-\(/6-\)/7-asymmetric induction, depending on the position of the alkoxy substituent.\(^8^4^a\) For example, the (5-alkoxypent-2-eny1)stannane (53) gives 1,5-anti-(Z)-alkenol (55).\(^8^4^b\) The ‘remote’ oxygen has been suggested to act by coordinating the electron-deficient tin of a trichlorotin intermediate (54). Evidence for this species has now been provided by a trapping experiment using phenyllithium,\(^8^4^c\) which produces the triphenyl derivative (56).

(\(\gamma\)-Alkoxyally1)stannane aldehydes (57) can cyclize either thermally or with Lewis or protic acid catalysis to give cyclic ethers (58).\(^8^5\) The interrelationship of the reactant and product stereochemistries has been investigated, as have the methods used to promote the reaction. For both thermal and proton-promoted reactions, [(Z)-57 gave (cis-58), and [(E)-57] gave (trans-58), whereas (trans-58) was the predominant or exclusive product of Lewis acid mediation, regardless of the double bond geometry of (57). Mechanisms are proposed.

Methanol promotes addition of allylstannanes to aldehydes and ketones, to give homoallylic alcohols without added catalyst.\(^8^6\) Aldehydes are significantly more reactive. It is suggested that the primary activating influence is hydrogen bonding to the carbonyl.

Chiral binaphthol(BINAP)-titanates (59; \(X = \text{OR}\)) have been used as asymmetric catalysts of additions to aldehydes, and show evidence of oligomeric Ti—O—Ti
The corresponding difluoro compound (59; X = F) catalyses allylsilane addition, and may also involve oligomers as effective catalytic species. Using these observations, a new fluorotitanium-TADDOLate (60; TADDOL = tetraaryldihydroxydioxolane) has been reported to catalyse the reduction of benzaldehyde efficiently at −78 °C. Conversion of 60% with 78% ee is found with 0.5 mol% (60), and this rises to 77% with 93% ee for 2.0 mol%, again suggesting an oligomeric contribution to catalysis.

Allyltitanium compounds typically react with aldehydes at the most substituted allylic position; however, ring-strain effects and also substituents capable of coordinating titanium can dramatically alter the regiochemistry.
Indium mediates the coupling of \(\alpha,\alpha\)-difluoroallyl carbanion with aldehydes, to give gem-difluorohomoallyl alcohols.\(^8\) In contrast to many comparable allylations of carbonyl compounds, ketones do not react.

(S)-Proline-derived phosphoramides catalyse enantioselective allylation of aromatic aldehydes with allylic trichlorosilanes.\(^9\) Chiral \(\alpha\)-aminoaldehydes have been allylated diastereoselectively with various reagents.\(^1\)

Ab initio calculations on the reaction of enoxysilanes with formaldehyde have been used to characterize the electron-donating and -accepting strength of the different functions in the enoxysilane.\(^2\) This useful type of aldol reaction is also compared with the corresponding allylsilane version.

Other Addition Reactions

General and Theoretical

\(^{17}\)O-NMR chemical-shift values are proposed as the basis of an electrophilicity (polarity) scale for carbonyl groups, based on data for 35 types of benzoyl compound, PhCOX, and a Hammet–Taft analysis of 23 of them for which para-substituted series, \(p\)-\(YC_6H_4COX\), are available.\(^3\) Similar measurements—plus \(^{13}\)C-carbonyl values—have been made for a wide variety of RCOX: \(X = H, Me, SiR_3, SR, Cl, F, OMe, OH, O^-, NH_2; R = H, Me\).\(^4\) The oxygen shift depends on the electron donor/acceptor properties of the \(X\) group, while the carbon shift values are also determined by other factors. The difference between the two shift movements has been identified as mainly related to the energy of the \(n \rightarrow \pi^*\) excitation. Similar differences were found in \(p\)-\(YC_6H_4COX\), but not in the aroyl cations, \(p\)-\(YC_6H_4CO^+\), where the \(n \rightarrow \pi^*\)-type excitation is absent, due to symmetry.

Placing two methyl groups ortho to the carbonyl of acetophenone should twist the phenyl out of the C=O plane. The extent to which this affects gas- and solution-phase basicities of a series of para-substituted acetophenones is reported.\(^5\)

4-Substituted norsnonutanes (61) have been introduced as substrates with sterically unbiased \(\pi\)-faces, which allow electronic effects in \(\pi\)-facial selectivity of nucleophilic additions to be evaluated.\(^6\) Examples indicate how this system allows separation of long-range electronic effects into orbital and electrostatic contributions.

\[
\begin{align*}
\text{O} \\
\text{R}
\end{align*}
\]

(61)

An extensive study of reactions of a variety of non-cyclic esters, aldehydes, and ketones with a range of nucleophiles has been undertaken in an attempt to find reliable rules for predicting 1,3-stereochemistry in the products.\(^7\) Despite comparison of the
results with molecular mechanics calculations of the lowest energy reactant conformations, clear-cut open-chain stereo-control outside well-defined subsets of reactants remains elusive.

Nucleophilic addition/ring-closure sequences—especially additions to aldehydes, ketones, and aldimines—have been reviewed in the context of heterocyclic synthesis.98

N-Trimethylsilylbis(trifluoromethanesulfonyl)imide, Me$_2$SiN(SO$_2$CF$_3$)$_2$, has been reported as a better carbonyl activator than trimethylsilyl triflate.99

Density functional theory has been used to analyse the relative stability of tetrahedral intermediates formed when sulphydryl or hydroxide anions attack carbonyl compounds.100

Protonation

Gas-phase basicities of several substituted benzaldehydes (62; $X = o-/m-/p$-Me/F, o-m-Cl) have been measured, relative to benzaldehyde or mesitylene as reference bases, over a range of temperatures.101 The tolualdehydes are more basic than benzaldehyde, the halobenzaldehydes less so, following classical aromatic substituent effects. The data also correlate well with solution-based linear-free-energy substituent constants, as well as with theoretical (MNDO) calculations. Some deviations are noteworthy: (i) the o-halobenzaldehydes (especially chloro) have higher basicities than predicted, but calculations tend to rule out the hydrogen-bonded isomer (63), which is also contra-indicated by a ‘normal’ ΔS value, inconsistent with the expected restriction of $\ddot{\text{C}}$HOH rotation in such a structure; (ii) anomalies in the high-temperature behaviour of m-fluorobenzaldehyde in the presence of mesitylene reference base are consistent with a specific catalysed isomerization to the ortho- or para-isomer.

An X-ray crystal structure of annulene-dione (64) indicates an anti,anti configuration between the methylene and sulfur bridges.102 Diprotonation gives highly localized positive charges in the dication (65), mainly due to unfavourable p-orbital overlap.

The stabilities of protonated cyclopentylcarbonyl ketones are long-standing puzzle. Richie103a provided evidence that the ‘bisected’ cyclopentylcarbonyl carbenium ion (66a) was the more stable conformation, rather than the ‘perpendicular’ geometry (66b). Of the protonated, rigid ketones, (67), (68), and (69), spiro compound (67) is most stable, but the bicyclo compound (68) proved more stable than the nortricyclic system (69), although the latter has a bisected geometry, while (68) is unable to achieve this.103a The anomaly appears to have been resolved by semiempirical calculations of heats of formation of the ketones and ions, and an analysis of the effects of syn- and
anti-OH⁺ versus -cyclopropyl orientations. While oxygen plays important roles, some of the effects cancel: the corresponding hydrocarbon carbenium ions show similar orders of stability.

Ab initio MO methods have predicted geometrical changes in 3-halocyclohexanones accompanying complexation of the oxygen by a proton or lithium cation. From these changes, the preferred face for attack by a nucleophile can be predicted.

Hydration and Hydrate Anions

Hydration of several 1,2,3-triones including indane derivatives (70; Scheme 4) has been studied in dioxane–water mixtures. Monohydration gives a 2,2-diol (71): forward rates and equilibrium constants have been measured over a wide range of solvent composition. Based on activation parameters, kinetic isotope effects, a Hammett treatment, and a second-order rate dependence on water, two water molecules are suggested to play distinct roles, one as nucleophile, the other as general acid–base, similar to dialdehydes.

The base-catalysed ring fission of several substituted 2,2-dihydroxyindane-1,3-diones [(71) in Scheme 4, i.e. hydrates of the indanetriene system (70)] has been studied in aqueous dioxane. Rate constants, thermodynamic parameters, substituent, salt,
solvent, and solvent isotope effects are reported. The ring opens to give an o-
carboxyphenylglyoxal (72), which rearranges to the o-carboxymandelate (73); build-up of (72) was clearly evident in the kinetic measurements. No evidence for a lactone
pathway was found.

Benzocyclobutene-1,2-dione (74) undergoes base-catalysed ring fission between the
carbonyls to give 2-formylbenzoate (75). Rate constants, activation parameters, isotope
effects, and substituent effects have been measured in water. Rapid reversible
addition of hydroxide to one carbonyl is followed by intramolecular nucleophilic attack
on the other, giving a resonance-stabilized carbanionic intermediate (76a)↔(76b).

\[
\begin{align*}
\text{(74)} & \quad \xrightarrow{} \quad \text{(75)} \\
\text{(76a)} & \quad \leftrightarrow \quad \text{(76b)}
\end{align*}
\]

A similar investigation of the base-catalysed ring opening of 3,4-diphenylcyclobut-3-
ene-1,2-diones (77) to give (Z)-2-oxo-3,4-diphenylbut-3-enoates (78) has been carried
out in aqueous DMSO. The evidence points towards a rapid, reversible addition of
hydroxide to one carbonyl, followed by a benzilic acid-type rearrangement to give a
cyclopropene intermediate (79), which ring opens.

\[
\begin{align*}
\text{(77)} & \quad \xrightarrow{} \quad \text{(78)} \\
\text{(79)} & \quad \qa

Hydration of highly fluorinated ketones has been referred to under Acetals above. 2-
Acetyl-1-methylpyridinium ion is 8% hydrated in water: see Enolization below.

Addition of Organometallics

The mechanism of conjugate addition of lithium dialkylcuprates to enones has been
explored by the determination of 13C kinetic isotope effects by an NMR method: reductive elimination from Cu is implicated as the rate-determining step.

Several papers deal with diethylzinc: a chiral titanate complex with helical ligands
catalyses enantioselective addition to benzaldehyde, where approach to the Lewis acid
centre is guarded by flanking aryl rings; new chiral thiaprolinol amino alcohols have
been used as ligands for enantioselective borane reduction of ketones and diethylzinc
addition to aldehydes, with reasonable ee; AM1 molecular-modelling studies have
been used to guide the design of an improved chiral piperidine alcohol which acts as an
enantioselective catalyst;112 (S)-2-(N,N-disubstituted-aminomethyl)pyrrolidines have been employed as enantioselective catalysts.113

Aryltrimethylstannanes arylate aldehydes in the presence of a cationic rhodium complex, [Rh(cycloocta-1,5-diene)(MeCN)\textsubscript{2}]+, yielding secondary alcohols.114

Addition of Carbon Nucleophiles containing N, S, P, or Bi Substituents

An AM1 method has been used to investigate nucleophilic addition of malononitrile anion to carbonyl compounds.115

Addition of sulfonium ylids to aldehydes is a useful method of synthesizing epoxides, and can be carried out with high enantioselectivity, given appropriate chiral substituents on sulfur. The reaction has been investigated using a range of benzylsulfonium ylids in various solvents,116 with both aliphatic and aromatic aldehydes (Scheme 5). Epoxide formation is found to be under kinetic control, with a finely balanced stereochemical outcome. The trans-epoxide is formed directly via irreversible formation of the anti-betaine, or indirectly via reversible formation of syn-betaine, while cis-epoxide forms via partial reversible formation of syn-betaine. This reversibility in formation of the syn-structure is greater for aromatic aldehydes (thus giving higher trans selectivity), and also increases in more polar solvents.

![Scheme 5](image)

2-Halo-1,3-dithiane trans-1,3-dioxides (80; X = Cl, Br) act as diastereoselective carbonyl anion equivalents in reactions with aldehydes.117 The scope of the reaction has been explored by varying the temperature, the aldehyde, and the metal used as counterion. Similarly, metal 1,3-dithianides (81; M = Li, Cu1) can be added diastereoselectively to chiral aldehydes; subsequent hydrolysis yields an \(\alpha\)-hydroxyaldehyde.118

![Image of 1,13- and 1,14-asymmetric inductions](image)

Examples of 1,13- and 1,14-asymmetric inductions are reported in the case of the addition of sulfone carbanions to benzaldehyde.119

The Wittig and related reactions have been reviewed in the context of natural product synthesis;120 mechanistic studies of the Wittig reaction have also been reviewed with particular reference to asymmetric induction.121
Transannular interactions have been examined in the hexacyclo-
[6.6.0.0^{2,6}.0^{3,13} 0^{4,11}.0^{5,9}]-tetradecane system.¹²² For example, the 14-iodo-10-one
derivative (82) reacts with triphenylphosphine to give the salt (83), via C(10)—C(14)
bond formation. In contrast, the 10,14-dione does not react.

![Image of chemical structures](image)

Treatment of the salt, [Ph₃BiCH₂COR¹] BF₄[−] with base generates triphenylbismuthonium 2-oxoalkylide (84; R¹ = Bu[′], Ph). This reacts with 1,2-dicarboxylic acids to give
2,3-diacyloxiranes (85; from acyclic reactants, MeCOCOR², R² = Me, OEt) or 2-acyl-
3-hydroxytropones [e.g. (86), from the tetrachloro-o-quinone].¹²³ Both reaction types
are of considerable synthetic utility, and both are in marked contrast to the routes
followed by the corresponding phosphonium ylids.

Miscellaneous Additions

Two moles of aromatic aldehyde react with ethyl diazoacetate to form diastereomeric
1,3-dioxolanes.¹²⁴ The reaction is catalysed by dirhodium(II) species, and proceeds via
a carbonyl ylid. Stereo-control can be achieved using a bulky diazo substrate, and
electronic effects of aromatic substituents are important. Different reactions show
evidence of either a metal-stabilized ylid, a free ylid, or competition between the two.

The mechanism of the alkaline decomposition of methyl ethynyl ketone—to acetate
and ethylene—has been probed using AM1 calculations.¹²⁵

Aminoalcohol (87), when heated with phosphoryl chloride, cyclizes to 2-(trifluoro-
methyl)quinoline, rather than the expected 4-isomer.¹²⁶ A series of crossover
experiments using different perfluoroalkyl and aniline moieties suggest an amine
exchange process. A 1,3-diaminoallyl cation (88), i.e. a vinylogous formidinium salt, is
proposed to act as ‘turntable’ in the process.

The kinetics of the reactions between p-benzoquinone and an amino acid have been
investigated as a function of pH, temperature, and amino group basicity.¹²⁷
4-Oxochromene-3-carboxaldehydes (89) react with triazoles and primary amides to give a new family of heterocyclic compounds;128 the initial adduct of the triazole to the aldehyde can be isolated.

Factors affecting whether quinones undergo addition or reduction in their reactions with some organometallics, and with HN\textsubscript{3}, are discussed under Redox Reactions later.

\begin{center}
\begin{tabular}{c}
\includegraphics[width=0.5\textwidth]{87} & \includegraphics[width=0.2\textwidth]{88} & \includegraphics[width=0.2\textwidth]{89}
\end{tabular}
\end{center}

\textbf{Enolization and Related Reactions}

Isomer stabilities and activation energies have been calculated for keto–enol tautomerization of simple carbonyl compounds, MeC(R)═X (X = O; R = H, Me);129 both specific and bulk solvent effects have been analysed. Related isomerizations of acid derivatives (R = F, CN) and other related structures (R = H; X = CH\textsubscript{2}, NH, S) are compared.

\textit{Ab initio} methods have been used to compare enzyme-catalysed enolization mechanisms.130 Acid- and base-catalysed stepwise mechanisms have been compared with the concerted reaction; the latter is favoured by several hydrogen-bonding interactions.

Simple enols stabilized by bulky aryl groups have been reviewed.131 Amide enols, \textit{tip}C═C(OH)NR\textsubscript{1}R\textsubscript{2} (\textit{tip} = 2,4,6-trisopropylphenyl), can be generated by reaction of amines with ditipyl ketene, are observable by NMR, and slowly tautomerize. Vinyl alcohols with two or three bulky aryls have propeller conformations and are chiral, but are not easily resolved.

Acyclic perfluoroenols are strongly destabilized relative to their cyclic counterparts;132 the result is general for alkene systems.133

Acetoacetic acid, MeCOCH\textsubscript{2}CO\textsubscript{2}H, can enolize via its ketone- or acid-carbonyl groups: calculations suggest the former route is thermodynamically more favourable134 by 11.3 kcal mol-1.

Unsymmetrical \(\beta\)-diketones can form two \(\beta\)-keto–enol tautomers, (90a), (90b). The corresponding NH-pyrazoles—readily synthesized from the diketones—exhibit annular tautomerism, (91a), (91b). These tautomerisms have been probed via AM1 semiempirical calculations that show that the two phenomena are related.135 In each case the position of equilibrium is strongly influenced by whether or not the CC double bond is part of (another) ring system (the Mills–Nixon effect).
Kinetic and thermodynamic measurements show that 2-phenylacetyltiophene (92a) has a low enol content: $K_T = 3.55 \times 10^{-7}$ (or $pK_T = 6.45$). The keto and enol tautomers have pK_a values of 14.60 and 8.15, respectively. Relative to a phenyl or furanyl substituent at the carbonyl carbon, the thiophene increases the acidity of the enol tautomer, but stabilizes the ketone, probably via the resonance contribution (92b). Thus 2-thiophenyl stabilizes the enolate by electron attraction, but the ketone by donation. Effects of micelles on the equilibria are also reported.

A series of 4-hydroxycoumarins (93) have been synthesized and their tautomic equilibria with the 2,4-dione and 2-hydroxy-4-keto forms have been studied by NMR and by MNDO calculations. Enolization of cationic ketones is accelerated by electrostatic stabilization of the enolate anion. Rate constants for water-, acetate-, and hydroxide ion-catalysed enolization of 2-acetyl-1-methylpyridinium ion (94) have been measured and compared with a 2-acetyltiazolium ion (95), a simple analogue of 2-acetyltiamine pyrophosphate. For (94), $k_{OH} = 1.9 \times 10^{2}$ M$^{-1}$ s$^{-1}$, about 1.1×10^{6} times that for a typical methyl ketone such as acetone. Thermodynamically, it is $>10^8$ times more acidic (pK_a values of 11.1 vs 19.3). These increases in kinetic and thermodynamic acidity are derived from through-bond and through-space effects, and the implications for enzymatic catalytic sites with proximal, protonatable nitrogen are discussed. The results for (94) suggest a pK_a value of 8.8 for (95), a value that cannot be measured directly due to competing hydrolysis.
Catalysis of the enolization of indan-2-one (96; pKa = 12.2) by α-, β-, γ-, and modified cyclodextrins (of similar pKa) indicate that the latter act as general bases.139 There is also an inclusion component to the catalysis: saturation kinetics consistent with 1:1 binding are observed for enolate formation.

Rates of acid-catalysed enolization of isobutyrophenone and its α-d analogue have been measured in H\textsubscript{2}O and D\textsubscript{2}O, by bromine scavenging.140a Results include a solvent isotope effect, \(k_{\text{H}^+}/k_{\text{D}^+}\), of 0.56, and a substrate isotope effect, \(k_{\text{H}}/k_{\text{D}}\), of 6.2 (both for the enolization reaction). Combination of the data with that for ketonization in D\textsubscript{2}O140b gives the first isotope effect for the keto–enol equilibrium of a simple ketone:
\[
K_E(H_2O)/K_E(D_2O) = 0.92.
\] The results are discussed in terms of the isotopic fractionation factors and the medium effect.

Rates of enolization of 4-oxophenylbutanoic acids, XC\(_6\)H\(_4\)COCH\(_2\)CH\(_2\)CO\(_2\)H, have been measured in 75% acetic acid141 at 30 °C. A Hammett \(\rho\) value of −0.78 was found. \textit{Ortho} substituents significantly enhance the rate; \(^1\)H- and \(^{13}\)C-NMR suggest that this is because they twist the benzene ring out of conjugation with the carbonyl.

Keto–enol equilibrium constants for simple β-dicarbonyl compounds, RCOCH\(_2\)COX (R = X = Me; R = Me, Ph for X = OEt) have been measured in water142a by a micelle perturbation method previously reported for benzoylaceton142b (R = Ph, X = Me). The results have been combined with kinetic data for nitrosation by NO\(^+\), CINO, BrNO, and SCNNO: in all cases, reaction with the enol was found to be rate limiting.

When benzyl bromide is reacted with acetophenone using a phase-transfer catalyst (but no solvent), the double benzylzation product, PhCOCH(\(\text{CH}_2\)Ph)\(_2\), is produced almost exclusively.143 The change in substrate acidity does not appear to explain the result. Rather, a π–π interaction in the transition state between mono- and di-benzyl products is proposed. A further investigation144 has more accurately characterized which substrates will display the effect, and has also identified the π–π interaction (or, more properly, a σ–π interaction between two π-systems) as being of the edge-to-face geometry.

\(\alpha\), \(\beta\)-Unsaturated ketones, \(\beta\)-keto esters, and some uracil derivatives undergo \(\alpha\)-iodination with iodine in the presence of bis(tetra-\(\eta\)-butylammonium) peroxodisulfate \([(\text{Bu}_4\text{N})_2\text{OS}(\text{=O})_2\text{OOS}(\text{=O})_2\text{O}^-] \) in good yield.145 It is suggested that SO\(_4^2\)\(^-\) is generated by homolytic cleavage of peroxodisulfate, and that this converts iodine to \(I_2^+\), which acts as the iodinating species.

Aryllead triacetates \(\alpha\)-arylketones highly selectively, working well for tertiary \(\alpha\)-carbons, or secondary ones activated by a phenyl group,146 thus favouring arylation of positions that are typically already crowded, making the reaction very useful synthetically.

The regiochemistry of deuteriation of polycyclic carbonyl compounds such as methyl derivatives of benz[\(de\]anthracen-6- and -7-one is subject to orbital control.147 Charge alternation and deuterium isotope effects in these and related compounds were studied by NMR and MNDO methods.

Intramolecular proton transfer rates in acetylacetone have been calculated.148 Iodination of acetone is slowed by increasing magnetic field strength.149
Enolates

Recent developments in enantioselective protonation of enolates and enols have been reviewed, illustrating the reactions’ utility in asymmetric synthesis of carbonyl compounds with pharmaceutical or other industrial applications.\(^{150}\) Enolate protonation may require use of an auxiliary in stoichiometric amount, but it is typically readily recoverable. In contrast, the chiral reagent is not consumed in protonation of enols, so a catalytic quantity may suffice. Another variant is the protonation of a complex of the enolate and the auxiliary by an achiral proton source. Differentiation of these three possibilities may be difficult, due to reversible proton exchange reactions.

To distinguish isomeric anions such as alkoxides and enolates in the gas phase, a flowing-afterglow MS technique has been developed, using a probe reagent to distinguish such species by chemical reactivity.\(^{151}\) Dimethyl sulfide proved particularly useful. Alkoxide anions react as ‘hard’ bases, eliminating across the C—S bond, whereas enolates were ‘softer’, attacking at sulfur. The scope and limitations of other probes such as methyl nitrite and methanol-O-d are outlined.

Proton abstraction from a model carbon acid, hydroxyacetalddehyde, by formate anion has been examined theoretically for the gas phase and for aqueous solution.\(^{152}\) The reaction shows an early transition state, whereas its enzymatic equivalent has a late transition state. Solvation brings the transition state forward. The factors that contribute to producing the later transition state in enzymes are discussed.

Highly selective kinetic enolate formation, via the deprotonation of representative ketones with analogues of lithium diisopropyl amide (LDA) bases, has been reported.\(^{153}\) The strategy involves varying the nature of the lithium amide substituents to bias protonation towards \((E)\)- or \((Z)\)-enolate. Combinations of phenyl, trimethylsilyl, and alkyl groups of varying bulk were employed. Excellent \(E\)-selectivity was achieved with steric control [e.g. using lithium \(N\)-t-butyl(trimethylsilyl)amide], while high \(Z\)-yield requires \(\text{two}\) electron-withdrawing groups, as in the case of the \(N\)-(trimethylsilyl)anilide base; both of these modified forms of LDA should be of considerable synthetic utility.

Another new LDA-based strategy for regioselective alkylation of unsymmetrical ketones involves the combined use of LDA and aluminium tris(2,6-diphenylphenoxy): the latter complexes the less hindered side of the ketone, blocking the LDA and ‘re-directing’ it by default to the more hindered side.\(^{154}\)

1,2-Diphenylcycloalkanols undergo base-catalysed ring opening to give enolates, with some fragmentation.\(^{155}\) Mechanisms and rate-limiting steps within them change considerably with ring size. Rings of 5–8 carbons have been studied, as have the corresponding acyclic structures. A very wide range of reactivity is observed, but comparisons with strain release and entropy change give poor correlations.

The diastereoselectivity of protonation of enolate anions has been studied by H/D exchange.\(^{156}\) \(\beta\)-Substituted ethyl butanoates were chosen as substrates, with conditions that rigorously excluded ion-pairing and aggregation effects. Steroelectronic effects were found typically to produce higher stereoselection than purely steric effects. In the specific case of H/D exchange in 3-ethoxybutanoate in ethanol-d, protonation of the enolate of 3-fluorobutanoate was chosen as a computational model.\(^{157}\) Similar
diastereoselectivities were observed for cis- and trans-enolates, and the transition state for each has the C—F bond anti to the incipient C—H bond, perhaps due to a stabilizing orbital interaction.

Oxidation and Reduction of Carbonyl Compounds

Regio-, Enantio-, and Diastereo-selective Redox Reactions

In a new synthesis of diltiazem (98b; R = Ac, X = CH₂CH₂NMe₂), a calcium antagonist used in the treatment of hypertension, the key step is the diastereoselective reduction of ω-ketolactam (97) to the alcohol precursor (98a; R = X = H). The reduction of the 1,5-benzothiazepine (97) was achieved using an NaBH₄-(S)-amino acid combination; (S)-l-leucine was most efficient, and was readily recovered unracemized.

![Diagram](image_url)

The regiochemistry of borohydride reduction of cyclic enediones such as (99) was markedly affected by addition of cerium(III): whether a complexation site was accessible to the Lewis acid appears to be the main factor involved.

ω, β-Unsaturated ketones have been converted into the corresponding saturated chiral alcohols in high yield and high ee using a mercaptoisoborneol as auxiliary. Michael addition is followed by an intramolecular Meerwein–Ponndorf–Verley reduction involving a 1,7-hydride shift and the formation of a 10-membered cyclic chelate.

A series of 2-substituted cyclohexanones was studied over a wide range of temperature in an attempt to optimize the diastereoselectivity of diisobutylaluminium phenoxides in the reduction of ketones. Hydride transfer dominates at high temperature, but a Meerwein–Ponndorf–Verley-type interconversion of the aluminium alcoholate intermediates (via the reactant ketone) is an important factor in diastereoselection at low temperature.

The face-selectivity of hydride reductions of the conformationally-rigid ketone series (100) has been examined for pure axial and equatorial isomers with four different R groups, viz. Me, Cl, OMe, and SME. The reactivities show Taft correlations with the inductive effects of the substituents. Only through-bond and -space electrostatic interactions are used to explain the results: neither Cieplak nor Anh antiperiplanar effects are invoked.

Reaction of organometallics such as alkyllithiums or Grignard reagents with p-quinones can give an addition product, or a hydroquinone (i.e. reduction product).
reaction is shown to occur via a concerted single-electron transfer to give quinone radical anion and alkyl radical.163 Radical coupling gives the addition product, but bulky R groups allow radical separation by diffusion, leading to reduction. Similarly, conjugate addition of HN\textsubscript{3} to quinones can yield either aminophonones or azidohydroquinones, and the parameters and conditions required to select between outcomes have been characterized.164

\(\beta\)-Hydroxy ketones can be reduced with aldehydes in a Tishchenko-type reaction, (101) \(\rightarrow\) (102), using a zirconocene catalyst.165 The reaction provides a stereoselective route to \textit{anti}-1,3-diols. A labelling experiment with CpZrH\textsubscript{2} and MeCDO indicated that the aldehydic hydrogen ends up on the alcohol carbon. The kinetic isotope effect of ca 1.8 suggests that hydride transfer may be rate limiting.

In other reports, \(\beta\)-cycloextrinsics have been used to induce asymmetry in borohydride reduction of ketones,166 a diastereoselective reduction has been controlled167 by a \(\pi\)-allylicarboxyliron lactone ‘tether’, a phosphinamide has been combined with a dioxaborolidine unit as an activated, directed catalyst for ketone reduction,168 reductive amination using benzylamine–cyanoborohydride converts 3-hydroxy ketones into \textit{syn}-1,3-amino alcohols,169 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propan-1-one has been reduced diastereoselectively,170 and production of chiral alcohols via (i) Itsuno–Corey and Brown procedures171 and (ii) lithium aluminium hydride modified by chiral nucleophiles172 has been reviewed.

Use of thiaprolinol amino alcohols as ligands for enantioselective borane reduction of ketones111 and of a fluorotitanium-TADDOLate to catalyse reduction of benzaldehyde187c has been described above under Organometallics and Allylation Reactions, respectively.

\textit{Other Redox Reactions}

The Cannizzaro disproportionation, \(2\text{RCHO} + \text{HO}^- \rightarrow \text{RCH}_2\text{O}^- + \text{RCO}_2\text{H}\), has been studied in the gas phase by a variety of MS techniques, for R = But and Ph,173 and results have been compared with calculations on the prototypical system, i.e. R = H.

Cyclohexanone and some alkyl derivatives can ring contract to the corresponding cyclopentanecarboxylic acid; the reaction is promoted by thallium(III). Alternative mechanisms which have been proposed by (i) Wiberg and Koch174a and (ii) McKillop \textit{et al.}174b involve a 2-thallyl ketone hydrate which either (i) loses Tl+ and a proton in ring contraction or (ii) loses Tl+ first, giving rise to a protonated hydroxyoxirane.
intermediate (103). The stereochemical outcomes are different, and examination of the products of ring contraction of 3- and 4-methyl- and -t-butyl-cyclohexanones174c tends to favour the proposal of McKillop \textit{et al.}

\[
\begin{align*}
\text{R} & \quad \text{OH} \\
\text{H} & \quad (103)
\end{align*}
\]

Rate equations for the oxidation of aldehydes, RCHO (R = H, Me\textsubscript{2}CH, Ph, \textit{p}-MeOC\textsubscript{6}H\textsubscript{4}), by Fenton’s reagent (Fe2+—H\textsubscript{2}O\textsubscript{2}—H+) have been determined.175 The reactions were first order in ferrous ion, peroxide, and aldehyde, except for aromatic aldehydes, where the order in peroxide was measured as 0.5.

Other reports of kinetic studies deal with mechanisms of thermal oxidation of a variety of simple ketones monitored via gas evolution (CO, CO\textsubscript{2}, H\textsubscript{2}, etc.),176 alkaline oxidation of aldehydes with copper and silver tellurates,177 [MIII(H\textsubscript{2}TeO\textsubscript{6})\textsubscript{2}]5−, and oxidation of acetals of simple aldehydes in aqueous acetic acid with (i) \textit{N}-chlorobenzamide (H\textsubscript{2}OCl+ is the oxidant inferred)178 and (ii) \textit{N}-chlorosaccharin.179

Accounts of the reductive coupling of two molecules of ketone via the McMurry alkene synthesis have been described66–68 earlier under Miscellaneous Aldols.

\section*{Other Reactions}

A 1-thiabuta-1,3-diene (104) undergoes highly stereoselective hetero-Diels–Alder cycloadditions with chiral \textit{N}-acyrloyloxazolidinones.180

\[
\begin{align*}
\text{Ph} & \quad \text{S} \\
\text{Z} & \quad \text{N} \\
\text{O} & \quad \text{Ph} \\
\text{PhH}_{2} & \quad (104) \\
\text{N} & \quad (105) \\
\text{O} & \quad (106)
\end{align*}
\]

Alkylation of chiral 2-(aminomethyl)oxazoline (105; Z = CH\textsubscript{2}Ph) at the exocyclic carbon—using \textit{n}-butyllithium and an alkyl halide—proceeds with negligible \textit{de}. However, when the amine reactant is changed to a carbamate, e.g. (105; Z = CO\textsubscript{2}Ph), the products exhibit up to 92\% \textit{de}.181 This is ascribed to a preferred formation of an \textit{E}-enolate-type intermediate during deprotonation, due to complexation of the lithium by the carbamate carbonyl.

Rate constants for the reaction of pinonaldehyde (106), an oxidation product of \textit{z}-pinene, with OH, NO\textsubscript{3}, and O\textsubscript{3} have been measured in the gas phase.182

Boron cations, Me\textsubscript{2}B+ and (MeO)\textsubscript{2}B+, are highly reactive towards carbonyl compounds, but are not easily studied in condensed phase. In the gas phase, two pathways compete:183 (i) C=O cleavage, with OH abstraction leaving behind a
hydrocarbon cation corresponding to the entire carbon skeleton of the reactant; (ii) C—C cleavage, involving abstraction of a small aldehyde with elimination of a neutral alkene. Pathway (i) is thermodynamically favoured, and dominant for long-chain substrates. Pathway (ii) competes kinetically for shorter chains, and the product structures can identify the carbonyl substrate involved.

Hydrogenated furans can be prepared from the reaction of α-olefins with formaldehyde in trifluoroacetic acid: kinetics suggest that the reactions proceed via equilibrium addition of the protonated aldehyde.184

Structural factors in the reactants and the reaction pH have both been varied to optimize the electrophilic condensation of pyrimidines with cyclic ketones such as N-substituted piperidones and 4-substituted cyclohexanones.185

Muonium is a light isotope of hydrogen (<0.1 amu), and its muon nucleus is short-lived (ca 2 μs). Kinetic isotope effects of 10^4, relative to 1H, are known. Reaction of muonium atoms with carbonyl compounds has been studied in aqueous solution.186a For acetone,186b the major pathways are addition [Mu + Me2CO → HMu + Me2C(OMu)] and abstraction [… → HMu + MeCOCH2]. At 22 °C, the rate of muonium reaction with butanone, 3-pentanone, cyclohexanone, di-i-butyl ketone, and the previously measured acetone186b has an approximately invariant value of 1 × 10^8 M^-1 s^-1 (±20%), and even acetaldehyde reacts at < 2 × 10^8 M^-1 s^-1. This lack of rate dependence on structure is in marked contrast to the rates of reaction of H’, where even the closely related acetone and butanone differ by 22-fold,186c and reaction is slower than Mu’. It appears that abstraction, which is often the dominant reaction in the case of 1H, is practically absent for Mu. Presumably tunnelling is more important for addition, whereas the heavier 1H wins out in the abstraction reaction as transition states involving muonium have higher zero-point vibrational energy. As muonium isotope effects are used to investigate mechanisms of many reaction types, the example underlines the importance of identifying the products of kinetic studies, whether ‘ordinary’ or ‘exotic’ species are involved.

The balance of the two pathways for muonium and acetone described here is reversed when the acetone is localized in micelles.187

The structure of the product of the reaction of resorcinol (m-dihydroxybenzene) with acetone—uncertain for over a century—has been confirmed188 as (107). The mechanism is proposed to involve initial formation of mesityl oxide (Me2C=CH-CHCOMe), as reaction of authentic oxide with resorcinol produces the same product.
6-Amino-5-thioformyluracils, e.g. (108a), have their thioaldehyde function stabilized by the amino group; this may involve tautomerization to an imino-mercaptomethylenec (108b). The reactivity of (108a) with enamines has been investigated.\(^{189}\)

Several bicyclo[2.2.1]heptane derivatives with a 1,4-dicarbonyl moiety undergo C—C bond cleavage via intramolecular pinacol coupling, promoted by samarium(II) iodide.\(^{190}\)

Kinetics of isomerization of glyceraldehyde to dihydroxyacetone—and the formation of pyruvaldehyde from both—have been studied in sub- and super-critical water.\(^{191}\)

Formaldehyde reacts with isoeugenol [1-(3-methoxy-4-hydroxyphenyl)propene] in alkaline medium to give a 1,3-dioxane derivative via an unusual Prins-type reaction.\(^{192}\)

The potential-energy surface for the equilibrium, \(\text{HCO} + \text{HCN} \rightleftharpoons \text{H}_2\text{CO} + \text{CN}\), has been calculated\(^{193}\) by \textit{ab initio} methods.

References

1 Reactions of Aldehydes and Ketones and their Derivatives

1 Reactions of Aldehydes and Ketones and their Derivatives

CHAPTER 2

Reactions of Carboxylic, Phosphoric and Sulfonic Acids and their Derivatives

W. J. SPILLANE

Chemistry Department, National University of Ireland, Galway, Ireland

CARBOXYLIC ACIDS

Tetrahedral Intermediates .. 38

Intermolecular Catalysis and Reactions.. 42
 Reactions in Hydroxylic Solvents... 42
 (a) General ... 42
 (b) Esters .. 42
 (i) Formation ... 42
 (ii) Transesterification .. 42
 (iii) Other reactions ... 43
 (c) Lactones and derivatives ... 46
 (d) Acids and anhydrides ... 47
 (e) Acid halides .. 50
 (f) Ureas, carbamates, hydroxylamine, and derivatives................................. 51
 (g) Amides and anilides .. 53
 (h) Lactams .. 56
 (i) Non-heterocyclic nitrogen centres .. 57
 (j) Other heterocyclic nitrogen centres .. 58

Reactions in Aprotic Solvents .. 61

Intramolecular Catalysis and Neighbouring-group Participation 61

Association-prefaced Catalysis ... 64

Metal-ion Catalysis ... 68

Decarboxylation .. 70

Enzymic Catalysis .. 72
 General ... 72
 Serine Proteinases .. 73
 Lipases and β-Lactamases .. 73
 Other Enzymes .. 74
 Catalytic Antibodies .. 76

NON-CARBOXYLIC ACIDS .. 76

Phosphorus-containing Acids .. 76
 Phosphates and Phosphonates .. 76
 Phosphorus–Nitrogen Centres ... 78
 Phosphorus–Oxygen and Phosphorus–Sulfur Centres 79
 Biologically Important Reactions ... 81

Sulfur-containing Acids ... 83
 Sulfur–Oxygen Compounds .. 83
 Sulfur–Nitrogen Compounds .. 85
 Sulfur–Carbon Compounds and Other Sulfur-containing Functionalities 88

ISBNs: 0-471-89935-6 (Hardback); 0-470-84580-5 (Electronic)
CARBOXYLIC ACIDS

Tetrahedral Intermediates

Base-catalysed ring fission of a series of substituted benzocyclobutenediones (1) to give the corresponding 2-formylbenzoic acids (2) proceeds via a rapid reversible addition of hydroxide ion to the dione giving an anionic tetrahedral adduct followed by intramolecular nucleophilic attack on the second carbonyl group. 18O experiments support the formation of the tetrahedral intermediate.1 These authors have also studied the base-catalysed ring fission of the related 3,4-diphenylcyclobut-3-ene-1,2-diones (3) to give the corresponding (Z)-2-oxo-3,4-diphenylbut-3-enoic acids (4) via the sequence shown in Scheme 1, which involves the tetrahedral intermediate (5).2

Measurement of Hammett ρ values for the hydroxide and phenoxide attack on 4-nitrophenyl esters of substituted benzoic acids shows that there is a large change in hybridization at the carbonyl carbon atom and the transition state for the concerted reaction which has a substantial tetrahedral geometry corresponding to a change from sp^2 to sp^3 at the carbon.3

A large body of work has indicated the involvement of zwitterionic tetrahedral intermediates in a number of systems. The n-butylaminolysis of substituted phenyl esters (Scheme 2) in acetonitrile has been studied by Williams’ group.4 A zwitterionic tetrahedral intermediate (T^\pm) is implicated in the mechanism and its formation may be

\[\text{Ar Ar} \text{CHO} + \text{HO}^- \rightarrow \text{Ar Ar} \text{CO}_2^- \]

\[\text{Ar Ar} \text{CHO} + \text{HO}^- \rightleftharpoons \text{Ar Ar} \text{CO}_2^- \]

\[\text{Ar Ar} \text{CO}_2^- \rightleftharpoons \text{Ar Ar} \text{CO}_2^- \]

\[\text{H Ar} \text{CO}_2^- \rightleftharpoons \text{H Ar} \text{CO}_2^- \]

\textbf{SCHEME 1}
slow for one of the paths involved or C–OAr bond fission may be rate limiting in another path. The cyclization of the hydantoinamides (6) involves the mechanism shown in Scheme 3 with the participation of zwitterionic and first an anionic tetrahedral intermediate. At high pH, T⁻ is in equilibrium with the reactants and the rate is controlled by proton transfers producing T⁺. The aminolysis with benzylamines of p-nitrophenyl N-phenylcarbamates goes by a stepwise mechanism involving breakdown of intermediate (7) as the rate-limiting step by deprotonation at the amino group of the benzylamine. Hammett studies including the measurement of the cross-interaction constant and kinetic isotope effects with N-deuterated benzylamine support this mechanism. Rate-determining breakdown of the T⁺ (8) is again the crucial step in the aminolysis with benzylamines of phenyl 2-furoates in acetonitrile. The intermediate (9) is involved in the reactions of anilines, N,N-dimethylanilines, and benzylamines with phenyl dithioacetates in acetonitrile. For the first two sets of bases the mechanism is rate-determining expulsion of the leaving group but, for the benzylamines, the slow step is attack by the base.

The pyridinolysis of 2,4-dinitro- and 2,4,6-trinitrophenyl O-ethyl dithiocarbonates (10) involves tetrahedral zwitterionic intermediates in stepwise reactions. The reaction of pyrrolidine with (10; Ar = X-phenyl) in aqueous ethanol involves slow formation of a zwitterionic tetrahedral intermediate. There are major differences in this reaction compared to that involving piperidine as the base. The T⁺ (11) is involved in the reactions of phenyl and 4-nitrophenyl chlorothioformates with secondary alicyclic amines. The formation of the intermediate is the slow step. The reaction of thearyl
thionocarbonates (12) is shown in Scheme 4 and a tetrahedral zwitterionic intermediate (13) is seen to be involved. The reaction of N-ethoxycarbonylphthalimide (14) with MeNHOH involves a zwitterionic tetrahedral intermediate formed by base attack at one of the carbonyl carbons of (14).

The reaction of barbiturate and 1,3-dimethylbarbiturate ions with 2- and 4-nitrobenzaldehyde and 2,4-dinitrobenzaldehyde represented generally in Scheme 5 involves a diffusion-controlled (viscosity effects on rates) proton transfer from hydronium ion to an addition intermediate T− in the slow step. The addition of water and ring-opening reactions of the protonated benzoxazines (14) involves the cyclic intermediate (15). At low buffer concentrations buffer-catalysed collapse of the intermediate is rate limiting but, at high buffer concentrations, the addition of water is the rate-limiting step. The anionic tetrahedral intermediate (16) is involved in the hydrolysis of the 2′, 2′, 2′-trifluoroethyl monoester of 1,8-naphtholic acid (17).

A series of molecules potentially capable of forming anionic tetrahedral adducts at the active site (18) have been assessed as sources of transition state analogues and as inhibitors of the class C β-lactamase of Enterobacter cloacae P99.
The different behaviour of sulphydryl (HS\(^-\)) and hydroxyl (HO\(^-\)) anions in their nucleophilic addition reactions to carbonyl (HO\(^-\)) anions has been examined using \textit{ab initio} calculations.\(^\text{18}\) All the anionic tetrahedral adducts formed by the sulphydryl ion are characterized by higher charge transfer but are significantly less stable than the analogous tetrahedral adducts formed by hydroxyl ion. This phenomenon can be explained using density functional theory (DFT). The mechanism of decomposition of the carcinogen \(N\)-methyl-\(N\)-nitrosourea (MNU) (19) in water involves the tetrahedral intermediate (20) resulting from attack of hydroxide ion at the carbamoyl carbon atom. The overall reaction sequence is shown in Scheme 6.\(^\text{19}\) The carcinogenicity of (19) arises from its ability to methylate DNA and this work has implications for the understanding of this action.

Scheme 5

Scheme 6

Other references involving tetrahedral intermediates are 21, 38, 49, 54, 55, 96, 103, 105, 128, 211, 212 and 216.
Intermolecular Catalysis and Reactions

Reactions in Hydroxylic Solvents

(a) **General**

MO calculations have shown that the acylation rate of amines is mainly influenced by the donor activity of the unshared electron pair on the N atom of the amine.\(^{20}\) The rates of hydrolysis in aqueous NaOH of the alkaloid strychnine (21; \(R = H\)) and seven of its derivatives (21) have been determined and it has been found that the quantitative effect of positively and negatively charged groups are in approximate agreement with calculations using the Kirkwood–Westheimer theory.\(^{21}\) The point is also made that strychnine is a good subject for physical organic studies, being cheap and undergoing a diversity of reactions. Hammett \(\sigma_m\) and \(\sigma_p\) values have been found to correlate very well with critical points (CPs) determined from a molecular electrostatic potential (MESP) topography study of monosubstituted benzenes.\(^{22}\) The range of \(\sigma\) values correlated runs from ca 0.7 to ca \(-0.7\).

(b) **Esters**

(i) **Formation**

The effect of dielectric properties in a continuous flow system under microwave irradiation of esterification has been studied.\(^{23}\) Base-catalysed deprotonation of \(N\)-protonated glycine methyl ester (23) at neutral pH gives the amino acid ester enolate (22).\(^{24}\) Iodine catalyses the acetylation of amines, phenols, and alcohols with acetic anhydride in excellent yields. The mechanism may involve complexation of the iodine with the acetic anhydride followed by nucleophilic attack to give acetate and an unstable acylhypohalite MeCOOI which eliminates iodine to continue the reaction.\(^{25}\) The main variables controlling the lipase-catalysed enantioselective esterification of 2-arylpropionic acids are enzyme content, amount of water, temperature, stirring speed, and solvent. Immobilized lipase from *Rhizomucor miehei* (lipzyme IM) was used in this study. A new and convenient parameter (enantioimetric factor, EF) is defined for assessing the enantioselectivity of the reaction.\(^{26}\)

(ii) **Transesterification**

The kinetics in acetonitrile of the acyl group transfer from the pyridinium salts (24) to 4-(\(p\)-dimethylaminostyryl)pyridine \(N\)-oxide (25) to give (26) have been determined and activation parameters also calculated (Scheme 7).\(^{27}\) The acyloin (27) can be resolved using lipase–triethylamine-mediated dynamic transesterification to give optically pure (28). The method is a new route to optically pure oxodicyclopentadiene.\(^{28}\) Direct elimination, as shown in (29), rather than an ene mechanism is favoured for the transfer of succinyl from aryl enolsuccinates to the enolates of aryl ketones (30). Semiempirical calculations and the results of a deuterium-labelling experiment support this view.\(^{29}\) The rates of exchange of the 2,4,6-trimethylphenolate ion between dimeric lithium 2,4,6-trimethylphenolate-\(d_9\), represented as (31), and a series of esters (32) have been determined in various organic solvents. The dimer does not dissociate and the rates of transesterification increase with increasing solvent donicity.\(^{30}\)
(iii) Other reactions Disolvated lithium diisopropylamide (LDA) deprotonates (33) to give the enol (34) in THF–toluene via a cyclic transition state. The mechanism involves complexation of (33) and LDA-THF monomer to give LDA–(THF)$_2$ (33), which decomposes to give (34). The kinetics of pyrolysis of methyl ricinoleate to give methyl undecylate (35) and heptanol (36) have been reported. The effect of boric acid on the kinetics of hydrolysis of p-nitrophenyl esters of dihydroxybenzoic acids has been studied. Boric acid inhibits the hydrolysis of 2,3-dihydroxybenzoic acid p-nitrophenyl ester but it does not affect the hydrolysis of the 3,4-dihydroxy ester. This contrasts with the effect of boric acid on the hydrolysis of the salicylate ester and simulates borate inhibition of serine proteases.

The rates of acid-catalysed methoxy exchange between methanol and the three diastereomers of 2-methoxy-4,6-dimethyl-1,3-dioxalane (37a–c) were measured in benzene and methanol–chloroform. Rate constants were evaluated in a novel way using 1D-EXSY NMR pulse sequence and a weighted least-squares analysis. The critical intermediate is (38) and rates of methanol attack on it in benzene show a 24-fold axial selectivity whereas in methanol–chloroform the selectivity difference is ninefold.

Potential energy profiles have been determined for two series of reactions:

(i) $X^- + HCOY$ where $X = Y = H, F$, or Cl and

(ii) $X^- + RCOX$ where $X = F$ or Cl and $R = SiH_3, Me, CN$, or NO$_2$

Energies of all stationary points were evaluated at the Hartree–Fock and the second-order Möller–Plesset (MP2) correlation levels with 6–311+G** for (i) and 6–31+G* for (ii). Acyl transfers can proceed through single-, double-, or triple-well energy profiles in the gas phase depending on X^-, the nucleofuge Y^-, and the R group. Comparative molecular field analysis (CoMFA) has been used in an unusual
A B_{Ac}^2 mechanism is proposed for the saponification of ethyl benzoate in ethanol–water. The reactions of aryl benzoates in absolute ethanol with ethoxide, aryloxides and acetophenone oximates occur via a stepwise mechanism in which the formation of the tetrahedral intermediate is rate determining. A stepwise mechanism is also supported for the reactions of p-nitrophenyl-substituted benzoates with hydroxide and p-chlorophenoxide. The evidence comes from breaks in Hammett plots as the acyl…
substituent becomes a strong electron withdrawer. In related work on the reactions of phenoxy ions with substituted phenyl benzoates in absolute ethanol, the same group also support a stepwise mechanism. They also determined by a kinetic method the pKa values for 10 substituted phenols in ethanol. Neighbouring-group participation by acyl carbonyl groups has been demonstrated in the hydrolysis of the benzoates (39) and the phenyl acetates (40) by studying the alkaline hydrolysis of (39) and the neutral and alkaline hydrolysis of (40) and comparing the relative rates and activation parameters. The same group has examined the sulfur analogues of (39) and (40). Thus, the alkaline hydrolysis of (39; Y = H, X = SMe, SOMe, SO2Me) and [40; Y = H, X same as in (39)] have been studied and the relative rates and activation parameters indicate the importance of polar and steric effects in the hydrolysis. The effect of solvent on the z-effect has been probed in the reaction of p-nitrophenyl acetate with m-chlorophenoxide and benzohydroxamic acids in MeCN–water. The hydroxamic acids exert a large z-effect in water. Thermodynamic functions of activation of the alkaline hydrolysis of ethyl benzoate and of ethyl p-nitrobenzoate (41) in ethanol–water mixtures have been studied. The hydrolysis of a series of N-methylpiperidinyl and tropinyl (42) esters in 70% DMSO has been investigated and correlated fairly well in regression equations with terms for electronic (Taft σ*), hydrophobic (log kH), and steric (molecular volume) effects. A correlation coefficient of 0.94 was obtained.

\[
\begin{align*}
\text{(39)} & \quad X = \text{CHO}, \ Y = \text{H} \\
& \quad X, Y = \text{CHO} \\
& \quad X = \text{C(CF}3\text{)}\text{O}, \ Y = \text{H} \\
\text{(40)} & \quad X = \text{CHO}, \ Y = Z = \text{H} \\
& \quad X, Y = \text{CHO}, \ Z = \text{Me} \\
& \quad X = \text{C(CF}3\text{)}\text{O}, \ Y = Z = \text{H} \\
\text{(42)} & \quad \text{(43)} \\
\text{(44)} & \quad \text{O}_2\text{NC}_6\text{H}_4\text{C}\text{OEt}
\end{align*}
\]

The reaction of 2,4-dinitrophenyl benzoate with secondary cyclic amines in DMSO–water shows a break in a Bronsted plot near pKa 9.1 and the microconstants for the various stages in the reaction have been obtained and these gave good straight line Bronsted plots. The z-effect was observed as a positive deviation in the linear log k vs pKa plot for the reaction of p-nitrophenyl X-substituted benzoates (43) with primary
amines, the two amines that deviated being hydrazine and hydroxylamine. The acyl transfer reaction from p-nitrophenyl acetate to hydroxylamine at pH 6 and 12 has been examined for kinetic isotope (leaving group 18O, carbonyl oxygen 18O, β-deuterium, carbonyl carbon 13C and nitro group 15N) effects. The results obtained have been interpreted in terms of slow breakdown of the intermediate (44) at low pH and attack of hydroxylamine with concerted expulsion of nitrophenolate at high pH. Heavy atom isotope effects have also been looked at in the hydrazinolysis of methyl formate. At pH 8 the slow step is the breakdown of a tetrahedral intermediate to products but at pH 10 the formation of the intermediate is the slow step.

(c) Lactones and derivatives
The enthalpy of formation of the oxiranone (45) has been estimated as -190 ± 10 kJ mol$^{-1}$ by means of ab initio MO calculations at the QCISD(T) = full/6–311G(2df,p)//MP2 = full/6–311G(d,p) level of theory and this corresponds to a ring strain energy of 169 kJ mol$^{-1}$. The calculated enthalpy of formation of cyclopropanone is 6.3 kJ mol$^{-1}$. The oxiranone ring is believed to be slightly less strained than the cyclopropanone ring. The same workers have carried out theoretical calculations on the reaction pathway for the elimination of halide from the α-halocarboxylates (46) giving (47). The α-chloroacetate has an S_N2 type transition state but the chloropropionate is more S_N1-like. Finally they have looked at the structure and stability of the hydroxoxiranone (48) using MO methods. The standard enthalpy of formation is -377 ± 10 kJ mol$^{-1}$ and this corresponds to a ring strain of 104 kJ mol$^{-1}$. The hydroxy substituent on (48) stabilizes the α-lactone by 65 kJ mol$^{-1}$. Semiempirical MO calculations (AM1 and PM3) on the addition of nucleophiles to unsaturated five- (49) and six-membered (50) bislactones of the Pechmann dye type indicate that a similar mechanism operates for the two reactions. The slow step is the addition of a second nucleophile to the enol of the ring-opened monolactone. The compounds (49) are found to be more reactive than (50). The rate-determining step is considered to be the formation of a tetrahedral intermediate in the alkaline hydrolysis of the unsaturated lactones and esters (51)–(56). The base-catalysed hydrolysis of a series of γ-lactones (57) in 70% aqueous dioxane to give the 2-acetylbenzoates (58) has been examined for a very wide range of compounds (57) and the results can be related to an electrostatic field model.

Cyclization to a morpholinolactone (59) occurs in the hydrolysis reaction of the di-N-hydroxyethylated compound (60). Compound (59) is rapidly hydrolysed by water to (61) but in the presence of equimolar amounts of amines (RNH$_2$) or amino acid derivatives (62) forms. A novel reaction of cyclic 2-diazo-1,3-dicarbonyl compounds (63) with lactones (64) affords the products (65) in the presence of rhodium acetate, Rh$_2$(OAc)$_4$. Lewis acid-promoted intramolecular additions of allylsilanes to β-lactones gave substituted cyclopentanes. A proposed transition state guided efforts to improve the stereoselectivity of the reaction. The reaction of a series of β-lactone derivatives, such as (66)–(68), has been studied and they have been ring cleaved; the reaction outcome is both Lewis acid and structure dependent.
The reaction of \(\alpha \)-peroxylactones (69) with C, N, P, and S nucleophiles via \(S_N2 \) attack at the more electrophilic alkoxy oxygen of the peroxide bond leads to a variety of products including oxygen transfer and addition products and catalytic Grob-type fragmentation.\(^6^0\) Dyotropic ring enlargements of \(\beta \)-lactones to \(\gamma \)-lactones follow a concerted mechanism involving inversion at the C(4) atom.\(^6^1\)

(d) Acids and anhydrides

\(\text{Ab initio} \) calculations have been carried out on the decomposition of mandelic acid (70) at the MP2/6–31G** level.\(^5^2\) Three competitive pathways have been characterized. Two are stepwise processes with the formation of an \(\alpha \)-lactone intermediate and ring
opening and the third mechanism is a one-step process. The peroxymonocarboxylic acid (71) decomposition in the hydrogen peroxide--formic acid system has been mathematically analyzed.63

The kinetics and mechanism of the reaction of carboxylic acids with phosgene COCl₂ in DMF in benzene were zero-order in substrate and proceeded via rapid formation of
(72) and the rate-limiting step was the reaction of (72) with phosgene to give the intermediate (73), which rapidly decarboxylated to give \(\text{RC}_6\text{H}_4\text{COCl} \). Decarboxylation also occurred in the thermal decomposition of various haloacetic acids (74; \(X = Y = Z = F \); \(X = Y = H, Z = Cl \); \(X = H, Y = Z = Cl \); \(X = Y = H, Z = Br \); \(X = Y = H, Z = I \)). Semiempirical calculations gave activation energies for the various processes.65

Solvent effects on the dissociation of 11 2,6-disubstituted benzoic acids have been analysed by chemometric analysis.66 The acid–base behaviour of the three zwitterionic pyridinecarboxylic acids (picolinic, nicotinic, and isonicotinic acid) has been studied. The cationic form of picolinic acid converts partially into the corresponding zwitterion within a borderline acidity range (pH/acidity function). The various pKa values were determined for the three isomers by spectrophotometric and potentiometric methods and reasonable agreement was found.67

Kinetic data for the reactions of diazodiphenylmethane in 10 different alcohols with 2-(4-phenyl substituted)cyclohex-1-enylcarboxylic acids (75) were correlated using the extended Hammett equation.68 Reaction of the species (76)–(78) with the light radioactive H isotope, the muonium atom, has been studied.69 The largest primary kinetic isotope effects ever reported (ca 850) are seen in this work for the addition of muonium to one of the C=O groups.

The reaction of benzoic acid with n-butyllithium goes by nucleophilic addition of n-butyllithium to benzoic acid giving (79) and then the ketone (80), which reacts with another molecule of n-butyllithium to give (81), which can hydrolyse to the final alcohol.70 Reaction of a set of substituted benzoic acids in toluene with the carbinol base of Crystal Violet have been investigated spectrophotometrically.71 The rate constant for the forward step of the acid-carbinol reaction was found to be an appropriate criterion for assessing acidities in toluene and these acidities were found to be much more dependent on the substituents in the benzoic acids than aqueous phase acidities are. The acid-catalysed breakdown of \(N-(2\text{-aminophenyl})\text{phthalamic acid} \) (82) has been studied in dilute aqueous acids in the pH range 0–6.72 The main reaction gives \(N-(2\text{-aminophenyl})\text{phthalimide} \) (83) which rearranges to 2-(2-carboxyphenyl)benzimidazole (84).
The kinetics of the reaction of acrylic acid with aqueous ammonia giving β-alanine have been investigated.73 The kinetics of the nucleophilic substitution reactions of benzoic anhydrides with anilines in acetonitrile–water have been studied.74 A frontside S_N2 mechanism with a four-membered ring transition state has been proposed.

(e) Acid halides
The reactions of ketene and dimethylketene with hydrogen halides giving the acylum (85) and vinylum (86) halides have been examined theoretically.75 The formation of (85; $R = H$, $X = Cl$) was more favourable than that of (86; R, X same) by 112 kJ mol$^{-1}$. An S_N2 mechanism was operative in the nucleophilic substitution reactions of phenacyl halides, ArCOX, with pyridines in MeOH–MeCN mixtures. A product-like TS was predicted from a quantum mechanical model.76 A Costa Rican group has assessed the relative reactivity for 2-propanolysis of a series of chlorides and found that the following was the order of reaction: PhSCl$>$PhCOCl$>$PhSO$_2$Cl$>$PhCH$_2$Cl$>$PhCl. The rate coefficient ratios were in the same order.77 Two papers by Kevill’s group deal with the solvolysis of phenyl chloroformate (87)78 and phenyl chlorothioformate (88).79 The specific rates of solvolysis of (87) have been measured in 21 solvents and can be easily correlated using the Grunwald–Winstein (G–W) equation including the N_T parameter for solvent nucleophilicity and the Y_{CI} solvent ionizing parameter. The coefficients of these are 1.68 and 0.57, respectively. An addition–elimination pathway with addition being slow is proposed. A similar type of study has been undertaken with (88) and again using the G–W extended equation dual reaction pathways are proposed for the solvolysis of (88).79 They involve again an addition–elimination mechanism in solvents of low ionizing power and/or high nucleophilicity but, in solvents ‘rich’ in fluoro-alcohol and in water, a mechanism involving ionization with a high degree of stabilization of the TS by solvation of the developing acylum ion is operative.
The kinetics and mechanism of the dechlorination of N-aryl 2-oxo-2-phenylaminoethaneydrazoneyl chlorides (89) in triethylamine in aqueous dioxane at 25 °C giving the oxanilic hydrazide (91) and 1,4-diaryl-1,2,4,5-tetrazine (92) have been examined. The slow step of this interesting reaction is considered to be the breakup of the nitrilium imide (90).

(f) Ureas, carbamates, hydroxylamine, and derivatives

The NH acidities of some sterically hindered ureas, namely the ureido esters (93), have been reported. The kinetics and mechanism of the alkaline hydrolysis of urea and sodium cyanate, NaCNO, have been studied at a number of temperatures. Urea hydrolysis follows an irreversible first-order consecutive reaction path. Tetrahedral intermediates are not involved and an elimination–addition mechanism operates. Sodium cyanate follows irreversible pseudo-first-order kinetics. The decomposition of the carcinogen N-methyl-N-nitrosoare (19) was dealt with earlier. The pyrolysis of N-acetylurea goes by a unimolecular first-order elimination reaction.

There are five papers on carbamate chemistry of interest. The mechanism of the reaction in MeCN of N-methyl-N-phenylcarbamoyl chlorides (94) with benzylamines is believed to be SN2 based on Hammett ρ values, a cross-interaction constant ρ_{xy} of −0.14, k_H/k_D values for the N-deuterated benzylamines all <1, and low activation enthalpies. The aminolysis of p-nitrophenyl N-phenylcarbamates in acetonitrile involving the T^\pm (7) was discussed earlier. Solvolysis–decomposition of N-1-adamantyl-N-p-tolylcarbamoyl chloride (95) in hydroxyl solvents involves a facile slow ionization (S_N1 mechanism) giving a cation which eliminates ArNCO to
give adamantyl chloride or is attacked by solvent to give ether. The oxirane intermediate (96) is crucial in the reactions of benzyl carbamates (97) with LDA, diphenyl phosphorochloridate, and sodium azide yielding \(\alpha \)-azidobenzeneacetamides (98) and the phosphate (99). The kinetics and mechanism of reaction of methoxide ion with nine different \(O-(N\text{-arylcarbamoyl}) \)benzophenone oximes (100) has been examined (Scheme 8). The experimental results can be equally well interpreted in favour of the two mechanisms shown in the scheme. However, the authors have devised a test to support the \(E1cB \) path. Using \(n \)-butylamine in the reaction they diverted part of the reaction path and \(N\text{-butyl-}N'\text{-}(3\text{-nitrophenyl}) \)urea product also forms together with the usual carbamate product (101). In experiments involving equimolar methoxide ion and \(n \)-butylamine in MeOH and the same amount of \(n \)-butylamine in MeOH the ratio of urea to (101) products remains the same. Had a \(B_{\text{AC}2} \) mechanism operated, the authors argue that the amount of (101) formed should be two orders of magnitude smaller in the second experiment.

\[
\begin{align*}
\text{ArNHCO}_2\text{N}==\text{CPh}_2 & \xrightarrow{\text{MeO}^-} \text{ArNH}==\text{C}==\text{O}^- \xrightarrow{\text{B}_{\text{AC}2}} \text{ArNHCO}_2\text{Me} + ^{\text{ON}}==\text{CPh}_2 \\
\text{ArN}==\text{CO}_2==\text{NPh}_2 & \xrightarrow{\text{Ph}_2\text{C}==\text{NO}^-} \text{ArN}==\text{C}==\text{O} \\
\end{align*}
\]

\text{SCHEME 8}
Two papers have appeared on hydroxylamines.88,89 Methylation of \(N\)-phenylhydroxylamine \(\text{PhNHOH}\) with methyl \(4\)-methoxyphenylsulfonate (102) and related sulfonates in DMSO gave alkylation of the O atom rather than the N atom. The crucial role of the zwitterion (103) is examined.88 The fragmentation of the \(N\)-nitrosohydroxylamines (104) is stepwise and not concerted and NO is liberated in the reactions.89 These conclusions were reached from kinetic, millimetre-wave spectroscopy and \(^{17}\text{O}\) NMR studies.

Hydroxamic acids have been the subject of six papers.43,90–94 Earlier the operation of the \(\alpha\)-effect in the reaction of \(p\)-nitrophenyl acetate with benzohydroxamates in aqueous MeCN was discussed.43 The conformational behaviour of series of mono- (105) and dihydroxamic acids (106) in MeOH, DMSO, and chloroform and in the solid state has been examined with IR and NMR spectroscopy.90 X-ray crystal structure determinations of (105; \(X = \text{Me}\), \(R = \text{Me}\)) and the monohydrate of glutarodialhydroxamic acid (106; \(n = 3\), \(R = \text{H}\)) together with \textit{ab initio} MO calculations for several hydrated and non-hydrated acids have been performed. The \textit{cis}-\(Z\) conformation of the hydroxamate groups is preferentially stabilized by H-bonding with water.

Three papers from Ghosh’s group deal with the hydrolysis of benzohydroxamic acids in acidic91,92 and alkaline93 conditions. A pre-equilibrium protonation followed by a slow \(A\)-\(2\) type nucleophilic attack by water is seen as the mechanism of the acid-catalysed hydrolysis of \(p\)-chlorophenylbenzohydroxamic acid (107; \(R = \text{p-ClC}_6\text{H}_4\)) by mineral acids (HCl, HClO\(_4\)) in 20\% aqueous dioxane.91 An \(A\)-\(2\) mechanism was also supported for the reaction of (107; \(R = \text{Me}\)) under comparable conditions.92 The alkaline hydrolysis under micellar conditions of (107; \(R = \text{Ph}\)) and a series of \textit{para}-substituted derivatives has been investigated in the presence of cationic and anionic micelles in 5\% dioxane–water medium at 55 °C.93 Cationic surfactants exerted a catalytic effect and anionic surfactants were inhibitory. The rate–surfactant profiles were analysed in terms of the pseudophase and Piszkie\’wicz models. The detection of N\(_2\)O in the products of the oxidation of hydroxamic acids suggests the intermediacy of nitroxylic, HNO, in the process.94 Scheme 9 may represent the pathway followed.

\(\text{(g) Amides and anilides}\)

An \textit{ab initio} study of \(N\)- vs \(O\)-protonation using formamide (108), the somewhat strained \(N\)-formylazetidine (109), highly strained \(N\)-formylaziridine (110), and various
protonated tautomers has been made. The electron correlation effect was found to be important in determining the protonation sites since it helps to stabilize N-protonation somewhat more than O-protonation. O-Protonation is highly favoured in (109) and in (108), but N-protonation is favoured in (110). Another ab initio study, this time on the alkaline hydrolysis of amides, has been reported. The three amides, N-methylacetamide (111), acetonilide (112), and N-acetylimidazole (113) have been investigated. For (111) and (112) in the gas phase a route involving a tetrahedral intermediate and a cyclic transition state is supported. The thermal decomposition of some N,N-dialkylamides giving rise to acids, ketones, amides, and imides has been investigated at 215 °C.97

An H+ acidity function scale has been constructed for methoxide ion in methanol and its mixtures with DMSO (10–80%, v/v) using the dissociation of 11 amides (114) as the anchors for the scale.98 The degradation pathways of the anti-inflammatory and analgesic lornoxicam (115), which contains an amide bond, have been examined recently. In acid, cleavage of the amide bond was the main reaction path and in alkaline and neutral solution the proton shift of the enolic hydroxyl initiated the major degradation pathway. The mechanism of hydrolysis of some N-nitrobenzamides (116) in strong acid follow an A-1 mechanism with O-protonation but, in more moderate acid, they exhibit a neutral water-catalysed mechanism. N-Methyl-N-nitroacetamide (117) shows only the neutral water-catalysed process. Nitrourea follows an A-1 acid-catalysed mechanism.100

The alkaline hydrolysis of the compounds (118)–(123) in 70% (v/v) dioxane–water at various temperatures has been investigated.101 Intramolecular catalysis by the neighbouring carbonyl group occurs in the alkaline hydrolysis of (118)–(121) and the alkaline hydrolysis of (122) and (123) is rapid owing to their lactone structures. The hydrolyses of C-terminal amides of z-amino acids was dealt with earlier.56 Also, the acid-catalysed cleavage of N-(2-aminophenyl)phthalamic acid (82) was discussed earlier.72

An interesting triethylamine-catalysed acyl exchange has been reported by a Japanese group,102 (124) with 1-naphthoyl chloride (125) gives (126) which has undergone both intramolecular acyl exchange and attack by the chloride at the N. The water-catalysed hydrolysis of p-nitrotetrafluorocetanilide (127) and trifluoracetanilide (128) involve rate-limiting concerted or nearly concerted formation of a diol, possibly of type (129), which is a tetrahedral intermediate, and this or a related species then undergoes C=N cleavage in preference to OH expulsion.103

Scheme 9
2 Reactions of Carboxylic, Phosphoric and Sulfonic Acids

HCONH₂
(108)

HCO-N
(109)

HCO-N
(110)

MeC-NMe
(111)

MeC-N
(112)

MeC-N
(113)

R₁− phenyl-CNHC-CNCONH₂
(114)

XC₆H₄CONHNO₂
(116)

MeCON(Me)NO₂
(117)

H=C=N
(118)

H=C=O
(119)

H=C=O
(120)

H=C=O
(121)

H=C=O
(122)

H=C=O
(123)

O₂N
(127)

N
(128)

OH
R
(129)
(h) Lactams
A Spanish group has been carrying out theoretical calculations on the hydrolysis of the β-lactam ring.104–106 In the first study on the alkaline hydrolysis in the gas phase of penicillin G, the AM1 method predicted the opening of the thiazolidine ring to yield the corresponding imine and enamine.104 A thorough study using ab initio MO calculations on the alkaline and acidic hydrolysis of the β-lactam ring of azetidin-2-one has been made.105 Alkaline hydrolysis was studied assuming a B_{AC2} mechanism involving a tetrahedral intermediate, while the acid hydrolysis was studied through an A-1 mechanism. The influence of solvent on the alkaline hydrolysis of the β-lactam ring of azetidin-2-one was investigated using the reaction field method (SCRF). The TS was found to correspond to a structure where the HO$^-$ ion lies at a distance of 1.927 Å from the C=O group of the lactam ring and exhibits a potential barrier of 13.6 kcal mol$^{-1}$.106

Two mechanisms (i.e. direct hydrolysis and alternatively a path via an unstable acyl phosphate intermediate) are involved in the hydrolysis in phosphate buffer of N-arylsulfonyl β-lactams such as (130).107 The acyl phosphate intermediate can be trapped with hydrazine. The alkaline hydrolysis of some torsionally distorted lactams, i.e. the bridged benz[de]isoquinolin-1-ones (131), in 70% (v/v) DMSO–water has been compared under the same conditions with the hydrolysis of N,N-dimethyl-1-naphthamide (132). The relative rates of reaction and activation parameters indicate the effect of torsional distortion.108 The reaction of the tricyclic azetidinones (133) with trifluoroacetic acid gives the bicyclic thioesters (135). The mechanism may involve acid-catalysed elimination of methanethiol to give an azetinone intermediate (134) which, after nucleophilic attack of the thiol, is converted into (135).109

The degradation of several commercial penicillin antibiotics has been reported.110–113 Thus the kinetics and mechanism of decomposition of cefazolin ester (136) in phosphate buffers110 and the effect of hexadecyltrimethylammonium bromide-based microemulsions on the decomposition of the antibiotic cephalosporin, cephaclor (137)111 have been reported. Reaction of the latter can occur intramolecularly or intermolecularly by hydroxide attack. Degradation in the solid state of cephaclor (137) has also been reported.112 The same group has looked at the decomposition under aqueous acidic conditions.113 The degradation pathways that have been recognized are (i) hydrolysis of the β-lactam carbonyl with subsequent rearrangement, (ii) ring contraction of the six-membered cephem nucleus to five-membered thiazole derivatives through an episulfonium ion intermediate, and (iii) attack of the primary amine of the phenylglycyl side chain on the ‘masked’ aldehyde at C(6) to form pyrazines.
(i) Non-heterocyclic nitrogen centres
The kinetics and mechanism of the phosphorus-catalysed dimerization of acrylonitrile to give 1,4-dicyanobut-1-ene and 2,4-dicyanobut-1-ene have been studied.114 The reactions of aryliminodimagnesium (138) with \(p' \)-substituted \(p \)-cyanobenzophenones, 1-cyano-9-fluorenone, \(o \)-, \(m \)-, and \(p \)-dicyanobenzenes, and \(o \)-, \(m \)-, and \(p \)-nitrobenzonitriles have been examined.115 The effect of pressure on the reaction of 3-methyl-1-(4-tolyl)triazene (139) and benzoic acid in chloroform and acetonitrile has been studied.116 The effect of acids on the rate of urethane formation from alcohols and isocyanates in the presence of alkyltin carboxylates has been examined.117 A Hammett \(\sigma \) value has been reported for the amidine group \(\text{N} = \text{CHNMe}_2 \) and used for the prediction of the basicity of sites in bifunctional amidines.118
Aryl carbazates (140) containing a methyl group in the 2-position hydrolyse by a
B_{AC2} mechanism but the others hydrolyse by an $E1cB$ mechanism. This conclusion
was reached from a study of a wide range of ring-substituted compounds.

\[
\begin{align*}
\text{ArN(MgBr)$_2$} & \quad p\text{-MeC}_6\text{H}_4\text{NHN}═\text{NMe} \\
(138) & \quad (139)
\end{align*}
\]

\[
\begin{array}{c}
\text{H}_2\text{NNHCO}_2\text{Ar} \\
(140)
\end{array}
\]

\[
\begin{align*}
\text{R} & \quad \text{R'} \\
\text{NO} & \quad \text{NO} \\
(142) & \quad (141)
\end{align*}
\]

\[
\begin{align*}
\text{NO}_2 & \quad \text{NO}_2 \\
(143) & \quad (144)
\end{align*}
\]

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} \\
(145)
\end{align*}
\]

Kinetic evidence for the involvement of α-hydroxydialkynitrosamines (142) in the
pH-independent solvolysis of the α-(acyloxy)dialkynitrosamines (141) has been
obtained. The aminolysis in benzene of O-(2,4-dinitrophenyl)-p,p-disubstituted
benzophenone oximes (143) with pyrrolidine and piperidine are third order in amine. Hirst’s mechanism involving electrophilic catalysis operates and can explain the various
effects observed. The bis(pentamethylphenyl)$-$N-isopropylketenimine (144) undergoes
pre-equilibrium N-protonation in aqueous acetonitrile followed by water attack. An
inverse solvent isotope effect and the observation of the diol (145) confirm this.

(j) Other heterocyclic nitrogen centres

Cl$^+$ transfer from N-chlorosuccinimide (146) to an amine or amino acid to form an
N-chloro compound is seen as the key step in the reactions of (146) with glycine,
sarcosine, 2-methylalanine, proline, and pyrrolidine (Scheme 11). The reaction was first
order in (146), first order in amine/amino acid and first order in proton. The
aminolysis of N-ethoxycarbonylphthalimide (14) was mentioned earlier in this review. Twelve of the thiadiazoles (147) were prepared by the acid-catalysed intramolecular
dehydrative cyclization of the corresponding 4-(4-halophenyl)-1-(isomeric pyridyl) thiosemicarbazones. The effect of structure on reactivity with respect to the halogen atom and a reaction mechanism for the intramolecular cyclization are discussed. The kinetics and mechanism of the hydrolysis of the thiaadiazole (148) at pH 2–13 have been examined. At pH 10–13 an S_N2 mechanism is favoured whereas at pH 2–8 an S_N1 mechanism finds support.

![Scheme 11](image)

Two papers on the aminolysis and hydrolysis of isatin (149) have appeared. In the aminolysis study using piperidine, the reaction rate was much faster in water than in aqueous MeOH or aqueous MeCN. A multi-step mechanism was proposed. In the hydrolysis study the focus was again on the effect of solvent on rate in base hydrolysis, both ethanol and ethylene glycol being used. The reaction rate decreases with increasing ethanol content and it passes through a minimum at about 30% ethylene glycol.

The hydrolysis of acetyl- (150; $R = \text{MeCO}$) and benzoyl-imidazoles (150; $R = \text{PhCO}$) involves the reversible addition of water to the imidazole to give the T^{\pm}. At low acidities the decomposition of this is the slow step but, as the acidity increases and water activity decreases, its formation becomes rate determining. By contrast, the hydrolysis reactions of the N-acyl derivatives of 2,4,5-triphenylimidazole proceed in a concerted manner and do not involve tetrahedral intermediates.

Some interesting reactions of the super-electrophile 4,6-dinitrobenzofuroxan (151) with aryloide ions have been reported; (151) with phenoxide ion gives the O-bonded σ-adduct (152) which has been fully characterized for the first time. On
warming the solution, (152) yields (153) and (154). The base-catalysed cyclizations of
the N-(o-nitrophenyl)glycine derivatives (155) and (156) may involve a common 2,1,4-
benzoxadiazine intermediate (157).131 The hydrolysis of a wide range of N-alkyl-6-
acetylaminotriazinediones (158) over the full pH range has revealed four distinct
regions in rate–pH profiles for the reaction corresponding to cationic, neutral, and
anionic species and a region for attack of hydroxide on the anion. As the pH increases,
increasing C–O bond formation in the TS occurs along the sequence from cationic to
neutral to anionic, but C–N bond breaking is out of line and is largely dependent on
conformational factors.132

The acid-catalysed hydrolysis of the cyclic diazothiolactone, 4-diazoisochroman-3-
one (159) to a ring-contracted product involves protonation of the diazo carbon in the
slow step.133 A variable-temperature NMR study has been undertaken to study the
reaction of the pyrazine (160) giving (161a; R = OH, Me, H). Spectral evidence has
been obtained supporting the involvement of the dihydroimidazopyrazine ring system
(161b).134 Work by Edward and co-workers on the alkaline hydrolysis of strychnine and
some of its derivatives was dealt with earlier.21

The mechanism of 2-phenylbenoxazole (162) formation from benzoic acid and o-
aminophenol in polyphosphoric acid has been studied by NMR and chemical
analysis.135 Initially benzoic acid reacts with (162) to form benzoic phosphoric
anhydride and benzoic polyphosphoric anhydride. When o-aminophenol dissolves in
the polyphosphoric acid, part of the hydroxyl group is converted to phosphate ester. Dynamic equilibria exist between the polyphosphoric acid, o-aminophenol and its phosphate ester and also between benzoic acid, mixed anhydride and polyphosphoric acid. The mixed anhydride and o-aminophenol react to form 2-aminophenyl benzoate as the first reaction intermediate and this undergoes rapid acyl migration to give 2-hydroxybenzanilide. Ring closure of the latter, which is acid-catalysed, completes the sequence, yielding (162).

Reactions in Aprotic Solvents

Several reactions that have been conducted in aprotic solvents have been dealt with earlier; see references 4, 7, 8, 27, 64, 71, 84, and 88. The following references ahead will also deal with reactions in aprotic solvents: 116, 273, 275–278, 281, 289, 305, and 306.

Intramolecular Catalysis and Neighbouring-group Participation

The sulfonium entity in the bicyclooctane compound (163) exercises a neighbouring-group effect in the hydrolysis of this compound. Rates and activation parameters were very similar for both Z-isomer (163) and the E-isomer, lending support to the theoretical prediction that charge–dipole and charge–charge separation in both isomers are not significantly different. The two examples of amide group anchimeric assistance have been reported. In the first example, a neighbouring amide group participates in competitive reactions of (164) giving by intramolecular cyclization (165) and by hydrolytic cleavage of the ether link (166); (164) is the well known herbicide,
metolachlor. Acid hydrolysis of the phosphinic ester (167) is facilitated by the β-carboxamido group. The promotion of the hydrolysis is dependent on the electron density of the amide, indicating the intermediacy of the cyclic imidate (168) in this reaction. Phosphinic esters can inhibit metalloproteases and this gives further interest to this work.

![Diagram of molecules](image1)

There are a number of papers involving participation by carbonyl groups. Two of these have been noted earlier. Neighbouring-group participation by a keto carbonyl group is indicated from studies of the alkaline hydrolysis of the 2,3-diphenylacrylates (169) by Bowden’s group. They compared relative rates, activation parameters and substituent effects for (169) with those for the corresponding ring (pseudo) esters (170). In further work from the same group, intramolecular catalysis by a neighbouring carbonyl group has been detected in the alkaline hydrolysis of compounds (171)–(174). Methanolysis of p-methoxyphenyl 2-formylbenzenesulfonate (175; R₁ = CHO, R² = H) in the presence of anhydrous potassium carbonate at ambient temperature in dry methanol gives the acetal (176); however, under identical conditions, the 4-formylsulfonate (175; R₁ = H, R² = CHO) does not react. This supports the operation of intramolecular nucleophilic catalysis during nucleophilic substitution at sulfonyl sulfur in the 2-formylsulfonate.

The α-carboxyl group in the acetal (177) enhances the rate of acetal ring opening by a factor of 220 compared with the analogous p-isomer. Compounds with other α- and p-derivatives (e.g. CO₂Me) have straightforward pH–log (rate constant) profiles with slopes of ca −1.0.

Intramolecular catalysis of amide bond isomerization is believed to play a key role in the folding of several proteins and this process has now been demonstrated experimentally including evidence for an H-bond between the side-chain and the prolyl Nα in a cis-proline peptidomimetic. The amide (178) and the ester (179) have been used as substrates for these studies. Support for intramolecular nucleophilic attack
in the base-catalysed fission of a series of substituted 2,2-dihydroxyindane-1,3-diones (180) in 30% (v/v) dioxane–water has been obtained from kinetic and product studies. Base-catalysed cyclization of (181)–(183) involves in each case ionization to the enolate anion, followed by rapid intramolecular nucleophilic attack and dehydration to give the corresponding enones. The kinetics and mechanism of intramolecular general base-catalysed methanolysis of ionized phenyl salicylate in mixed MeOH–MeCN solvents with a fixed water content have been reported. The MeOH exists in monomeric, dimeric, and polymeric forms in these solvents. The effects of various alkali metal ions have also been looked at. Intramolecular general base catalysis in the acetylation of a family of α,ω-amino alcohols (184; $n = 0–3$) by acetylimidazole has been reported. The order of reactivity does not follow the order of basicity of the amino groups in (184); instead it follows the ease of formation of intramolecular H-bonds and thus enforced intramolecular H-bonding facilitates the reaction.

Reference 306 also deals with a neighbouring-group effect.
Association-prefaced Catalysis

A quantitative assessment of the effects of head group bulk on S_N2 and $E2$ reactions in cationic micelles has been made. The kinetics of the acid-catalysed hydrolysis of methyl acetate in the presence of cationic, anionic, and non-ionic surfactants has been reported on. The alkaline hydrolysis of n-butyl acetate with cetyltrimethylammonium bromide has also been investigated. The alkaline hydrolysis of aromatic and aliphatic ethyl esters in anionic and non-ionic surfactants has been studied. Specific salting-in effects that lead to striking substrate selectivity were observed for the hydrolysis of p-nitrophenyl alkanoates ($185; n = 2–16$) catalysed by the 4-(dialkylamino)pyridine-functionalized polymer (186) in aqueous Tris buffer solution at pH 8 and 30 °C. The formation of a reactive catalyst–substrate complex, (185)–(186), seems to be promoted by the presence of tris(hydroxymethyl)methylammonium ion.

Three new macrocyclic ligands (187) when complexed with zinc(II) could promote ester hydrolysis and a kinetic study of the hydrolysis of 4-nitrophenyl acetate in Tris buffer at pH 8.63 in 10% (v/v) MeCN was carried out with these. The hydrolysis of lipophilic esters is also catalysed by zinc(II) in a complex of a long alkyl-pendant macrocyclic tetraamine (188) in micellar solution. A study with a copper chloride-containing micelle has compared its effectiveness in the hydrolysis of esters and amides.
The aminolysis156 and methanolysis157–159 of ionized phenyl salicylate (189) have been examined under micellar conditions. The effect of CTABr on the rates of aminolysis of (189) by \textit{n}-butylamine, piperidine, and pyrrolidine is to bring about a rate decrease (up to 17-fold with pyrrolidine). The results are interpreted in terms of binding constants for the amines with CTABr and the pseudo-phase model.156 The effects of mixed surfactants SDS and CTABr on the methanolysis of (189) and the alkaline hydrolysis of phenyl benzoate suggest that micellar aggregates are involved in the processes.157 The effects of NaOH and KBr on the intramolecular general base-catalysed methanolysis of (189) in the presence of CTABr has been investigated.158 Pseudo-first-order rate constants were not affected by either additive but other changes were noted.158 The effect of mixed MeCN–water solvents on the same reaction has also been probed.159

Three papers from the same group deal with micellar hydroxamic acid hydrolysis.93,160,161 Micellar effects on the alkaline hydrolysis of (107; \(R = \text{Ph} \)) were discussed93 earlier. Similar type results are reported in the other two papers.160,161

Alkyl (Me, Et, \(n \)-Pr, \(n \)-Bu), alkyldimethyl, and alkyltrimethylammonium bromides retard the neutral hydrolysis of 1-benzoyl-1,2,4-triazole (190) to benzoic acid and the triazole (191).162 This effect is attributed to a dominant stabilization of the initial state through hydrophobic interactions with the co-solute. The effects of cetylpyridinium bromide on the hydrolysis of 2,4-dinitrochlorobenzene by hydroxide ion in water have been reported.163

The effects of cationic head groups on the alkaline hydrolysis of the quinoxaline (192) to give (193) have been looked at using the surfactants (194; \(R = \text{Me, Et, } n \)-Pr, \(n \)-Bu; \(X = \text{Cl, OH} \)).164 The reactivity increases with increasing head-group size and is related to the disruption of the hydration of the HO− ion. An earlier paper from the same group describes the synthesis of (192) and some micellar effects on its basic hydrolysis.165 A novel site-selection functionalization reaction is facilitated by histidine side-chains in helical structures which can catalyse the acylation by mono-\(p \)-nitrophenyl
fumarate of flanking lysine, ornithine, and 1,3-diaminobutyric acid residues. This method increases the potential of polypeptide and protein design.166

The effect of hexadecyltrimethylammonium bromide (CTABr)-based microemulsions on the decomposition of the β-lactam antibiotic cephaclor (137) was described earlier.111

p-Nitrodiphenyl phosphate (195) in aqueous micellar hexadecyltrimethylammonium chloride (CTACl) in phosphate buffer at pH 8 is cleaved by 1,3-dihydro-1-oxido-3-methyl-1,2,3-benziodoxaphosphole 3-oxide (196) and by 1-H-1-oxido-5-methyl-1,2,3-benziodoxathiole 3,3-dioxide (197);167 (196) and (197) were about 50 times less reactive towards ω-iodosobenzoate (198).

![Chemical structures](image)

A review with ca 500 references has appeared on the stability of cyclodextrin complexes in solution. The principal headings in it are: nature of cyclodextrins (CDs); binding equilibria and kinetics; strengths of CD complexes; structures of CD complexes; sources of CD complex stability; and prediction of CD stability.168

The effects of β-CD on the kinetics of hydrolysis of salicylic acid esters (199; R = Me, m-nitrophenyl and p-nitrophenyl) have been examined, as has the Smiles rearrangement of (199; R = Me). The latter was accelerated by β-CD but its hydrolysis was not affected. Various other effects are reported for the other esters.169

Tee’s group has reported on the catalysis of enolization of indan-2-one (200) by α-CD, β-CD, γ-CD, hydroxyethyl-β-CD, and hydroxypropyl-β-CD, all of which accelerate the reaction by up to 22-fold, but dimethyl-β-CD slows it by about half.170 These workers have also looked at the effect of alcohols on the basic cleavage of m-nitrophenyl hexanoate by β-CD.171 Finally, they have been examining the reaction of α-amino acid anions with p-nitrophenyl acetate and hexanoate in the presence of β-CD.172
The rates of hydrolysis of the trifluoroacetates (201; X = H, Me) increase in a non-linear fashion in the presence of \(\beta \text{-CD} \). Some differences in rate between the two substrates have been explained as being due to different modes of inclusion.\(^{173} \) The novel CDs (202) and (203) have been synthesized in 45\% and 66\% yields, respectively, and their complexation with various L/D amino acids have been examined. Importantly, (202) and (203) can be detected by fluorescence spectroscopy and they can recognize the size and shape but also the chirality of the amino acids.\(^{174} \) A \(\beta \text{-CD} \) dimer with a linking bipyridyl group (204) has been synthesized and shown to bind both ends of potential substrates into two different cavities of the CD holding the substrate ester carbonyl group directly above a Cu(II) ion bound to the bipyridyl unit. This achieves
very effective hydrolysis (accelerations of 10^4–10^5-fold) and good turnover (ca 50 times) catalysis.175

Metal-ion Catalysis

Several papers on zinc(II)-catalysed reactions have appeared during the period of review.$^{154,176–178}$ The hydrolysis of esters achieved with the zinc(II) complex (188) was mentioned earlier.154 Tris(2-aminoethyl)amine functionalized with phenolic residues giving molecules such as (205; OR = p-OH and m-OH and OR = m-OMe), (206) and (207) can form stable complexes with zinc(II) ions at pH >6–6.5. These complexes behave as molecular receptors of p-nitrophenyl esters of carboxylic acids and can catalyse their hydrolysis up to 60 times faster than in normal solution. The most efficient complex was (205; OR = m-OH)–Zn(II).176 A calix[4]arene-based dinuclear zinc(II) catalyst from the ligand (208) produces a 23 000-fold rate enhancement in the catalytic cyclization of the RNA model substrate 2-(hydroxypropyl)-p-nitrophenyl phosphate (209) at pH 7 at 25 °C. This is the largest rate acceleration reported for nuclease mimics using this substrate.177 The effects of nickel(II), zinc(II), and copper(II) on the hydrolysis of methyl derivatives of salicyl anil (salicylanilide) (210) have been reported. The accelerating effect occurs in the sequence Ni > Zn > Cu.178 The use of copper-containing micelles to catalyse ester and amide hydrolysis was discussed earlier.155 The oxidation of 34 different sulfides, R–S–R', by bis(2,2'-bipyridyl)copper(II) permanganate giving the corresponding sulfoxides $RS(O)R'$ has been examined kinetically.179 The reaction was first order in catalyst and is catalysed by H$^+$ also. Michaelis–Menten-type kinetics were observed with respect to the sulfides. Some of the kinetic results were analyzed in terms of the Taft–Pavelich equation.

Organozinc reagents and tetrakis(triphenylphosphine)palladium catalyst have been employed to convert (S)- and (R)-propargylic carbonates of type (211) into chiral allenes such as (212a,b) with ee of 82–85%.180

The vanadium(V) oxidation of the sulfide PhCH=CHSPh has been studied in aqueous acetic acid containing perchloric acid. The reaction is first order in vanadium(V) and fractional order in sulfide. An intermediate complex of vanadium and the sulfide forms and its decomposition is the slow step of the reaction.181 Two Indian groups have reported on the use of ruthenium(VI) and ruthenium(III).182,183 The kinetics and mechanism of the oxidation of diethylene glycol by aqueous alkaline potassium bromate in the presence of Ru(VI)182 and the Ru(III)-catalysed oxidation of aliphatic alcohols by trichloroisocyanuric acid183 have been examined.

The effect of cation-complexing agents on the barium(II)-assisted basic ethanolysis of phenyl acetate has been looked at.184 Addition of various crown ethers yields ternary complexes of 1:1:1 crown–metal–ethoxide composition and a definite cation activation takes place. Cryptand 222 removes the catalytic activity.

Catalysis by cobalt(III) has been the subject of several papers.$^{185–187}$ The N,N-bis(salicyldene)ethylendiaminocobalt(III)-catalysed oxidative carbonylation of o-, m- and p-substituted primary aromatic amines in MeOH gives ureas, isocyanates, carbamates, and azo derivatives. A Hammett ρ value of -0.5 for the reaction indicates that electrophilic attack of CO at a nitrogen anion complexed to Co in the TS is
2 Reactions of Carboxylic, Phosphoric and Sulfonic Acids

(208)

(209)

(210)

(211)

(212a)

(212b)

(213)

(214)

(215)

(216)

(217)

(218)

(219)

(220)

(221)
occurring.185 Substantial TS cleavage in the rate-limiting step is indicated from a study of heavy-atom isotope effects (18O-non-bridge, 18O-bridge, 15N of the nitrophenyl) for the reactions of the stable Co(III) complexes (213) and (214) of \(p \)-nitrophenyl phosphate.186 Hydrolysis of adenosine 3',5'-cyclic monophosphate (cAMP) by cobalt complexes (215; \(N_4 = 2 \) diamines or 1 tetraamine) has been studied at pH 7 and 50 °C. Catalytic activity and product distribution are highly dependent on the nature of the amine ligand and a 10\(^{10}\)-fold acceleration has been observed; (216) shows the proposed mechanism in which a hydroxide ion coordinates to Co(III) in the \textit{cis} position to the cAMP and intramolecularly attacks the P atom of cAMP.187

The reaction between an unsaturated ester and an aldehyde catalysed by DABCO (the Baylis–Hillman reaction) is catalysed by lanthanides and Group III triflates, particularly La and Sm, and additional acceleration can be obtained by addition of diol ligands.188

Ce(IV) ions efficiently catalyse the hydrolysis of phospho monoesters in nucleotides under physiological conditions. The proposed mechanism for the hydrolysis is illustrated in (217).189 Uranyl cations (\(\text{UO}_2^{2+} \)) catalyse the hydrolysis of aggregated and non-aggregated \(p \)-nitrophenyl phosphodiesterase such as (218)/(219) and (220), respectively.190 Bis(\(p \)-nitrophenyl) phosphate (218) hydrolysis is accelerated ca 2.8 × 10\(^9\)-fold by Th(IV) cations in aqueous Brij micelles.191 The reactivity of Th(IV) towards (219) and (221; \(R = \text{Et} \), \(\text{C}_{16}\text{H}_{33} \)) also exceeds that of uranyl ion190 and is comparable to that of Ce(IV) and exceeds that of other metal cations.

An intermediate involving oxidant, substrate, and catalyst is formed in the Cr(III)-catalysed oxidation of formic acid by Ce(IV) in aqueous sulfuric acid medium. A Cr(III)/Cr(IV) catalytic cycle operates in the reaction.192

Decarboxylation

The structures and isomerization and decomposition mechanisms of oxalic acid have been studied using density functional theory and \textit{ab initio} calculations. Unimolecular formation of carbon dioxide and dihydroxycarbene, \((\text{HO})_2\text{C} \): has an activation barrier of 31 kcal mol\(^{-1}\) and unimolecular formation of formic acid from dihydroxycarbene has an activation barrier 31 kcal mol\(^{-1}\) higher. The most favourable unimolecular decomposition channel appears to be the formation of carbon dioxide, carbon monoxide and water.193 The decomposition of 2-chloropropionic acid in the gas phase to form HCl, CO, and MeCHO has been examined theoretically and a two-step mechanism involving the formation of an \(\alpha \)-propiolactone intermediate is envisaged.194 The same Spanish group has looked at the reaction mechanism for the decomposition of \(\alpha \)-hydroxycarboxylic acids (glycolic, lactic, and 2-hydroxyisobutyric acid) in the gas phase, giving CO, water and the corresponding carbonyl compounds.195 Again a two-step mechanism with a lactone intermediate is supported. The gas-phase decomposition of \(\beta \)-ketocarboxylic acids, \(\text{XCO}_2\text{H}_2\text{COOH} \) (X = H, OH, Me), has been studied by \textit{ab initio} MO theory.196 Six-membered-ring transition structures are energetically favoured over four-membered ones in all cases. The thermal decomposition of \(\gamma \)-thiobutyrolactone (222) has been explored by \textit{ab initio} methods. Decarboxylation leading to CO, \(\text{CH}_2=\text{CH}_2 \) and MeS is the main process, but decarboxylation leading to COS and \(\text{CH}_2=\text{CHMe} \) is a minor process.197
A kinetic study of the thermal decarboxylation of \(\alpha, \alpha \)-difluoro \(\beta \)-lactones (223; \(R = \text{H, Me} \)) in the gas phase and in various solvents has been reported.\(^{198} \) *Ab initio* calculations have also been carried out.

Fluorodecarboxylation of arylchloroformates in the vapour phase to give fluorobenzene and its analogues can be achieved in high yield using anhydrous HF.\(^{199} \) Reaction occurs quickly at 300–400 °C using chromium and aluminium oxyfluoride. The effects of micelles on the decarboxylation of \(p \)-aminosalicylic acid (224) have been examined.\(^{200} \)

The decarboxylation of 3-carboxybenzisoxazole (225; \(R = \text{H, NO}_2 \)) gives \(\text{CO}_2 \) and (226). This reaction has been studied using \(^{13}\text{C} \) and \(^{15}\text{N} \) kinetic isotope effects.\(^{201} \) The isotope effects were modelled theoretically at the semiempirical and *ab initio* levels, but comparison of experimental and theoretical results shows that the former cannot be successfully predicted by theory at the level of calculation employed. The kinetics of decarboxylation and deamination of D,L-leucine by acidic permanganate in the presence of silver ion in moderately concentrated sulfuric acid is a two-stage process.\(^{202} \) The
reaction is first order in amino acid and permanganate and displays a fractional order in
silver ion. A water molecule acts as a proton transfer agent in the slow step.

The decarboxylation of the acetoacetic acid (227) to the hexan-2-one (228) in the
presence of 18O-labelled water revealed obligatory incorporation of 18O in the
antibody-catalysed reaction which is consistent with the decarboxylation proceeding
through an imine intermediate.203

The carboxylation of ethylenediamine (229) is first order in protonated (229) and the
rate constant was an order of magnitude lower than that for (229) under identical
conditions.204 The effects of solvents on the decomposition kinetics of some diacyl
peroxidases (230) was assessed using time-resolved FTIR spectroscopy at \leq3 kbar and
\leq155 $^\circ$C.205

The decomposition of mandelic acid (70),62 the elimination of CO$_2$ from the
intermediate in the reaction of phosgene with carboxylic acids,64 the thermal
decomposition of haloacetic acids (74),65 and the hydrolysis of aryl carbazates
(140)119 were discussed earlier.

Enzymic Catalysis

General

Comprehensive Biological Catalysis—a Mechanistic Reference Volume has recently
been published.206 The full contents list (approximate number of references in
parentheses) is as follows: S-adenosylmethionine-dependent methyltransferases (110);
prenyl transfer and the enzymes of terpenoid and steroid biosynthesis (330); glycosyl
transfer (800); mechanism of folate-requiring enzymes in one-carbon metabolism
(260); hydride and alkyl group shifts in the reactions of aldehydes and ketones (150);
phosphoenolpyruvate as an electrophile: carboxyvinyl transfer reactions (140); physical
organic chemistry of acyl transfer reactions (220); catalytic mechanisms of the aspartic
proteinases (90); the serine proteinases (135); cysteine proteinases (350); zinc
proteinases (200); esterases and lipases (160); reactions of carbon at the carbon
dioxide level of oxidation (390); transfer of the PO$_4$$^2-$ group (230); phosphate
diesterases and triesterases (160); ribozymes (70); catalysis of tRNA aminoacylation by
class I and class II aminoacyl-tRNA synthetases (220); thio–disulfide exchange of
divalent sulfur (150); and SIV sulphotransferases (50).

Bioinorganic enzymology has been reviewed under the following major headings:
catalysis without electron transfer—new developments in zinc and iron–sulfur
enzymes; catalysis with electron transfer—biological electron transfer; carbon
metabolism; oxygen metabolism; nitrogen metabolism; and hydrogen metabolism.207

The calculated [using a quantized classical path (QCP) approach] and observed
isoalte effects and rate constants are in good agreement for the proton-transfer step in
the catalytic reaction of carbonic anhydrase. This approach takes account of the role of
quantum mechanical nuclear motions in enzyme reactions.208

Using the idea of a ‘theoenzyme’, that is a theoretical enzyme which contains a
suitable array of functional groups that quantum mechanical calculations predict would
be capable of catalysing a reaction, Houk’s group has shown how the reaction of a
hydroxypropyl epoxide (231) catalysed by an antibody gives a tetrahydropyran (232) rather than the THF derivative (233) mainly arising with acid or base.

Serine Proteinases

A reaction looked at earlier simulates borate inhibition of serine proteinases.
Resorufin acetate (234) is proposed as an attractive substrate to use with chymotrypsin since the absorbance of the product is several times more intense than that formed when the more usual \(p\)-nitrophenyl acetate is used as a substrate. The steady-state \(k_{\text{cat}}\) values are the same for the two substrates, which is expected if the slow deacylation step involves a common intermediate. Experiments show that the acetate can bind to chymotrypsin other than at the active site. Brownian dynamics simulations of the encounter kinetics between the active site of an acetylcholinesterase and a charged substrate together with *ab initio* quantum chemical calculations using the 3–21G set to probe the transformation of the Michaelis complex into a covalently bound tetrahedral intermediate have been carried out. The Glu 199 residue located near the enzyme active triad boosts acetylcholinesterase activity by increasing the encounter rate due to the favourable modification of the electric field inside the enzyme and by stabilization of the TS for the first chemical step of catalysis.

\[
\text{HO} \quad \text{acid or base} \quad \text{catalytic antibody} \quad \text{HO}
\]

\[
\text{Ph} \quad \text{Ph} \quad \text{Ph}
\]

\[
\text{(233)} \quad \text{(231)} \quad \text{(232)}
\]

Lipases and \(\beta\)-Lactamases

The enantioselective esterification of 2-arylpropionic acids catalysed by a lipase was discussed earlier. Steady-state kinetics of the *Pseudomonas cepacia* lipase-catalysed hydrolysis of five analogous chiral and achiral esters (R)- and (S)-(235; \(R^1 = \text{Me}, \ R^2 = \text{H}\)), (R)- and (S)-(235; \(R^1 = \text{H}, \ R^2 = \text{Me}\)), and (235; \(R^1 = R^2 = \text{H}\)) were studied in emulsified reaction mixtures of water-insoluble substrates. The \(K_m\) values were all the same and the apparent \(k_{\text{cat}}\) values reflected the binding abilities of the alcoholate ions for the fast-reacting enantiomers. All the substrates are believed to be
bound to the enzyme in the same manner and the breakdown of the tetrahedral intermediate is rate limiting.

The kinetic results for the lipase-catalysed enantioselective hydrolysis of the esters (236)–(240) can be interpreted in terms of frontier orbital localization.213 The porcine pancreatic lipase (PPL)-mediated optical resolution of 18 racemic esters can be explained by a mechanistic model involving a W-shaped active conformation of the substrate lying in a diastereo-discriminating plane.214

TS analogues and inhibitors of the class C \(\beta\)-lactamase of \textit{Enterobacter cloacaе} P99 have been mentioned earlier.17 The same enzyme from the same bacteria has been used to hydrolyse cephalaxin (241) at pD 6.4 and 8.215 The hydrolysis product is the cephalosporate intermediate (242) which undergoes tautomerization of the double bond in the dihydrothiazine ring from position 3/4 to 4/5 and there is the uptake of a proton at C(3).

\begin{center}
\begin{tikzpicture}
\node at (0,0) {\includegraphics[width=\textwidth]{236.png}};
\node at (1.5,0) {\includegraphics[width=\textwidth]{237.png}};
\node at (3,0) {\includegraphics[width=\textwidth]{238.png}};
\node at (4.5,0) {\includegraphics[width=\textwidth]{239.png}};
\node at (6,0) {\includegraphics[width=\textwidth]{240.png}};
\node at (1.5,-2) {\includegraphics[width=\textwidth]{241.png}};
\node at (4.5,-2) {\includegraphics[width=\textwidth]{242.png}};
\end{tikzpicture}
\end{center}

\textit{Other Enzymes}

A concerted rather than a stepwise reaction involving a tetrahedral intermediate is supported for the papain-catalysed hydrolysis of amides. The TS for the hydrolysis has been determined by using a hybrid quantum mechanical/molecular mechanical potential, QM(AM1)/MM.216

An octa(dimethylaminopropyl)calixresorcin[4]arene [243; \(R = \text{CH}_2\text{CONH(CH}_2)_3\text{NMe}_2\)] is a primitive artificial esterase for 4-nitrophenyl esters of various carboxylic acids. The overall mechanism is thought to involve complexation of substrate with the arene in its neutral form followed by intracomplex reaction of a dimethylamino function
with the ester.217 Methane monoxygenases (MNO), a group of enzymes used to oxidize methane, have been theoretically modelled to predict an intermediate metal–oxo core like the one observed experimentally.218 Quantum chemical methods were used to construct this MNO model.

The iron enzymes, the lipoxygenases, catalyse the oxidation of 1,4-diene fatty acids to alkyl hydroperoxides and the slow step of the reaction involves H atom abstraction from the carbon adjacent to the two double bonds of the fatty acid by a Fe(OH)$_3$ species. This mechanism has now been shown to be correct by use of the lipoxygenase model (244).219 Two papers discussed earlier are relevant to this section.138,175
Catalytic Antibodies

A review (>150 references) entitled ‘Binding energy and catalysis: the implications for transition-state analogs and catalytic antibodies’ has appeared.220 The principal sections are: transition-state theory and catalysis; protein–ligand interactions; forces available for binding and catalysis; transition-state analog inhibitors; qualitative and quantitative analysis and transition-state analogs; and catalytic antibodies. Lerner and co-workers221 have reviewed (>40 references) antibody-catalysed cationic reactions: rerouting of chemical transformations via antibody catalysis. A trapping reagent (245; BSA = bovine serum albumin) which can identify antibodies with glycosidase activity has been reported by the same group.222

Catalysis by an antibody of the hydroxylpropyl epoxide (231) was discussed earlier within this enzymic catalysis section.209 The decarboxylation of β-keto acids by catalytic antibodies was also mentioned earlier.203 The generation of a monoclonal antibody that can catalyse carbamate hydrolysis by the highly disfavoured $B_{Ac}2$ process, rather than the more usual addition–elimination $E1cB$ process, has been reported.223 The haptens used were (246; $R^1 = Et$, H and $R^2 = succinimidyl$). The N → O acyl-transfer reaction of (247) has been successfully mediated by an antibody working from the haptens shown (248) and (249).224 Rate enhancements of greater than 10⁴-fold have been achieved in the hydrolysis of p-nitrophenyl glucopyranoside and galactopyranoside using five-membered ring iminocyclitol (250) antibodies generated by in vitro immunization.225 A catalytic antibody can accelerate the cyclodehydration step of Robinson annulation and it will be the first commercially available antibody.226 The antibody developed by Lerner and co-workers is called 38C2 and apart from annulation it can catalyse many other processes. In the Robinson annulation the acceleration is about a factor of 3.6×10^6. A pentacoordinate oxorhenium(V) metallochelate elicits antibody catalysts for phosphodiester cleavage. The TS is shown in (251; $R = uracil-1$-yl, H).227

NON-CARBOXYLIC ACIDS

Phosphorus-containing Acids

Phosphates and Phosphonates

A review (91 references) on electrophilic and nucleophilic reactions of trivalent phosphorus acid derivatives, reactions of two-coordinate phosphorus compounds, and miscellaneous reactions has appeared.228 Earlier in this review we looked at the heavy-atom isotope effects on reactions of Co(III)-bound p-nitrophenyl phosphate,186 the uranyl ion hydrolysis of p-nitrophenyl phosphodiesters (218)–(220),190 and the Th(IV) hydrolysis of these.191

Recently, theoretical calculations suggested that the rate of HO⁻ attack on the neutral phosphate monoester is very fast.229 Earlier studies underestimated this rate and the present result indicates that the hydrolysis of phosphate monoesters in aqueous solution is not inconsistent with a mechanism that involves proton transfer to the phosphate oxygen followed by nucleophilic attack on the phosphorus. The hydrolysis of
glyceraldehyde-3-phosphate (252) proceeds through an \(E1cB \) irreversible mechanism with slow C(2) deprotonation, giving an enediolate intermediate which expels the phosphate trianion.\(^{230}\) The reaction between 2,4-dinitrophenyl acetate and \(n \)-decyl phosphate (253; \(R = n \)-decyl, \(X^+ = \text{BnMe}_3\text{N}^+ \)) in dipolar aprotic media gives a system which allows the facile formation of acetyl phosphate derivatives (Scheme 13).\(^{231}\) By restricting water in the system nucleophilic attack by water on the phosphate is inhibited.

\[
\begin{align*}
\text{ROPO}_2 & \quad \text{(254)} \\
\text{(EtO)}_2\text{P} & \quad \text{Cl} \quad \text{(255)} \\
\text{Ar} & \quad \text{P} & \quad \text{OEt} \\
\text{O} & \quad \text{Bn} \quad \text{(257)} \\
\text{Z}^+ & \quad \text{N} & \quad \text{O} \\
\text{(RO)}_2\text{P} & \quad \text{N} \quad \text{(258)} \\
\text{PNCI}_2 & \quad \text{3} \quad \text{(259)} \\
\end{align*}
\]

\[
\begin{align*}
\text{RO} & \quad \text{P} & \quad \text{O} \\
\text{O} & \quad \text{X}^+ & \quad \text{AcOAr} \quad \text{MeCN} \quad \text{RO} & \quad \text{P} & \quad \text{OAc} + \text{ArO}^- \\
\text{OH} & \quad \text{(253)} \\
\end{align*}
\]

\[\text{SCHEME 13}\]

The generation of alkyl-substituted monomeric metaphosphoric acid esters (254) has been described using two different methods and the metaphosphate produced spontaneously self-condensed to give polymeric P–O–P bonds. In the presence of styrene polymerization is avoided and trapping occurs instead to give a diastereomeric mixture of 2-alkoxy-1,3,2-dioxophospholane-2-oxides with (254; \(R = \text{Me} \)).\(^{232}\) Pyridine \(N \)-oxide–triethylamine mixtures individually or together catalyse the phosphorylation of
nitrophenols and 2-[(4-dimethylamino)phenylazo]benzoic acid with diethyl chlorophosphate (255). A strong synergistic effect was observed when the two bases were used and a mechanism for this has been suggested and supported.

Second-order rate constants for reactions of hydroxide ion and butane-2,3-dione monoximate ion with various phosphate, phosphinate, and thiophosphinate esters pass through minima with decreasing water content of water–MeCN and water–t-BuOH mixtures. The initial inhibition is offset by stabilization of the charge-delocalized TSs. A few papers on phosphonate chemistry have appeared. The synthesis of the novel nucleoside bicyclic trisianhydrides (256; A = adenosin-1'-yl) has been reported. A kinetic study of the alkaline hydrolysis of 4-substituted phenyl ethyl benzyl phosphonates (257) supports an associative A–E mechanism for the hydrolysis. The direct preparation of the esters of p-nitrobenzylphosphonic acid from p-nitrobenzyl halides has been reported.

A review (ca 300 references) on quinquevalent phosphorus acids dealing with derivatives of phosphoric, phosphonic, and phosphanic acids has been published.

Phosphorus–Nitrogen Centres

The phosphoramidates (258; R = Et, Me) do not undergo N-alkylation but when they were converted into the corresponding monoanionic salts (259; Z⁺ = Li) they showed a high reactivity with benzyl chloride leading to a complex mixture of products, but with methyl iodide the simple N-methylated product was obtained. ³¹P NMR has been used to study the hydrolysis mechanism of phosphonitrilic chloride dimer (260) in acidic and basic solutions. First the substitution of Cl by OH occurs and then the replacement of ring nitrogens by oxygen and then the breakup of the six-membered ring takes place.

Methyl N-t-butyl α-hydroxyiminobenzylphosphonamidate (261) rearranges in aprotic solvents to give the Beckmann rearrangement product (262) but in alcohols it undergoes fragmentation to give PhCN and (263). The involvement of the nitrilium ion species (264) is suggested as an intermediate in both reactions.

The kinetics of the nucleophilic monosubstitution of imidazole by p-nitrophenolate in hexaimidazolylcyclotriphosphazene (265) in water–THF have been studied. A two-step mechanism involving the cleavage of a pentacoordinated intermediate to (266) in a general acid-catalysed reaction is proposed. As expected for such a mechanism, a change in the slow step occurs at pH > 7 when the [buffer] increases and kobs becomes independent of [buffer].

The kinetics and mechanism of hydrolysis of monobutylaniline phosphate (267) in acidic media have been reported. The mechanism of hydrolysis of monophenylhydrazophosphate, as its barium salt, was investigated.

The rearrangement of the N-phosphinoyl-O-sulfonylhydroxylamine (268) (with 57% enrichment with one ¹⁸O atom in the SO₂ group) to the sulfonamide (269) (43.7% enriched with one ¹⁸O atom) occurs with Bu'NH₂ in dichloromethane via the phosphonamidic–sulfonic anhydride intermediate (270). The rearrangement of the O-phosphinoyl compound (271) with t-butoxide gives the phosphonamidic–phosphanic
mixed anhydride (272). A concerted mechanism with a TS like (273) is proposed to explain the results.246 The \(N\)- and \(O\)-phosphinoyl groups can interchange prior to rearrangement in (274) and (275) giving mixtures of (276) and (277), and phosphoranes (278) and (279) are suggested as intermediates.247

Phosphorus–Oxygen and Phosphorus–Sulfur Centres

The thionation of 2-substituted-4-aryl-5,5-dimethyl-1,3,2-dioxaphosphorinanones with Lawesson’s reagent proceeded predominantly with retention of configuration and a cyclic pentacoordinated intermediate was proposed.248 Both P–N bond cleavage in acidic solution and P–C and P–O bond cleavage in basic solution occur in the hydrolysis of \(N\)-(methoxycarbonyl)carbamoylmethoxyphosphonoyl)-\(z\)-amino acid ester. Only P–O bond cleavage occurs with the \(N\)-(isopropylcarbamoyl) compound.249

The V-type nerve agents (280; \(R^1 = \text{Et} \), \(R^2 = \text{Pr}^t\)) and (280; \(R^1 = \text{Bu}^t \), \(R^2 = \text{Et}\)) react by exclusive P–S bond cleavage with an equimolar amount of water to give the corresponding phosphonic acid (281) and the 2-aminoethanethiol (282).250 The mechanism may involve nucleophilic attack of the deprotonated phosphonic acid on protonated (280) to produce a diposphonate intermediate (283) that rapidly hydrolyses to regenerate phosphonic acid. Reactions of the very toxic agent VX (284; \(R = \text{CH}_2\text{CH}_2\text{NP}^t\text{Pr}_2\)) and the mildly toxic (284; \(R = \text{Et}\)) with \(\text{HO}_2^-, \text{HO}^-, \text{RO}^-, \) and an oximate ion are seen as \(S_\text{N2}(\text{P})\) concerted reactions rather than stepwise with the formation of trigonal bipyramidal intermediates.251

The ester exchange reactions of the oxyphosphoranes (285; \(R = R = \text{Ph, Me, 4-nitrophenyl}\)) with several alcohols, models for nucleosides, have been investigated.252 The oxidative hydrolysis of the phosphorus(V) esters of thiols such as (286)–(289) with
p-BuC₆H₄NHP(OH)₂

(267)

BuS¹⁸O₂NHBu⁺

(269)

PhMeCH₃P

O

PhNOS¹⁸O₂Bn

(268)

PhMeCH₃P

O

BuS¹⁸O₂¹⁸O₂NHBu⁺

(270)

Ph

P

NHOP(O)Ph₂

(271)

Ph₃P(O)O

NPh

(272)

Ph

P

N

O

Ph

(273)

Ph

P

NHOP(O)Ar₂

(274)

Ar

P

NHOP(O)Ph₂

(275)

Ph

P

OP(O)Ar₂

(276)

Ar

P

OP(O)Ar₂

(277)

Ph

P

N

O

Ph

(278)

Ph₂P

N

O

Ar

(279)

O

MeP–OR¹

OH

(280)

O

EtO–P–SR

Me

(281)

O

MeP–OR¹

OH

(282)

O

(MeP–OR)₂O

OH

(283)

O

Ph–O–P...

OMe

OMe

(284)

O

Ph–O–P...

OMe

OMe

(285)

peroxymonosulfate ion, HSO₅⁻, have been investigated.²⁵³ Cleavage of the phosphate diester di-S-butyl phosphorothioate involves P–S fission.²⁵⁴ The cyclization of the diaminocyclopentane (290) with thiophosphorodichlorides RP(S)Cl₂ may involve a trigonal bipyramidal intermediate.²⁵⁵ The mechanism of hydrolysis of diethyl dithiophosphate in aqueous acid has been explored.²⁵⁶ The mechanism of the isomerization/chlorination of O,O-dialkylthiophosphate (291) with phosphorus oxychloride has been discussed in the light of a trigonal bipyramidal intermediate.²⁵⁷
Biologically Important Reactions

The hydrolysis of adenosine 3’-5’-cyclic monophosphate (cAMP) by the cobalt complexes (215) was considered here earlier, as was the Ce(IV)-catalysed hydrolysis of phospho monooesters in nucleotides. A review (ca 100 references) on current data on the mechanism of cleavage–transesterification of RNA has appeared. In this review special attention was focused on the two crucial steps in the hydrolysis of RNA, i.e. cleavage–transesterification and hydrolysis of the cyclic phosphodiester (Scheme 14). The catalysis of various amines for the hydrolysis of RNA has been looked at and ethylenediamine and propane-1,3-diamine are highly active under physiological conditions because they exist as the catalytically active monocation forms.

![Scheme 14](image)

An enzyme that catalyses ATP-dependent 2′-phosphorylation and acetyl-CoA-dependent 6′-acetylation of the antibacterial aminoglycosides has been reported. Because of its complementary spectrum of two enzymatic reactions, this bifunctional enzyme has a wide breadth of activity. Pentacoordinated thiophosphorane intermediates such as (292a) and (292b) are involved in the hydrolytic reactions of the monothioate analogues of 5′-O-methyluridine 2′- and 3′-dimethylphosphates, (293) and (294), which have been studied over a wide range of HCl acidities, \(H_0 = -1.7 \) to pH9.

A quantum mechanical method has been used to study the TSs of the uridine phosphorylation reaction and an acid-catalysed \(S_N 2 \) is the main mode of reaction.

The ribonucleotide sulfur analogue 2′-deoxy-2′-thiouridine 3′-(p-nitrophenyl phosphate) (295) undergoes transphosphorylation to give 2′,3′-cyclic phosphorothioate (296) followed by hydrolysis to give 2′-deoxy-2′-thiouridine 2′-phosphorothioate (297).
(Scheme 15). The reaction pathway of (295) is similar to that of ribonucleotides but there are some differences noted in this paper; for example, (295) hydrolyses 27-fold slower than its 2'-hydroxyl analogue.263 2'-Phosphorylated (298; R = OH) and 2'-thiophosphorylated (298; R = SH) dinucleotides were found to dephosphorylate readily at 90 °C in neutral aqueous solution to give UpU.264 The neighbouring 3’–5’ phosphodiester function is thought to facilitate the 2'-dephosphorylation.

The hydrolysis reactions of N-phospho amino acids seen as models for protein dephosphorylation have been studied in Tris–HCl buffer (pH 7.5)–DMSO. The reactions were first order and the rates were very much faster than those of simple phosphoamidates. A pentacoordinated phosphorus intermediate is proposed on the reaction pathway.265 The rates of ester exchange reactions of alcohols (nucleoside models) with the oxyporphorane (299) have been studied and the rates of exchange are much faster for diols than for mono-alcohols.266

Using 1H-tetrazole, a more efficient procedure for the synthesis of nucleoside diphosphate sugars from nucleoside 5'-monophosphomorpholidate and glycosyl phosphate has been reported.267 A stepwise mechanism involving the formation of a transient oxocarbenium ion intermediate (300) in the intramolecular condensation of two models for Kdo8P synthase, the enzyme that catalyses the unusual condensation of D-arabinose 5-phosphate with phosphoenol pyruvate to form Kdo8P, is supported in recent studies.268 Low Brønsted β_{nuc} values of 0.08 (log k_{cat} vs pK$_a$) and 0.07 (log k_{cat}/K$_m$ vs pK$_a$) for the protein tyrosine kinase Csk-catalysed phosphorylation of a peptide substrate family strongly support a dissociative mechanism since β_{nuc} values for non-enzymatic dissociative phosphoryl transfers of phosphate monoesters are in the range 0–0.3 and for associative phosphoryl transfers of phosphate triesters the values are ≥ 0.5.269
The phosphate derivatives (301)–(303) of 6-O-(2-hydroxyethyl)cyclohexane-1,2,4,6-tetraol have been synthesized as inositol monophosphatase inhibitors, the putative target for lithium therapy. Compounds (303) and (302) are the most potent examples of a primary alkyl phosphate and phosphate monanion inhibitor so far reported.

The TS for the tyrosine phosphate hydrolysis by the enzyme protein tyrosine phosphatase (PTP1B) has been determined using a hybrid QM(PM3)/MM potential. The reaction was found to be dissociative in character with no P–S bond formation in the TS but extensive P–O bond lengthening.

Sulfur-containing Acids

Sulfur–Oxygen Compounds

General base \(\beta_{\text{base}} = 0.19 \) and nucleophilic catalysis mechanisms have been established for the hydrolysis of benzenesulfonyl chloride. Two-parameter LFERs were found for each route and electronic effects were seen to be greater than steric.
The solvolysis and methanolation of PhSO₂Cl in MeCN with tertiary amine catalysts has been explored and a series of 4-substituted phenols and again both general base and nucleophilic catalysis paths were recognized.\(^\text{273}\) The reactivity of 3-sulfobenzoyl dichloride (304) with substituted anilines leading to the 3-(chlorosulfonyl)benzanilides in approximately 90% yield has been probed.\(^\text{274}\) The kinetics of the sulfonylation of aniline with the arylsulfonyl chloride (305; \(Z = O, S\)) reveals that the reactivity of (305) exceeded that of PhSO₂Cl significantly but was less than that of (4-ClSO₂)₂C₆H₄.\(^\text{275}\) The relative reactivity of PhSCI and PhSO₂Cl compared with non-sulfur-containing chlorides was looked at earlier.\(^\text{77}\)

Methanolysis of the sulfonates (175)\(^\text{141}\) and the reaction of the sulfonate ester (102) with hydroxylamine (103)\(^\text{88}\) were looked at earlier. Yoh and co-workers have looked at the reactions of (Z)-phenylethyl (X)-benzenesulfonates with (Y)-pyridines in acetonitrile under pressure and the structure-reactivity relationships established show that as the pressure is increased the mechanism moves from a dissociative \(S_N2\) to early-type concerted \(S_N2\).\(^\text{276}\) In other studies also under pressure the same group found that a mechanistic change from associative \(S_N2\) to late-type \(S_N2\) occurs as the pressure is increased in the reaction of (Z)-phenacyl (X)-benzenesulfonates with (Y)-pyridines in acetone.\(^\text{277}\)

Lee’s group has published extensive results on aminolysis of sulfonates.\(^\text{278–281}\) Thus the reactions of anilines with 2-cyano-2-propyl and 1-cyanoethyletylenesulfonates in acetonitrile have been studied.\(^\text{278}\) A dissociative \(S_N2\) mechanism with a loose TS is supported from the usual LFERs. An \(S_N2\) mechanism is also found for the reaction in acetone of (Z)-benzyl (X)-benzenesulfonates with (Y)-pyridines.\(^\text{279}\) Nucleophilic substitutions with the cycloalkylmethylsulfonates (306) and anilines in MeOH were also studied.\(^\text{280}\) Finally the reaction of thiopheneethylenesulfonates (307) with anilines and \(N,N\)-dimethylanilines in MeCN has been reported on.\(^\text{281}\) Frontside-attack in an \(S_N2\) mechanism with a four-centre TS is supported.

King and Gill have been studying the reaction of alkyl 2,2,2-trifluoroethanesulfonate esters (trieslates) (308) in aqueous base (pH >9) in the presence of a primary or secondary amine.\(^\text{282}\) Reaction with hydroxide is found to be a reversible \(E1cB\) process and reaction with water is the normal sulfonic ester hydrolysis.

The hydrolysis/alcoholysis of (309; \(R = \text{Pr}^\text{n}, \text{Bu}^\text{i}, \text{allyl}, \text{propargyl}\)) with various alcohols and water caused only a slight difference in the heat of activation for \(R\) but, for a fixed \(R\) the variation was much greater. The kinetics could be described by a Taft–Pavelich equation.\(^\text{283}\)

The reactivity of amines and imidazolide anions with aryl 4-toluencesulfonates (310) in 80% aqueous DMSO has been studied and Brønsted \(\beta_{\text{nuc}}\) values of ca 0.7 and ca 1.0, respectively, were found.\(^\text{284}\) The points for both the amines and the imidazolides can all be accommodated on the same Brønsted plot. S—O rather than C—O cleavage occurs in the reaction. In a useful aside to this work the authors have shown that plots of pKₐ data in water are linear with those in DMSO or 80% DMSO and these can be used to obtain unknown pKₐ values. The same Ukrainian group has obtained deviations from Brønsted plots for the reaction of (310) with highly basic nucleophiles such as imidazoles and arenesulfonamides. The \(\beta_{\text{nuc}}\) value goes from 0.79 for pKₐ<11 to 0–0.1 for pKₐ>11.0.\(^\text{285}\)
Buffer catalysis of the hydrolysis of phenyl \((311; R = \text{Ph})\) and methyl \((311; R = \text{Me})\) benzenesulfinates to give the sulfinic acid \((312)\) and alcohol ROH is strongly accelerated by both carboxylate and amine components of the buffer which give Bronsted \(\beta\) values of approximately unity on separate lines. The carboxylates are about 44 times more effective than amines of similar basicity. A concerted \(S_N2\) mechanism with a hypervalent intermediate \((313)\) is proposed for the nucleophilic reaction of these esters.\(^{286}\) The reaction of the thiosulfinate esters \((314)\) with sulfenyl chlorides RSCI and sulfenate esters \((315)\) to give sulfinyl chlorides and disulfides and sulfinate esters and disulfides, respectively, has been studied.\(^{287}\) Hydrolysis of 2-(3-aminophenyl)sulfonyl-ethanol hydrogen sulfate gives under different conditions various products such as the ether \((316)\) and the sulfone \((317)\).\(^{288}\)

The mechanism by which \(\alpha,\beta\)-unsaturated ketones (see Scheme 16), \(\beta\)-keto esters, and uracil derivatives react with iodine in the presence of bis(tetra-n-butylammonium) peroxydisulfate \((318)\) in acetonitrile to give the appropriate iodinated products in good yields is unclear.\(^{289}\) The mechanism may involve the cleavage of \((318)\) to give an \(n\)-butylammonium sulfate radical, which can react to form a cationic iodine radical and sulfate anion; the substrate then reacts with the iodine radical to form an iodine-bridged intermediate.

Sulfur–Nitrogen Compounds

\textit{Ab initio} calculations have been carried out on the gas-phase acid-catalysed hydrolysis reactions of sulfanimide \((319)\) using the 3–21G* sets.\(^{290}\) The first step in the acid-catalysed hydrolysis of \(N\)-methylmethanesulfinamide \((319; R^1 = R^2 = \text{Me})\) is \(O\)-protonation and this form is then transformed by addition of water to the sulfurate intermediate \((320)\). Intramolecular proton transfer from O to N follows and then slow N–S bond cleavage to give products.\(^{290}\) Studies with \((319; R^1 = \text{Me}, R^2 = \text{aryl})\) also
indicate that N–S bond cleavage is rate determining. Rate constants have also been obtained for the hydrolysis of (319; \(R^1 = C_6H_4X, \ R^2 = C_6H_4Y \)) in the presence of halide ions.\(^{291}\) The acid- and nucleophile-catalysed hydrolyses of (319; \(R^1 = C_6H_4X, \ R^2 = C_6H_4Y \)) have been studied and a hypervalent intermediate is implicated in the mechanism in certain cases.\(^{292}\)

The acid-catalysed reactions of \(N \)-nitrobenzenesulfonamides (321) via an \(A-1 \) mechanism gives either \(YC_6H_4SO_2^+ \) and \(NH_2NO_2 \) or \(YC_6H_4SO_2NH_2 \) and \(NO_2^- \).\(^{100}\) Data on the alkylation of amines with the sulfonamide (322a) have been re-interpreted\(^{293}\) with a multiparameter LFER incorporating dielectric properties, polarizability, Palm basicity, etc. Kinetic studies on the nitrosation of \(N \)-methyl-4-tolylsulfonylguanidine (322b) suggest a mechanism involving rapid nitrosation of the \(N \)-methyl nitrogen followed by slow general base-catalysed proton transfer.\(^{294}\)

A bimolecular reaction has been proposed for the reaction with hydroxide ion and imidazole in aqueous acetonitrile and aqueous \(EtOH \) solutions of the 1,2,3-benzoazathiazole 2,2-dioxides (323) under various pressures.\(^{295}\) The effect of \(N \)-methyl substituents in the cyclization of 2-methoxycarbonylphenylsulfamides (324) to give (1\(H \))-2,1,3-benzothiadiazin-4(3\(H \))-one 2,2-dioxides has been examined.\(^{296}\)

The reversible formation of a monoanionic trigonal bipyrimidal intermediate with hypervalent sulfur (325) has been supported in the alkaline hydrolysis of the \(\beta \)-sultam (326).\(^{297}\) A second deprotonation by hydroxide takes place to give (327) before the
intermediate collapses to product (328). The acid-catalysed hydrolysis of (326) involves a sulfonylum ion intermediate (329).

The hydrolysis of a series of spiro-\(\alpha\)-sulfanes such as (330)–(332) leads to sulfoxides in dioxane–water solutions. A mechanism involving slow nucleophilic attack of water on the positively polarized sulfur atom and simultaneous O–H and S–N bond cleavage is proposed. The photo-oxidation of the sulfenamides (333; R = Me, Et, Ph, Bn, etc.) has been reported.
The kinetics of reaction of a number of S-nitrosothiols (334) in water with mercury(II) salts have been reported. Reaction is first order in both reactants and the products are nitrous acid and the corresponding thiol–Hg\(^{2+}\) complex. The mechanism involves slow attack by water at the nitrogen atom in the complex.\(^{300}\) The same group has also studied the copper(II)-catalysed decomposition of the S-nitrosothiols derived from penicillamine, cysteamine, thiomalic acid, N-acetylpenicillamine, and cysteine.\(^{301}\)

Sulfur–Carbon Compounds and Other Sulfur-containing Functionalities

Aminolysis of phenyl dithioacetates,\(^8\) pyridinolysis of O-ethyl dithiocarbonates,\(^9\) reaction of pyrrolidine with O-ethyl S-aryl dithiocarbonates,\(^10\) aminolysis of chlorothioformates,\(^11\) pyridinolysis of alkyl aryl thionocarbonates,\(^12\) reaction of anionic nucleophiles with nitrophenyl benzoate and its sulfur analogues,\(^36\) hydrolysis of methyl benzoate and phenyl acetate containing SME, SOMe and SO\(_2\)Me substituents,\(^42\) solvolysis of phenyl chlorothioformate,\(^79\) synthesis of new thiadiazoles,\(^124\) examination of a neighbouring sulfonium group in ester hydrolysis,\(^136\) hydrolysis of V-type nerve agents,\(^250\) and the reactions of peroxymonosulfate ion with phosphorus(V) esters have all been looked at previously in this review.

A low-temperature study in superacid media of mono-, di-, and tri-protonated thiourea has been carried out.\(^302\) The experimental results were confirmed by theoretical calculations. Monopronation occurs at sulfur and, whereas the mono- and di-protonated forms are thermodynamically stable, the triprotonated ion is only kinetically stable. The pyrolysis of N-acetyltiourea and N,N′-diacetylthiourea (335) are unimolecular first-order eliminations.\(^83\) Acid-catalysed ethanolysis of N,N′-di- and tri-substituted aryl- and alkylaryl-thioureas gives O-ethyl N-aryl thiocarbamates and amines.\(^303\) The acid-catalysed hydrolysis of thiourea was first order in thiourea and acid.\(^304\)

\[
\begin{align*}
\text{AcNHCSNHAc} & \quad \text{(335)} \\
\text{EtSO_2C\equiv C-SO_2Et} & \quad \text{(336)} \\
\text{Ph_2PNNHNH}_2 & \quad \text{(338)} \\
\text{(Et_2N)_2C\equiv C-SMe} & \quad \text{(339)} \\
\text{R_1-S-C=O} & \quad \text{(340)}
\end{align*}
\]

The aminolysis of trans-1,2-bis(ethylsulfonyl)-1,2-dichloroethene (336) by primary and secondary aliphatic amines in acetonitrile has been studied.\(^305\) Thermolysis in p-xylene solution of 4-azidotiazoles (337) displayed some interesting neighbouring-group effects,\(^306\) e.g. in (337) with R\(^1\) = Ph, R\(^2\) = (acceleration produced in parentheses) NO\(_2\) (19-fold), phenyliminomethyl (16-fold), formyl (4.5-fold), and acetyl (2.2-fold). Rate data for nucleophilic attack on phenyldimethylsulfonium ions by
common nucleophiles correlates with $pK_{\text{Me}}^{\text{lg}}$ and comparison with nucleophilic attack on methyl arenesulfonates shows that different leaving-group behaviour takes place.307

The reaction of alkyl isothiocyanates, RNCS, with diphenylphosphinic hydrazide (338) in benzene has been reported.308 The bis(diethylamino)[(methylthio)thiocarbonyl]carbenium salts (339; $X = I$ or BF_4^-) display ambident reactivity and can react either at carbenium carbon (hard nucleophiles) or at the thiocarbonyl sulfur atom (soft nucleophiles).309 Electrochemically generated superoxide reacts with dithioic S,S'-diesters (dicarbothiolates) (340; $\text{Ar} = \text{C}_2\text{H}_3\text{N}$ or C_6H_4) to give the monocarboxylate anions in 100% yield before giving the dicarboxylate anions.310

The addition of aromatic thiols, $\text{Ar}S^-$, to cyanamide, NCNH_2, is general acid catalysed, giving isothiourea as product.311 A significant movement of a hydron in the TS to the cyano nitrogen atom is indicated. The reactivity of sulfur towards thio-carboxylate ions (341; $R = \text{Ph}$, Me, Bu') has been looked at and among the species formed are S_3^2/S_8^{2-} polysulfide ions (342) and (343).312

Catalysis by phosphate buffers of various active acyl compounds (344; $X = \text{O}$, S), (345; $X = \text{O}$, S) and (346) has been examined to assess its role as a nucleophile and general base.313 In water at pH 8.5 phosphate dianion functions as both nucleophile and base towards (344; $X = \text{S}$); the Nu^- role accounts for about 80–93% of the reaction. In D_2O the process is totally nucleophilic. For (345; $X = \text{S}$), the Nu^- role is 40–50% of the reaction and for (346) the phosphate dianion adopts an entirely nucleophilic role, while the monoanion acts as a general base.

Some reactions of the 4′-thionucleoside (347) which is isoelectronic with natural thymidine (348) have been reported together with reactions of the sulfone of (347).314
The study of the reaction of alkali metal alkoxides in absolute EtOH with nitrophenyl 2-thiophenecarboxylates (349) shows that the reactivity depends on the size of the alkali metal ions. The ions form complexes at the TS more strongly than in the ground state.

Seven papers reviewed earlier here deal with chemistry about P–S bonds, i.e. the peroxyhydrolysis of nerve agent (284), the hydrolysis of di-S-butyl phosphorothioate, the formation of (290), hydrolysis of diethyl dithiophosphate, the isomerization/chlorination of O,O-dialkylthiophosphate (291), the hydrolysis of the monothioate analogues of 5′-O-methyluridine 2′- and 3′-dimethylphosphates (293) and (294), and the reactivity of the ribonucleotide analogue (295).

Other Acids

Evidence is presented to support the presence of the endo isomer (350), which is a key intermediate in the cyclization of the 1,5-dinitrile system present in (351; R¹ = Me, R² = H; R¹ = H, R² = Me; R¹ = Ph, R² = H; R¹ = H, R² = Ph). The insertion reaction of GeH₂ into a Ge–H bond of triethylgermane (352) in the gas phase has an activation energy of −10.6 ± 1.1 kJ mol⁻¹ measured over the range 292–557 K. This is the first activation energy measured for a germylene reaction. The results parallel those for Si–H insertions and the negative activation energy points to an H-bonded intermediate complex on the reaction pathway.

\[
\begin{align*}
\text{RCF(CF}_3\text{)COF} & \rightarrow \text{RCF(CF}_3\text{)CO}_2\text{Na} \\
(\text{355}) & \rightarrow \text{RFC}==\text{CF}_2 & + \text{RCHFCF}_3 \\
(\text{356}) & \rightarrow \text{RFC}==\text{CF}_2 & + \text{RCHFCF}_3 \\
(\text{357}) & \rightarrow \text{RFC}==\text{CF}_2 & + \text{RCHFCF}_3 \\
(\text{358}) & \rightarrow \text{RFC}==\text{CF}_2 & + \text{RCHFCF}_3 \\
\end{align*}
\]

SCHEME 17

The kinetics of proton transfer in aqueous DMSO from benzoynitromethane (353) and 1,2-diphenyl-2-nitroethanone (354) to various bases has recently been examined.

In diglyme or 2-hydroxyethanol, perfluoropropyl vinyl ether [355; R = F(CF₂)₂O] reacts with sodium carbonate to give (356; same R) which on heating at 113–132 °C gives rise to (357; same R) and (358; same R) via parallel mechanisms.

References

2 Reactions of Carboxylic, Phosphoric and Sulfonic Acids

2 Reactions of Carboxylic, Phosphoric and Sulphonic Acids

CHAPTER 3

Radical Reactions: Part 1

A. J. CLARK and R. P. FILIK

Department of Chemistry, University of Warwick

Introduction .. 100
Rearrangements ... 100
Group Migration ... 100
β-Scission (Ring Opening) ... 101
Ring Expansion ... 103
Intramolecular Addition ... 104
Cyclization .. 104
Tandem Reactions ... 106
Radical Annulation ... 109
Fragmentation, Recombination, and Homolysis 109
Atom Abstraction Reactions .. 112
Hydrogen Abstraction by Carbon-centred Radicals 112
Hydrogen Abstraction by Heteroatom-centred Radicals 113
Halogen Abstraction ... 115
Halogenation ... 116
Addition Reactions .. 117
Addition to Alkenes/Alkynes ... 117
Addition to Oxygen-containing Multiple Bonds 119
Addition to Nitrogen-containing Multiple Bonds 119
Addition to Thiocarbonyl Bonds 119
Homolytic Substitution .. 119
Aromatic Substitution .. 119
S_n 2 and Related Reactions ... 121
Reactivity Effects ... 122
Polarity and Philicity ... 122
Stability of Radicals .. 122
Stereoselectivity in Radical Reactions 123
Stereoselectivity in Cyclization 123
Stereoselectivity of Addition to Alkenes 124
Stereoselectivity of Atom Transfer 126
Redox Reactions .. 126
Radical Ions ... 128
Anion Radicals ... 128
Cation Radicals .. 129
Peroxides, Peroxy, and Hydroxyl Radicals 129
Peroxides ... 129
Peroxy Radicals ... 130
Hydroxyl Radical ... 131
References ... 132

ISBNs: 0-471-89935-6 (Hardback); 0-470-84580-5 (Electronic)
Introduction

Both intermolecular and intramolecular additions of carbon radicals to alkenes and alkynes continue to be a widely investigated method for carbon–carbon bond formation and has been the subject of a number of review articles.1,2 In particular, the inter- and intra-molecular additions of vinyl, heteroatomic and metal-centred radicals to alkynes have been reported1 and also the factors which influence the addition reactions of carbon radicals to unsaturated carbon–carbon bonds.2 The stereochemical outcome of such additions continues to attract interest. The generation and use of alkoxy radicals in both asymmetric cyclizations and skeletal rearrangements has been reviewed3 and the use of free radical reactions in the stereoselective synthesis of \(\alpha\)-amino acid derivatives has appeared in two reports.4,5 The stereochemical features and synthetic potential of the [1,2]-Wittig rearrangement has also been reviewed.6 In addition, a review of some recent applications of free radical chain reactions in organic and polymer synthesis has appeared.7 The effect of solvent upon the reactions of neutral free radicals has also recently been reviewed.8

A study of the addition reactions of radicals to fullerenes (C\(_{60}/\text{C}_{70}\)) by EPR has appeared and the dynamic effects in the EPR spectra of fullerenyl radicals due to hindered rotation and the multi-addition of radicals to fullerenes are described.9 Other review articles which have appeared this year include recent advances in the radical substitution reactions of alkyl, aryl, and vinyl halides10 and the substitution and photochemical reactions of heterocyclic \(N\)-oxides.11 The mechanisms for the oxidation of hydrocarbons, lipids, and low-density lipoproteins have been reviewed.12

Rearrangements

Group Migration

The mechanisms of the (\(\beta\)-acyloxy)alkyl and (\(\beta\)-phosphatoxy)alkyl radical migrations continue to attract attention. The mechanism of the (\(\beta\)-acyloxy)alkyl radical rearrangement has been studied in a range of solvents using a number of substituted aryl and O17-labelled derivatives (1a–c).13 A relationship between the electronic structure of the radical, the solvent and the rate and degree of O17 scrambling was found indicating that the radicals (1a–c) can undergo an acyloxy shift by more than one mechanism depending upon the solvent and their electronic structure. For example, considerable O17 scrambling occurred for (1a) under conditions that would favour a polar TS (e.g. MeOH), suggesting a dissociative radical cation–anion pair mechanism (2). Reaction of (1a) in benzene indicated the five-membered cyclic TS mechanism (3). In contrast, related investigations into (\(\beta\)-acyloxy)alkyl radical rearrangements using the substrate (4a) in various solvents provided no evidence for any dissociative mechanism, highlighting that the mechanistic pathway chosen is highly substrate dependent.14 However, rearrangement of the phosphatoxy deuteriated probe (4b) in various solvents did show a mechanistic solvent dependence. Rearrangement of (4b) in benzene was concluded to occur via a non-dissociative pathway while a fragmentation/recombination mechanism was postulated for its reaction in Bu'OH. Crossover experiments indicated the intermediacy of a tight ion pair.14 Both the (\(\beta\)-acyloxy)methyl and (\(\beta\)-
phosphatoxy)methyl radical migrations have been investigated by theoretical treatments.15,16

\begin{align*}
\text{(1)} & \quad \text{Pr}^n \\
\text{(2)} & \quad \text{Pr}^n \\
\text{(3)} & \quad \text{Pr}^n \\
\text{(4)} & \quad \text{X} \quad \text{D}
\end{align*}

\text{a; Ar} = \text{C}_6\text{H}_5 \\
\text{b; Ar} = \text{p-}\text{MeOC}_6\text{H}_4 \\
\text{c; Ar} = \text{p-}\text{NCC}_6\text{H}_4 \\
\text{a; X} = \text{OC(O)Ph} \\
\text{b; X} = \text{OP(O)(OE)}_2

The asymmetric rearrangement of peroxyl radical (5) has recently been used as the key step in the asymmetric synthesis of Plakorin (Scheme 1).17 The thermal isomerization of buta-1,2- to buta-1,3-diene has been studied using \textit{ab initio} calculations and the mechanism concluded to proceed stepwise via radical intermediates.18 The competition between cyclopropyl formation and the homoallyl–homoallyl radical rearrangement has been studied in the radical (6) and found to give the 3-exo cyclization product (7) and the rearranged product (8) in a 1:5 ratio, respectively, under the conditions shown (Scheme 2).19

\textit{β-Scission (Ring Opening)}

The ring opening of a range of cyclopropylcarbinyln radicals has been investigated.20–22 The relative rates of opening were found to be in good agreement with experimental data and the use of HF/6–31G* and PMP2/6–31G* methods proved adequate to

\begin{align*}
\text{(5)} & \quad \text{OH} \\
\text{C}_{16}\text{H}_{33} \quad \text{OSi(Pr)}_3 \quad \text{OO}^\cdot \\
\text{(6)} & \quad \text{Ph} \quad \text{Me} \\
\text{Bu}_3\text{SnH}, \quad \text{AIBN} \\
\text{(7)} & \quad \text{Ph} \quad \text{Me} \\
\text{(8)} & \quad \text{Me} \\
\text{(7)} : \text{(8)} = 1 : 5
\end{align*}
describe the reactions.20 The effect of substituents upon the ring-opening reactions was explained in steric not electronic terms. The rate of ring opening of the tertiary cyclopropylmethyl radical (9) has been re-investigated using methods based upon trapping of radical (9) with PhSH, ABNO, and TEMPO. While the first two methods utilized H-abstraction from PhSH, and ABNO by the Bu+ as a model to calculate the rate of ring opening of (9), the last reaction with TEMPO utilized trapping of the 2,3-dimethylbutyl radical as a more accurate model.21 Laser flash photolysis kinetic studies on the fragmentation of the secondary ethoxycarbonyl radical (10a) shows that ring opening proceeds faster than for the analogous alkyl radical (10b) counterpart. However, the related tertiary ester radical (10c) fragmented slower than its alkyl analogue (10d). These results highlighted the need to take into consideration transition state polarity and steric effects in fragmentation reactions. Owing to the relative ease of acrylate-derived ring opening, the authors indicated that researchers should be ‘aware of the possibility that equilibration of an acrylate adduct via fragmentation could occur.’22

\[
\begin{align*}
(9) & \quad \text{Ph} \quad \text{Ph} \\
(10) & \\
\text{a: } & R = H, \ X = \text{CO}_2\text{Et} \\
\text{b: } & R = H, \ X = \text{Me} \\
\text{c: } & R = \text{Me}, \ X = \text{CO}_2\text{Et} \\
\text{d: } & R = \text{Me}, \ X = \text{Me}
\end{align*}
\]

Ring-opening reactions of aryl substituted oxiranylicarbonyl radicals have shown that \(\text{C–C} \) bond cleavage is reversible and in competition with \(\text{C–O} \) bond cleavage even when no products arising from \(\text{C–C} \) bond cleavage are obtained.23 The related cyclohexyl-derived radical (11) undergoes fragmentation at 25–30 °C at a rate of \(3.2\times10^{10} \text{ s}^{-1} \) as calculated from PhSH trapping experiments (Scheme 3).24 The figure is in good agreement with that predicted by theoretical treatments.

\(\beta\)-Scission of alkoxy radicals (12) generated from nitrate esters and Bu\textsubscript{3}SnH furnish \(\alpha\)-amino acid radicals (13) (Scheme 4). This new method for forming \(\alpha\)-amino acid radicals may be useful for generating site-specific radicals in peptides.25 The reactions of \(\text{C(2)} \) glyceryl radicals (14) have been observed by EPR. Whereas the phosphate derived radical (14a) gave the reduced product (15a) in 70% yield, the unsubstituted

\[
\begin{align*}
(11) & \\
(12) & \\
(13) & \\
(14) & \\
(15) & \text{O} \\
\text{O} &
\end{align*}
\]
derivative (14b) furnished a significant amount of elimination products (16). The results indicate a new possible radical β-elimination mechanism for lipid damage of lysolecithins via the corresponding C(2) lysolethith radicals.\(^{26}\)

![Scheme 4](image)

Scheme 4

Ring Expansion

Regioselective β-fragmentation of the alkoxy radical (17) furnishes the ring-expanded iodide (18) in good yield under HgO–I\(_2\)–irradiation conditions (Scheme 5).\(^{27}\) Similar transformations could not be accomplished under ionic conditions.

![Scheme 5](image)

Scheme 5

The kinetics of 5-exo and 6-endo acyl radical cyclizations have been investigated under a variety of reaction conditions.\(^{28}\) The presence of the 6-endo product was found to arise either by a direct cyclization (2.0 × 10\(^4\) s\(^{-1}\)) or by a ring expansion (4.2 × 10\(^3\) s\(^{-1}\)) from the 5-exo radical product (1.6 × 10\(^5\) s\(^{-1}\)). Consequently, cyclization in the presence of high concentrations of fast H-donors (e.g. Bu\(_3\)SnH) furnished 5-exo products whereas reactions under high dilution conditions or with poor H-donors gave rise to 6-endo products.
Intramolecular Addition

Cyclization

The cyclization of alkyl radicals to give five- and six-membered rings continues to be a rich area of chemistry. The formation of vinyl radicals from the addition of sulfur-derived radicals to alkynes and their consequent reactions with unsaturated functional groups have been reported by two different groups.\(^{29,30}\) Vinyl radicals, formed from addition of alkyl or arylthiyl radicals to alkynes, undergo cyclization on to the azide functional group (Scheme 6).\(^{29}\) Caddick et al.\(^{30}\) reported the use of sulfonyl radicals as triggers to mediate cyclizations. Reaction of TsBr with AIBN furnishes sulfonyl radicals which add to alkynes to form vinyl radicals which can undergo further 5-exo cyclization on to alkynes. The products are electron-deficient sulfonyl dienes and may well find use in Diels–Alder reactions. Although 5-exo cyclizations are normally the favoured mode of carbon radical cyclization, the reactive aryl radical prepared from Bu\(_3\)SnH-mediated reaction of 7-bromo-N-substituted indole derivative (19) undergoes competitive 6-endo cyclization and reduction to give (20) and (21), respectively (Scheme 7).\(^{31}\) No products from 5-exo cyclization were detected, presumably owing to unfavourable geometric constraints. A study into the regioselectivity of cyclization of allyl radicals has appeared.\(^{32}\) Cyclization of the allyl radical generated from (22) proceeded exclusively at the ω-carbon to give the bicycle (23) (Scheme 8). The regioselectivity was rationalized on the basis of spin density calculations on the SOMO using PM3 calculations.\(^{32}\)

The formation of ring sizes other than five- and six-membered rings has been reported, in particular the formation of three- and four-membered rings by 3-exo and 4-exo radical cyclization, respectively.\(^{33,34}\) High-yielding 3-exo cyclizations have been reported when the cyclized radical contains a radical-stabilizing group.\(^{33}\) The effects of
various gem-disubstituent groups on the rate of 4-exo cyclization of carbon radicals have been studied.34 Optimum yields of 4-exo products were obtained with acetals as geminal substituents with the nature of the acetal ring size proving to be crucial for the success of the reaction (Scheme 9). Oxiranyl methyl radicals prepared by 3-exo-trig cyclization of alkyl alkoxy radicals have been trapped by the Bu'ONO spin trap and their EPR details reported.35

The cyclizations of radicals on to the C–N unsaturated bonds of oxime ethers and hydrazones36 and imines37 are possible. Addition of the Bu\textsubscript{3}Sn− to the digonal carbon of the allene (24) forms an allyl radical (25) which undergoes 5-exo cyclization on to nitrogen-containing multiple bonds.36 The rate constants for the irreversible 5-exo and 6-endo cyclization of alkyl radicals on to imines have been determined to be approximately 6.0×10^6 and 6.7×10^5 s−1 at 80 °C, respectively.37 Semi-empirical calculations (MOPAC) indicate that the cyclization rates could be dependent upon the electron density at the iminyl carbon atom.38 Competition studies involving cyclization of alkyl radicals on to either alkenes or benzyl oxime ethers have indicated that the rates of 5-exo (6.8 \times 107 s−1) and 6-exo (4.1 \times 106 s−1) cyclization on to oxime ethers at 80 °C are greater than on to the corresponding imines and are comparable to hydrazone cyclization rates.38

\textit{Ab initio} studies (UHF/6–31G*) have been used to investigate the 5-endo cyclization of various substituted radicals including the 5-oxapenta-2,4-dienoyl radical. The results show that the 5-endo cyclization is both kinetically and thermodynamically favoured.39

The cyclization of a range of z-heteroatom-functionalized radicals has been studied. Both \(\alpha\)-sulfonyl and \(\alpha\)-sulfinyl radicals can undergo 5-exo cyclization on to alkenes.40
The chirality of the sulfoxide led to only moderate control of stereoselectivity. α-Alkoxy radicals also undergo cyclization in a 5-exo and 6-exo mode, again with little control of stereoselectivity.41

The transition-state geometries for the cyclization of a range of electrophilic radicals have been obtained by MNDO semiempirical calculations.42 The regioselectivities observed were rationalized using a frontier orbital approach. Semiempirical calculations were not suited for describing the cyclization of the pent-4-en-1-oxyl radical.43 Instead, results indicated that \textit{ab initio} (UHF/6–31G*) and (UBP/DZVP) were more reliable.

The kinetics and mechanism of the cyclization/ring opening of \textit{N}-alkylpent-4-enaminyln radicals (26) have been re-examined by Newcomb \textit{et al.}44 in the light of a recent previous report by Maxwell and Tsanaktsidis (Scheme 11). The latter authors claimed that the cyclization was very slow and irreversible and that the reaction was catalysed by (Bu$_3$Sn)$_2$O. This was in conflict with previous reports which suggested a modestly fast and reversible cyclization. Results from the re-examined study indicated a reversible reaction not catalysed by (Bu$_3$Sn)$_2$O with a forward rate of $(5 \pm 1) \times 10^4$ s$^{-1}$ at 50 °C. The origin of the conflicting results was speculated to arise from small amounts of disulfide or selenide impurities in the radical precursors used by Maxwell and Tsanaktsidis which upon subjection to the reaction conditions (Bu$_3$SnH) underwent reduction to the superior H-donor PhSH or PhSeH. The catalytic effect of (Bu$_3$Sn)$_2$O noted in the original study was suggested to arise by the sequestering of these undesired H-donors. The effects of complexed Lewis acid (LiBF$_4$, MgBr$_2$, BF$_3$) on the rate constants for the 5-exo and 6-exo cyclization of (27) and (28) have been determined by laser flash photolysis.45

\begin{center}
\textbf{Scheme 11}
\end{center}

\textit{Tandem Reactions}

The use of tandem reactions continues to be an efficient method for the construction of complex molecules. While tandem cyclization reactions such as the reaction of deca-1,6-dien-11-yne (29) with Et$_3$B–Ph$_3$SnH to furnish the products (30)–(32)
(Scheme 12)46 continue to be reported, the sequencing of other cascade processes such as addition, fragmentation, and radical translocation pathways has started to become increasingly popular. For example, reaction of (33) with Bu\textsubscript{3}SnH–AIBN via a syringe pump leads to initial Bu\textsubscript{3}Sn– addition to the C=O to give (34) followed by fragmentation of the cyclopropylmethyl radical, 1,5-H-atom transfer, 5-\textit{exo} cyclization and elimination of Bu\textsubscript{3}Sn– to give (35) (Scheme 13).47

\[\text{O} \]
\[\text{OSiPh}_2\text{Bu}^t \]
\[\text{Et}_3\text{B} \]
\[\text{Ph}_3\text{SnH} \]

\[\text{(29)} \]

\[\text{O} \]
\[\text{OSiPh}_2\text{Bu}^t \]
\[\text{Et}_3\text{B} \]
\[\text{Ph}_3\text{SnH} \]

\[\text{(30)} \]

\[\text{Ph}_3\text{Sn} \]
\[\text{(31)} \]

\[\text{(32)} \]

Scheme 12

\[\text{O} \]
\[\text{Ph} \]
\[\text{Bu}_3\text{Sn}^+ \]
\[\text{(33)} \]

\[\text{O} \]
\[\text{OSnBu}_3 \]
\[\text{(34)} \]

\[\text{fragmentation} \]
\[\text{1,5-H transfer} \]

\[\text{O} \]
\[\text{Me} \]
\[\text{(35)} \]

Scheme 13
The addition of thyl radicals to alkenes or alkynes to initiate tandem sequences has also been explored. A highly stereo-controlled phenyl thyl radical addition, 10-endo macrocyclization, termination process has been used to furnish the macrocycle (37) from the dimethylacrylic ester (36).\(^{48}\) In other work the vinyl radical (38) formed from addition of a thyl radical to an enyne gives a mixture of the three products (39)–(41) formed either by 6-exo cyclization (39), addition into the aromatic ring followed by trapping with AIBN (40), or rearomatization and fragmentation to give the sulfide (41) (Scheme 15).\(^{49}\)

![Scheme 14](image1)

SCHEME 14

![Scheme 15](image2)

SCHEME 15

Electrochemically generated \(\cdot\)NO\(_3\) has been reported to add to medium-ring alkynes and alkynones to furnish bicyclic ketones and epoxy ketones, respectively.\(^{50}\) The postulated mechanism involves the addition of \(\cdot\)NO\(_3\) to the alkyne followed by transannular cyclization/elimination of \(\cdot\)NO\(_3\).

Upon photolysis, the alkyl nitrate (42) undergoes 1,5-H transfer to furnish the \(\delta\)-radical, which in the presence of a large excess of electron-deficient alkenes undergoes addition followed by NO quenching to give (43) (Scheme 16).\(^{51}\)
Radical Annulation

Reaction of alkylthyl radicals with alkenyl cyclopropanes (44) furnishes intermediate radicals (45) after addition and ring opening. Addition of a further radical acceptor leads to tricyclic [5,5,n] systems via addition followed by cyclization and elimination (Scheme 17).52

![Scheme 16](image)

![Scheme 17](image)

Fragmentation, Recombination, and Homolysis

The recombination of radicals has been investigated by a number of methods including laser flash photolysis53,54 infrared spectroscopy55 and theoretical means.56 The rates of self-recombination of FC(O)O⁻53 [(7.0 ± 1.1) × 10⁻¹³ cm³ mol⁻¹ s⁻¹] and Ph⁻54 between 300 and 500 K [(1.39 ± 0.11) × 10⁻¹³ cm³ mol⁻¹ s⁻¹] have been reported. The kinetics of the radical–radical reaction between CI⁻ and MeCO⁻ to give ketene and HCl has been studied over the pressure range 10–200 Torr.55 The kinetics of the reaction between the CF₃O₂ and ‘OH have been investigated using a discharge flow tube with resonance fluorescence detection of ‘OH.57 Both BAC-MP4 and BAC-MP2 methods have been used to investigate the mechanism in which 2-cyclopentadienyl radicals combine to form naphthalene. Mechanistic information suggests initial formation of dihydrofulvalene followed by loss of H⁻ and rearrangement via ring closure/opening.56 The coupling of prochiral radicals to a number of chiral nitroxy radical has been reported.58 The best results were with the conformationally restrained nitroxy radical (47) (Scheme 18).
Substituent effects upon bond dissociation energies in a range of substituted methanes59 and benzyl bromides and \textit{t}-butylbenzenes60 have been studied using density functional methods [B3LYP with 6–31G(d,p) basis set] and photoacoustic calorimetry, respectively. The theoretical results were in close agreement with published experimental data and similar to that arrived at by more elaborate \textit{ab initio} techniques. The investigation of the dissociation energies of benzyl bromides in both solution and the gas phase concluded that there were no detectable substituent effects in either phase. These conclusions were in contrast to earlier reports. The activation energies for the generation of radicals by reactions between alkanes and alkenes has been examined and the role of these reactions in hydrocarbon cracking and olefin polymerisation and oxidation has been examined.61 The homolytic cleavage of a range of new radical initiators have been examined including peroxides62,63 and azo compounds.64 The initiator azobis(2,4-dimethyl-4-methoxyvaleronitrile) (48), used to mediate carbon radical additions to alkenes at room temperature, was found to be superior to other initiators such as AIBN, BPO, or Et\textsubscript{3}B.64

The observed greater thermal stability of SNAP (49) over SNAC (50) has been investigated by \textit{ab initio} calculations and DSC and TGA measurements.65 Results indicate a two-step procedure for decomposition with the enhanced thermal stability of SNAP (49) directly related to the steric interaction in the dimerisation reaction leading to disulfide formation. The methyl groups were found to have no substantial effect on the N–S bond strength.65 \textit{Ab initio} calculations have also been used to study the mechanism of decomposition of AcONO\textsubscript{2}. Results indicated that the most thermo-
dynamically stable process involved initial cleavage of the O–NO₂ bond with simultaneous decarboxylation to give Me' and ‘NO₂. Density functional calculations have been used to study the deuterium isotope effect of the decomposition of dimethylnitramine (a model for nitramine explosives). The thermolysis of alkoxyamine (51) has been studied (>150 °C). Two disproportionation pathways were detected: (a) back to styrene and diethylhydroxylamine, and (b) back to ethylbenzene and nitroly (52).

\[
\begin{align*}
\text{AcHN CO₂H} & \quad \text{Me SNO} \\
(49) & \quad (50) & \quad (51) & \quad (52)
\end{align*}
\]

The rates of decomposition of alkoxy and β-hydroxyalkoxy radicals (key intermediates in the degradation of alkanes and alkenes in the atmosphere) have been investigated. A mechanism involving 2- and 3-hexyl radical intermediates has been proposed to account for the decomposition of the 1-hexyl radical to give various C(2)–C(5) n-alkenes. The unimolecular decomposition of Ph’ has been studied by ab initio molecular orbital and statistical-theory calculations. Four possible mechanisms for the decomposition of the benzyl radical have been postulated on the basis of theoretical and shock-tube studies. Results were consistent with a direct ring-opening pathway via a 6-methylenecyclo[3.1.0]hex-3-ene-2-yl intermediate (53). Imidoyl radicals substituted with the triphenyl methyl group (54) undergo novel homolytic α-fragmentation to release the stable triphenylmethyl radical and furnish isonitriles.

\[
\begin{align*}
\text{MeO} & \quad \text{MeO} \\
(53) & \quad (54)
\end{align*}
\]

The oxidation of thiols of biological importance by oxidizing radicals has been studied. The resulting thyl radicals were found to decompose rapidly to give C-radicals in the absence of oxygen but to form RSOO’ in the presence of oxygen. The electrocyclic ring opening of α-fluorobicyclopropyl radicals to give allyl radicals has been evaluated both experimentally and theoretically. The reaction of dimethylidioxirane and cumene has been studied between 22–52 °C by chemiluminescence and kinetic UV spectroscopy. The process was found to be inhibited by O₂. The rate coefficients for the addition of benzyl radicals to O₃ (2.8 × 10¹³ cm³ mol⁻¹ s⁻¹ and NO₃ (1.93 × 10¹² cm³ mol⁻¹ s⁻¹) have been measured in a discharge-flow reactor. The main products from both the reactions were benzene and benzaldehyde, suggesting the intermediacy of the benzylxy radical.
Atom Abstraction Reactions

Hydrogen Abstraction by Carbon-centred Radicals

The selective oxidation of C—H bonds in alkanes under mild conditions continues to attract interest from researchers. A new procedure based upon mild generation of perfluoroalkyl radicals from their corresponding anhydrides with either H₂O₂, m-CPBA, AIBN, or PbEt₄ has been described. Oxidation of ethane under the reported conditions furnishes propionic acid and other fluorinated products.⁷⁹ While some previously reported methods have involved metal-mediated functionalization of alkanes using trifluoroacetic acid/anhydride as solvent, these latter results indicate that the solvent itself without metal catalysis can react as an oxidant. As a consequence, results of these metal-mediated reactions should be treated with caution. The absolute rate constants for H-abstraction from Bu₃SnH by perfluorinated α-alkyl radicals have been measured and the trends were found to be qualitatively similar to that of their addition reactions to alkenes.⁸⁰ α,α-Difluorinated radicals were found to have enhanced reactivities and this was explained as being due to their pyramidal nature while multifluorinated radicals were more reactive still, owing to their electrophilic nature.⁸⁰

A number of theoretical studies into H-abstraction reactions have been published.⁸¹–⁸⁷ Both ab initio and density functional theory have been used to investigate the reactions of the trichloromethyl radical with a number of alkanes⁸² and the reaction of the methyl radical with halogenated alkanes,⁸³ while ab initio methods alone have been used to study the H-abstraction from HCN by the formyl radical⁸⁴ and from H₂O by the methyl radical.⁸⁵ Transition-state energies for H-abstractions have been predicted using density functional theory (with functionals BLYP, BP86, B3LYP, B3P86), with the last two hybrid functionals giving the most accurate results.⁸⁶ The relative merits of the Roberts and Steel empirical algorithm and the Zavitsas semiempirical method for determining activation energies of H-abstractions have continued to attract controversy. The Roberts and Steel empirical algorithm has been compared with the Zavitsas approach and also with ab initio and experimental data. Conclusions indicated that the empirical and semiempirical methods had ‘a role to play in understanding the factors that influence the rates of radical reactions,’⁸⁷ although, owing to the failure of the Zavitsas procedure to model the activation energy for the reaction between H₃Si and H₄Si, doubts concerning the generality of the latter procedure were raised. The rates of reaction of ethyl radicals with HBr have been reported at low pressures using VLPR.⁸⁸ The use of 3-methylcyclohexa-1,4-diene-3-carboxylic acid derivatives (55) as precursors for C-radicals has been explored and the reaction characterized by EPR.⁸⁹ The rate constant for H− abstraction from (55) by hexenyl radicals was determined (0.82 × 10⁵ dm³ mol⁻¹ s⁻¹ at 140 °C) and found to be slower than for Bu₃SnH. At high temperatures (>80 °C), loss of methyl radical from (56) was competitive with decarboxylation (Scheme 19).

The mechanism of oxidation of alkanes with dimethyldioxirane has been examined by measurement of the primary kinetic isotope effect for the oxidation of cyclohexane and methylcyclohexane in solution and in the gas phase. These experiments indicated that the major products (cyclohexanol and methylcyclohexanol) are probably formed via an electrophilic oxygen-insertion reaction while minor by-products may arise from radical reactions.⁹⁰
Intramolecular H-abstraction (radical translocation) has attracted a lot of attention this year. 1,2–1,5 H-atom transfer reactions have been studied theoretically using UHF–AM1 methods. The predicted activation energies were compared to experimentally measured data. \(^{91}\) \textit{Ab initio} studies into the 1,2–1,6 translocation of the 2-methylhexyl radical predicted that 1,5-H-transfer would be the fastest isomerization process. \(^{92}\) The effects of various groups (dioxolane, acetoxy, TBS ether) on the relative ability of 1,5–1,7 radical translocation have been examined. \(^{93}\)

1,5-Hydrogen atom transfer from \(\alpha\)-phenylsulphonyl radicals has been synthetically exploited (Scheme 20). In cases where \(R = \text{Me or hexyl, competing 1,6-radical translocation was observed.}^{94}\) The \(\alpha\)-silyl radical (58), derived from tributylstannane–AIBN mediated homolysis of the corresponding \(o\)-(bromomethyl)dimeethylsilyl aryl sulfone, undergoes an unusual 1,8-hydrogen translocation followed by \(\beta\)-elimination of the sulfur group to give (59) (Scheme 21). In contrast, \(\beta\)-silyl radical (60) undergoes intramolecular attack at the sulfone (Scheme 22). \(^{95}\)

Scheme 19

Hydrogen Abstraction by Heteroatom-centred Radicals

The effect and role of the Cl\(^-\) in ozone depletion in the stratosphere have highlighted the need for knowledge of how it reacts with atmospheric species and pollutants. As a consequence, the H-abstraction reactions of Cl\(^-\) with a large variety of non-halogenated hydrocarbons including alkanes, \(^{96–98}\) alkenes, \(^{99,100}\) dienes, \(^{101,102}\) aromatics, \(^{103}\) and ketones \(^{104}\) as well as halogenated hydrocarbons \(^{105–108}\) have been investigated by a number of different research teams. The analytical potential energy surface for the Cl\(^-\) mediated hydrogen abstraction from methane has been determined using the application of variational transition state theory and the study of kinetic isotope effects. \(^{98}\) The abstraction reactions from methane, ethane and other simple alkanes have been compared by two groups. \(^{96,97}\) The latter measured absolute rate constants for the H-abstraction from alkanes between 292 and 700 K by laser photolysis/continuous wave IR long-path absorption spectroscopy. While the reaction with methane showed a significant curvature of the Arrhenius plot, the reaction with propane was independent over the temperature range. \(^{97}\) The reaction of Cl\(^-\) with both ethene \(^{98}\) and propene \(^{100}\) has been reported over a variable temperature range. For propene, observations indicated that the major reaction pathway to form HCl is via H-abstraction with only a small contribution to its formation via an addition/elimination mechanism. \(^{100}\) For the reaction with ethene, the addition pathway was found to be dominant at room temperature while the H-abstraction pathway dominated at elevated temperatures (\(>500\) K). \(^{99}\) Both the
atmospheric implication of H-abstraction from 2-methylbuta-1,3-diene102 and buta-2,3-diene101 as well as the rate data for these reactions with the Cl− have been reported. Reactions with acetone101 and other ketones104 have indicated that the carbonyl group lowers the reactivity towards α-hydrogen abstraction by Cl− compared with related alkanes. Absolute rate constants for the reactions of Cl− with CHBr\textsubscript{3}, CH\textsubscript{2}Br\textsubscript{2}, and CH\textsubscript{3}Br have been measured and found to be 2.12 ± 0.25, 2.91 ± 0.2, and 3.21 ± 0.3 cm3 molecule−1 s−1 at 273 °C, respectively,106 with the activation energy for H-abstraction decreasing with an increasing degree of bromine substitution. The reaction between Cl− and MeI has been studied theoretically.107 Direct measurements of rates of H-abstraction from MeF and CF\textsubscript{3}CH\textsubscript{2}F (HFC-134a), an industrial substitute for CFCs, by Cl− and F− have been carried out experimentally using discharge flow/mass spectroscopy.108 Rate enthalpies and activation energies were also calculated using \textit{ab initio} methods [MP2/6–31G(d,p)] and found to be in good agreement with experimentally measured values. The reactions between Cl− and H\textsubscript{2}S, MeSH,109 and MeSSMe110 have been studied. The last reaction has been investigated at various temperatures and was found to proceed by two reaction pathways consisting of either H-abstraction or the formation of MeSCl and MeS− via an intermediate MeS(Cl)SMe
adduct. Both of these types of reaction channel (abstraction and adduct formation) have also been experimentally determined for the reaction of F’ with CH₂BrCl, a potential substitute to the fire-extinguishing reagent Halon 1301,1211.111 The reactions of F’ with CF₃CF₂H112 and Br’ with MeOH113 have been studied experimentally. The latter gave a value for the heat of formation of ‘CH₂OH as −16.6 ± 1.3 kJ mol⁻¹.

Studies examining H-abstraction by various oxygen-centred radicals have been reported. Activation energies114 and rate constants115 for the processes of abstraction from alkyl, vinyl, and aryl hydrocarbons have been calculated with abstraction from aliphatic C–H bonds proceeding with the highest activation energies.

One of the most popular nitroxide-based radicals (TEMPO) has been shown to abstract H-atoms from activated C–H bonds. However, the nitroxide itself is easily photo-degraded. In order to examine more photochemically stable alternatives to TEMPO in abstraction reactions, the related isoindoline nitroxide radical (61) has been examined.116 Abstractions from unactivated primary, secondary, and tertiary C–H alkane bonds were all achieved.

\[\text{Scheme 23} \]

The factors which effect the reactivity of nitrogen-centred aminyl radicals with OH, NH, and SH bonds have been studied with the activation energies for each process calculated under thermoneutral conditions.117 The reaction of adamantane derivatives with nitrogen dioxide and ozone has been reported to yield varying proportions of the N- and O-functionalized products, respectively (Scheme 23). Initial H-abstraction by the ‘NO₃ followed by trapping with NO₂ furnishes the observed products. Interestingly, strongly electron-withdrawing substituents (X) were found to lead to the O-functionalized products whereas weaker electron-withdrawing groups (X) favoured the N-functionalized compounds.118 The reaction between the ‘NO₃ and a number of aliphatic aldehydes has also been reported. The rate coefficients were determined and compared with those of the reaction between the same aldehydes and ‘OH.119 Monodiazaones have been shown to be good H-atom donors towards alkyl radicals with rates determined to be at least 3.2×10^6 M⁻¹ s⁻¹.120

Activation energies and rate constants for the H-abstraction reaction by H’ from simple aliphatic ketones in water has been calculated by EPR FID attenuation measurements.121

Halogen Abstraction

The design of an efficient chain reaction to facilitate the reduction of secondary alkyl iodides adjacent to electron-withdrawing groups has been accomplished by reaction
with dialauryl peroxide in cyclohexane. Abstraction of the iodide by the cyclohexyl radical produces relatively unstabilized electrophilic radicals which can abstract hydrogen atoms from the solvent and thus establish an efficient chain process. The rates of dechlorination of a range of chlorinated phenols by Fenton’s reagent has been found to be effected by the position of the chlorine atom relative to the phenoxy hydroxyl group. Hence dechlorination in the meta position was found to be faster than at the para position, which in turn was faster than at the ortho position. With trichlorophenols, steric hindrance proved important in deciding the relative rates of dechlorination.

The mechanisms and rate constants for the reaction of Cl- with HOCI, MeOCl, and C4H9OCl have been measured and shown to proceed primarily via Cl- abstraction pathways. The experimental activation energies and the temperature dependence of the rate constants of halogen abstraction from a variety of alkyl halides have been reported. For simple abstractions from R–X or H–X results indicated that the activation energies were proportional to the force constant of the C–X bond. The reaction of H- with alkyl iodides was investigated using flash-photolysis resonance fluorescence, with the results indicating that the major reaction pathway was I-abstraction with a minor contribution from I-substitution and H-abstraction reactions.

Halogenation

A new method for the direct homolytic iodination of alkanes has been reported by Minisci et al. While direct free radical iodination by iodine is not feasible owing to its large positive enthalpy, the new procedure takes advantage of the ease of H-abstraction from alkanes by perfluoroalkyl radicals (eq. 1) and the effective iodine abstraction by alkyl radicals from alkyl iodides (eq. 2) (Scheme 24). The regioselectivity of bromination by NBS of a range of methylated 3-methoxypyridazine derivatives has been predicted based upon the stability of the free radical intermediate by semiempirical calculations using the PM3 Hamiltonian. Excellent agreement with experimental results indicates that this may provide a good method to predict the bromination selectivity in novel heterocyclic analogues of the neurotransmitters GABA and glutamate. The effects of various solvents upon the concurrent chlorination of tetrachloroethene and 1,2-dichloroethane have been studied.

\[\text{R}_1^+ + \text{H-R} \rightarrow \text{R}_1^- \text{H} + \text{R}^- \quad (1) \]

\[\text{R}' + \text{I-R}_1^- \rightarrow \text{R}_1^+ + \text{R-H} \quad (2) \]
Addition Reactions

Addition to Alkenes/Alkynes

The addition reactions of carbon-centred radicals with alkenes and alkynes continue to be of great importance in both synthetic organic and polymer chemistry, as do methods for determining the rate constants of these important reactions. The use of time-resolved frequency modulation spectroscopy in the measurement of the rate of gas-phase reactions has been described.\(^{130}\) By way of illustration of the technique, the reaction of \(\cdot\text{CN}\) with ethene was studied and the rate \([(2.5 \pm 0.2) \times 10^{-10} \ \text{cm}^3 \ \text{s}^{-1}]\) found to be in good agreement with other published data.\(^{130}\) The importance of polar effects in the addition of radicals to alkenes has been demonstrated by the measurement of the relative reactivities for the addition of trichloromethyl radicals to styrene, \(\alpha, \beta, \beta\)-trifluorostyrene, and phenylacetylene, respectively.\(^{131}\) The reactions of the 1-adamantyl radical with a range of electron-deficient alkenes and protonated heteroaromatic bases have been found to be much faster \((10^2–10^3)\) than that of the related \(t\)-butyl radical.\(^{132}\) This interesting effect was explained as due to the increased nucleophilic character of the 1-adamantyl radical with respect to the \(t\)-butyl radical. Some controversial aspects of the Gif reaction mechanism, such as why 1-adamantyl radicals can be trapped by pyridinium ions whereas 2-adamantyl radicals can not, can now be explained as due to the observed large difference in reactivity of these two types of radicals with protonated heteroaromatic bases. In other work the relative rates of addition of the \(t\)-butyl radical to a variety of 2-substituted allyl chlorides have been measured with the correlation of \(\log k/k_0\) vs. \(\sigma_m\) giving a \(\rho\) value of 3.59.\(^{133}\)

Benzenethiols have been reported to add to \(\alpha\)-azidostyrene (62) to give \(\beta\)-sulfonylated imines via the intermediacy of 2-sulfanyliminyl radicals (63) produced from sulfanyl radical attack at the \(\beta\)-carbon of the styrene followed by nitrogen extrusion (Scheme 25).\(^{134}\) Allyl sulfones (64) containing electron-withdrawing C(2) substituents (X) undergo addition to monosubstituted alkenes in good yield (Scheme 26). Both electron-donating and -withdrawing substituents are tolerated in the alkene partner.\(^{135}\) The addition of the phenyl radical to 1,1-diphenylethylene\(^{136}\) and vinyl radicals to acetylene and deuteriated acetylene\(^{137}\) have both been studied by laser photolysis techniques.

![Scheme 25](image)

SCHEME 25

![Scheme 26](image)

SCHEME 26
A number of studies on the addition of fluorinated radicals to unsaturated carbon–carbon bonds as well as conventional radical addition to fluorinated radical acceptors have appeared.138 For example, the relative rates of addition of the CF$_3$ to 14 \textit{para}-substituted phenylacetylenes have been studied in cyclohexane at 55 °C. The study concluded that a spin effect was operating in the transition state for the reaction.138 The regioselectivity of addition of Me$^\cdot$ and CF$_3$ radicals to alkenes has been rationalized using local reactivity indices obtained from density functional theory.139 The reaction of difluorinated ethers with amino acid-derived radicals has been reported to give novel \textit{gem}-difluoromethylene-linked analogues of serine-derived glycopeptides.140 In addition the rate coefficients for the reaction of 1NO$_3$ with 3-fluoropropene have been measured using laser-induced fluorescence. The results were used to estimate the half-life of 3-fluoropropene in the troposphere at typical night and day concentrations of 1NO$_3$ and 1OH.141 The major products in the halogen-initiated oxidation of trichloroethylene have been determined (CHXClCOCl, CHClO, and CCl$_2$O) and the rate coefficients for the reaction determined.142 The design and use of new initiators to mediate addition reactions has attracted some attention with new peroxide62,63 and azo-derived64 initiators being described. The additions of 2-cyanoisopropyl radicals (derived from homolysis of the common radical initiator AIBN) to a range of alkynes have been examined.143 The reactions were regioselective with alkynes bearing electron-withdrawing substituents but failed with hindered or alkylacetylenes. The same radical addition to C$_{60}$ has been studied by EPR. Two different types of adduct radicals were proposed.144 The addition of silanes across alkenes has been investigated both experimentally145 and theoretically.146 The effect of optically active thiol catalysts to catalyse radical hydrosilylation (polarity reversal catalysis) has been studied. The use of 2,3,4,6-tetra-O-acetyl-thio-β-D-glucopyranose as the chiral thiol (used to reduce the intermediate carbon-based radicals) furnished the hydrosilylated alkenes in low to moderate enantiomeric excesses.145 In addition to this work a theoretical study on the reactions of SiH$_3$ with ethene and propene has been undertaken using PMP2(6–31G*) and QCISD(T)(6–31G**) methods. Results indicated that the alkene-addition pathway is favoured over the alternative possible mode of reaction (H-abstraction). This is contrary to that previously suggested for the reaction of SiH$_3$ with propene.146 Other research in the area of addition reactions onto unsaturated carbon–carbon bonds has included measurement of the rate coefficients for the addition of 1NO$_3$ to chloro- and trichloro-ethene,147 relative rate measurement for 1NO$_3$ addition to isoprene,148 TF-μSR-measured muonium addition to vinyl aromatics12 and EPR studied addition of radical (65) to alkenes.150 In this latter study a linear dependence of the rate constant of addition with the donor/acceptor properties of the alkene partner was highlighted.

![Structure](image_url)
3 Radical Reactions: Part 1

Addition to Oxygen-containing Multiple Bonds

Ab initio studies (UHF/6–31G*) have been used to investigate the 5-*endo* cyclization of various substituted radicals including the 5-oxapenta-2,4-dienoyl radical (66). The results show that the 5-*endo* cyclization of (66) is both kinetically and thermodynamically favoured. Three major features of the reaction were recognized: (1) the geometry of the lowest energy conformer has the radical set favourably for cyclization; (2) owing to delocalization the reaction is best considered as a carbonyl oxygen radical (67) addition to a ketene, not an acyl radical (66) cyclization on to a carbonyl group; and (3) the cyclized carbon radical helps to stabilize the transition state as it acts like a delocalized cyclopentadienyl radical (68).

![Scheme 27](image)

Addition to Nitrogen-containing Multiple Bonds

The rate constants for the 5-*exo* and 6-*exo* cyclization of alkyl radicals on to imines and oxime ethers have been reported, as have the cyclizations of alkyl radicals on to azides and hydrazones.

Addition to Thiacarbonyl Bonds

The unexpected formation of the methoxy ether (69b) in the reaction of lanosterol 5-methyl dithiocarbonate (69a) with Bu3SnH has been reported. Studies using Bu3SnD indicated that a hydrogen within the methoxy group originated from the organostannane reagent. A possible mechanism (Scheme 28) was postulated to explain these observations.

Photolysis of PTOC imidate esters generated amidyl radicals which can undergo intramolecular homolytic substitution reactions (Scheme 29). The ratio of *exo* to *endo* products observed for the reaction of each of the thiacarbonylimidazolide diastereomers (70) and (71) with Bu3SnH was found to be different indicating that the intermediate radical (72) produced in each case was generated and reacted in a different conformation, respectively (Scheme 30).

Homolytic Substitution

Aromatic Substitution

The effects of different substituents (R) (both steric and electronic) on the 1,5-*ipso* substitution reactions of radicals of the type (73) to give (74) and finally biaryls (75) after loss of SO2 have been examined (Scheme 31). The results indicated that the introduction of either an electron-donating or -releasing group in the *ortho* position
a; $X = \text{OC(S)SMe}$
b; $X = \text{OMe}$

Scheme 28

Scheme 29

Scheme 30
facilitated the reaction. This approach to furnishing ortho-functionalised biaryl systems complements other alternative metal-mediated coupling approaches. In addition to the substituent effects mentioned above, the nature and length of the tethers upon the success or otherwise of the reactions was investigated. For benzylic sulfonates and sulfonamides the [1,7]-addition pathway was favoured instead of the [1,6]-ipso substitution pathway. The formation of nitrothiazoles by reaction of 2-nitropropane anions and 2-methyl-4-chloromethyl-5-nitrothiazole has been determined to proceed via the S_{RN1} mechanism as has the photo-stimulated reactions of iodobenzene and iodonaphthalene with the anions of N-acetylthiomorpholine. In competition experiments it was discovered that the acetophenone enolate was 1.4 times more reactive than N-acetylthiomorpholine in the above reaction.

The rate of fluorine displacement from fluorotoluenes by H-atoms has been measured in single-pulse shock tubes at 988–114 K. The addition of $'$CF$_3$ to C$_6$F$_5$Cl has been studied. The intermediate adduct radical (CF$_3$C$_6$F$_5$Cl)$'$ was shown to react with an additional $'$CF$_3$ to give CF$_3$Cl and C$_6$F$_5$CF$_3$. A range of fluorinated biphenyls can be produced by the reaction of pentafluorobenzene radicals with both electron-rich and -poor aromatics. The isomeric ratios of biphenyls produced indicated an efficient homolytic chain process.

S_{H2} and Related Reactions

Acyl radicals derived from phenylselenyl esters (76) can undergo S_{H2} reactions onto sulfides to form γ-thiolactones (Scheme 32). The rate of reaction was found to be approximately 7.5×10^3 s$^{-1}$ at 25 $^\circ$C which is reasonably fast with respect to decarboxylation. Acyl radicals can be generated from thiol esters under non-reducing conditions by reaction with I$_2$ and diazonium salts. The generated aromatic radicals undergo intramolecular homolytic substitution at sulfur with liberation of an acyl radical. After cyclization the intermediate alkyl radical undergoes trapping with iodine followed by elimination of HI. The reaction of bicyclo[1.1.1]pent-1-yl radicals (77), generated from addition of alkyl radicals to the strained hydrocarbon [1.1.1]propellane, add to tricoordinate phosphonites in a free radical Arbusov reaction (Scheme 33). The 3-substituted bicyclo[1.1.1]pent-1-yl radicals (77) were found to have a greater propensity to undergo reactions than primary alkyl radicals and were closer in reactivity to phenyl radicals.
The mechanism of reduction of unsymmetrical alkyl sulfides with atomic hydrogen has been probed and is consistent with an $S_{\text{H}2}$ mechanism or a $9-S-3$ fragmentation. The kinetics of the reaction of F$^-$ with MeONO$_2$ has been determined in low-pressure flow systems. Results indicate that the initial step may be F atom addition to the N atom rather than H-abstraction and that the reaction itself leads to a clean source of MeO$^\cdot$.

Reactivity Effects

Polarity and Philicity

The rates of bromine atom abstraction by tris(trimethylsilyl)silyl radicals from a range of para-substituted benzyl bromides has indicated that the silyl radical is nucleophilic. In addition both the polar and spin-delocalization effects of the substituents play a role in the abstraction reaction with the latter effect greater than for H-atom abstractions. The perfluoroalkylation of aromatics and alkenes has been investigated using C$_4$F$_9$I as the source of $'C_4F_9$. Measurement of rate constants indicated that perfluoroalkyl radicals were 2–3 orders of magnitude more reactive than the corresponding alkyl radicals. This was attributed primarily to the reaction enthalpy and far less to the electrophilic nature of the radicals.

Stability of Radicals

EPR experiments on carbon-centred radicals with either α- or β-boronic ester substituents have been reported. While the α-substituted radicals were modestly thermodynamically stable, the β-substituted radicals underwent easy β-elimination. An EPR experiment on the photo-oxidation of phenolic compounds containing at least one free ortho position has indicated the formation of persistent secondary radicals derived from dimerization or polymerization from C–O coupling. The structure of the succinimidyl radical has been re-examined using density functional theory with a variety of basis sets. The electronic ground state was found to be of σ-symmetry allowing for facile β-scission. These conclusions were also predicted using MP2 but
complete active space (CAS) calculations predicted the π–N state to be of lowest energy.170

Stereoselectivity in Radical Reactions

Stereoselectivity in Cyclization

The use of Lewis acids in controlling the stereoselective outcome of radical cyclization reactions has been explored, in particular the effect of aluminium-based Lewis acids using low temperature Et$_3$B/\text{Bu}_3\text{SnH-initiated procedures.}171,172 For example, cyclization of propargyl ether (78) or allyl ether (79) in the presence of Lewis acid (80) can completely reverse the normal selectivity (Scheme 34).171 The effect of aluminium Lewis acids on the diastereoselectivity of 6-exo cyclization of unsaturated chiral menthol esters has been studied.172 Cyclization at low temperature in the presence of the Lewis acid MAD modified the de of the reaction from 31 to 98%.

![Scheme 34](image)

The diastereoselectivity in 5-exo cyclization of a range of chiral acyl radical equivalents derived from 1,3-dioxolanes and dioxanes has been investigated. Results indicate that selectivity was poor for radicals which cyclised via a twist-boat conformation but high when 1,3-dioan-2-yl radicals containing an imposed chair-like conformation were used.173 The 5-exo cyclizations of α-phenylsulfenyl radicals,
generated from chloro sulfides, on to ester-functionalized alkenes have been reported to give rise to cis isomers as the major products (Scheme 36). With alkyl-substituted alkenes the trans isomers were predominantly formed.174 In addition, α-sulfonyl and sulfinyl radicals also undergo 5-exo radical cyclizations mediated by Bu$_3$SnH. The chirality of the sulfoxide was found to have only moderate control of the stereoselectivity of the cyclization.40 Cyclization of the thio ether (81) furnishes the all-cis isomer (83) in 70% yield. The transition state (82) was postulated to explain the observed stereochemistry (Scheme 37).175

Stereoselectivity in Addition to Alkenes

Quantum mechanical calculations have shown that both nucleophilic and electrophilic alkyl radicals undergo addition to alkenes at tetrahedral trajectories. The effects of this mode of attack on asymmetric induction and reaction stereochemistry in addition reactions has been discussed.176 The use of chiral Lewis acids to mediate asymmetric radical additions to alkenes has been extensively investigated. Enantioselective alkylation of chiral Lewis acid-complexed α-oxazolidinone radicals has been reported to give products in up to 34% ee.177 Various Lewis acids prepared from AlMe$_3$ and chiral diols/diamides were screened. A model to explain the observed selectivity was postulated.177 By far the most popular ligands for chiral Lewis acids seem to be the bisoxazolines.177–180 A number of such MgI$_2$ complexes have been investigated in the radical alkylation of oxazolidinones (85).178 The best ee values were for the cyclopropyl analogue (84) with 97% at -78°C. However, the use of 30 mol% of LiI as catalyst also

\begin{equation}
\begin{align*}
\text{CO}_2\text{Et} & \quad \text{Bu}_3\text{SnH, AIBN} \\
\text{CO}_2\text{Et} & \quad \text{Ph} \\
1.9 : 1 &
\end{align*}
\end{equation}

\textbf{Scheme 36}

\begin{equation}
\begin{align*}
\text{O} \quad \text{CO}_2\text{Et} & \quad \text{Bu}_3\text{SnH, AIBN} \\
\text{O} \quad \text{EtO}_2\text{C} & \quad \text{Bu}_3\text{SnH, AIBN} \\
\text{H} \quad \text{SPh} & \quad \text{SPh} \\
\text{O} \quad \text{CO}_2\text{Et} &
\end{align*}
\end{equation}

\textbf{Scheme 37}
proceeded with a high ee of 94%, thus allowing efficient asymmetric additions at ambient temperature.178 The stereoselectivity of allyl-transfer reactions from allylsilanes and allylstannanes in the presence of chiral bisoxazoline ligands (86) has been investigated by Porter and co-workers.179,180 The configuration of the products were found to be dependent upon the nature of the Lewis acid, with MgI\textsubscript{2} and Zn(OTf)\textsubscript{2} giving opposite enantiomers. More interesting was the discovery that allylsilanes furnished better ees than with the corresponding allylstannanes. In fact, the addition of excess Me\textsubscript{3}SnBr caused the ee of the reactions to fall linearly indicating that allylsilanes are the allyl-transfer agents of choice.179 Good to average levels of stereoselectivity have been observed in the zinc Lewis acid-promoted allyl-transfer reactions of radical (87) with ligands (86). Correlation of the selectivity against the Taft steric parameters for the alkyl group (R) was observed.180

A potential method for the preparation of novel amino acids via the highly selective addition of radicals to the glyoxylic oxime derivative of Oppolzer’s camphor sultam (88) has been reported.181 Both Lewis acid and non-Lewis acid-mediated reaction conditions for the addition of alkyl radicals generated from alkyl iodides and Et\textsubscript{3}B/Bu\textsubscript{3}SnH were examined. A new chiral auxiliary based upon (R,R)-2,5-dihenylpyrrolidine has been used in the addition of phenylthyl radicals to unsaturated methacrylamides. The selectivity was found to be better than that reported for the structurally related 2,5-dimethylpyrrolidine derivative.182

(84) (85) (86) (87) (88) (89)

An investigation into the stereoselectivity of addition of radicals to cinnamyl-4-phenyloxazolidine-2-ones has shown that the regioselectivity of the process was dependent upon at least three factors, including the stability of the adduct radical,
electrophilicity of the adding radicals, and the method of their generation.183 For example, while addition of electrophilic 1CCl\textsubscript{3} to (89) at 80 °C gave only products arising from \textit{\alpha}-attack, addition of the nucleophilic 3Pr\textdagger gave a 2.3 : 1 ratio at 80 °C and 1 : 3 at 20 °C.

\textit{Stereoselectivity of Atom Transfer}\n
A quantitative study of the relative reactivities of piperazine-2,5-dienes (90) towards \textit{N}-bromosuccinimide reactions was determined by competition studies and indicated that the glycycl centres of piperazine-2,5-dienes are more reactive than \textit{\alpha}-substituted aminoacid centres.184 Radical deuteration of the \textit{syn}- and \textit{anti-\alpha}-selenyl-\textit{\beta}-silyl sulfoxides (91) lead to the \textit{syn,\textit{syn}} isomer products irrespective of the stereochemistry of the sulfinyl precursor (Scheme 38). In addition, the steric nature of the silyl group had little effect on the \textit{de}. The stereochemistry was rationalized using the Felkin–Ahn model.185 The stereochemistry of reduction of alkynes using unimolecular chain-transfer reactions (UMCT) has been reported with complementary alkene geometries being obtained from reduction of vinyl radicals generated by a 5-\textit{exo} cyclization of an alkyl radical onto an alkyne. The use of UMCT (92) gives the \textit{E}-isomer exclusively whereas (93) gives the \textit{Z}-isomer with reduction occurring away from the bulky silicon group (Scheme 39).186

\textit{Redox Reactions}\n
Manganese-promoted cyclizations have been reported by two groups. 4-\textit{Exo} radical cyclization of variously substituted enamides to \textit{\beta}-lactams has been promoted by MnIII(OAc)\textsubscript{3} (Scheme 40).187 The acetoacetyl-derived cyclization precursors (R = Me) reacted much faster than the \textit{\beta}-keto ester analogues (R = OMe). The formation of (94) from the reaction is primarily due to oxidation of the intermediate radical to the corresponding cation.187 Reaction of 2-haloaryl ethers and amines with Bu\textsubscript{3}MnLi or Bu\textsubscript{3}MnMgBr furnishes benzofuran or indoline derivatives, respectively. A mechanism involving intermediate aryl radical cyclization trapping by manganese followed by dehydromanganation was postulated.188 Recent studies on the tetrahydrofulvalene-mediated radical polar cross-over reactions of benzenediazonium salts have discounted the alternative totally ionic mechanism.189 \textit{Ipso} radical cyclization of \textit{N}-benzyl-substituted trichloroacetamides with Ni–AcOH occurs to give spirolactams. The yield of the reactions was found to increase with increasing steric bulk at the nitrogen (Scheme 41).190

The synthesis of mixed peroxides formed from \textit{t}-butyl hydroperoxide and carbon-centred radicals has been studied. The reactions were strongly effected by solvents as well as catalytic amounts of CuII/FeIII. The kinetic data suggest that the conditions for the Ingold–Fischer ‘persistent radical effect’ are fulfilled in these cases.191 The use of CuI/CuII redox couples in mediating ‘living’ radical polymerization continues to be of interest. The kinetics of atom-transfer radical polymerization (ATRP) of styrene with CuBr and bipyridine have been investigated. The polymer reactions were found to be first order with respect to monomer, initiator and CuBr concentration, with the optimum CuBr:Bipy ratio found to be 2 : 1.192 In related work using CuBr—\textit{N}-pentyl-2-
pyridylmethanimine ligands, the rate of ATRP of methyl methacrylate was found to be enhanced by the addition of substituted phenols, traditionally used as radical inhibitors. This provided evidence that the propagation of the polymerization reaction did not take place via a carbon-centred free radical casting doubt as to the true mechanism of ATRP.\(^\text{193}\)

Photo-induced H-abstraction of anthraquinone from xanthene has been studied using nuclear polarization-detected EPR and the structure of the resulting short-lived radical pair determined.\(^\text{194}\) The ‘retrodisproportionation’ reactions of a variety of styrenes with 9,10-dihydroanthracene (DHA), xanthene (XAN), and 9,10-dihydroacridine (DHAc) have been studied in order to determine if there was any evidence of the alternative hydride-transfer mechanism in competition with the proposed H-atom-transfer mechanism. No such evidence was found.\(^\text{195}\) The reaction between azulene and DHAC
has also been studied and gives two isomeric octahydroazulenes as well as naphthalene and tetralin as products. Kinetic studies, isotopic labelling, and semiempirical calculations all indicate a mechanism initiated by an H atom transfer step.196 The uncatalysed thermal hydrogen-transfer reactions above have recently been reviewed.197

Radical Ions

Anion Radicals

The radical anion (95), generated from photo-induced electron transfer of halogenated benzocycloalkanes, furnishes ring-expanded products (96) in addition to reduced species and dimers.198
Cation Radicals

The unexpected formation of the blue crystalline radical cation (97) from the reaction of triazinium salt (98) with tetracyanoethylene has been reported and the product identified by its EPR spectrum and by X-ray crystallography (Scheme 42).199 Carboxylic acids react with the photochemically produced excited state of N-t-\textalpha-phenylnitrone (PBN) to furnish acyloxy spin adducts RCOOPBN. The reaction was assumed to proceed via ET oxidation of PBN to give the PBN radical cation followed by reaction with RCO\textsubscript{2}H.200 The mechanism of the protodiazoniation of 4-nitrobenzenediazonium fluoroborate to nitrobenzene in DMF has been studied.201 Trapping experiments were consistent with kinetic isotope effects calculated for the DMF radical cation. The effect of the coupling of radicals with different sulfur radical cations in diazadithiafulvalenes has been investigated.202

![Scheme 42](image)

Peroxides, Peroxyl, and Hydroxyl Radicals

Peroxides

The reactions and decomposition of peroxides has been studied by a range of techniques including time-resolved Raman spectroscopy,203 CIDNP,204 and theoretical methods.205 The kinetics of pyrolysis of dimethyl, diethyl and di-t-butyl peroxides have been measured. The free energies of activation for the three diacyl peroxides were found to increase in the order listed above.206 The thermolysis of acetyl propionyl peroxide and the lifetimes of the intermediate radicals have been studied using CIDNP.204 A range of theoretical methods have been compared to ascertain which calculations are in best agreement with bond dissociative energies of a range of peroxides.205 The decomposition of t-butyl hydroperoxide in the presence of CoII 2-ethylhexanoate has been studied.207 Evidence was presented to indicate the intermediacy of a bridged dicobalt species in the catalytic cycle. This postulated mechanism differs substantially from the accepted Haber and Weiss cycle as no alkoxo radical is generated. The use of 1,1,3,3-tetramethylperoxy pivalate (99) has been
examined as an initiator in the polymerization of methyl methacrylate and styrene in the presence of the radical scavenger 1,1,3,3-tetramethyl-2,3-dihydro-1H-isouindol-2-yloxy.62 After initial homolysis of the initiator the main reactions of the resulting \textit{t}-ocysxly radicals (100) are unimolecular 1,5-H transfer to (101) and fragmentation to (102). These latter alkyl radicals undergo addition to monomers far faster than the parent radical (100).62,63

\begin{figure}
\centering
\includegraphics[width=\textwidth]{formulas.png}
\caption{Chemical structures of peroxyl radicals. (99) Peroxy radical \textit{t}-OCMe\textsubscript{3} (100) Peroxy radical MeOCMe\textsubscript{2} \textit{t}-OCMe\textsubscript{3} (101) Peroxy radical MeOCMe\textsubscript{2} \textit{t}-OCMe\textsubscript{3} (102) Peroxy radical OMeMeMeMe}
\end{figure}

\textit{Peroxyl Radicals}

The regiospecificity of peroxyl radical addition to (\textit{E})-retinoic acid has been studied in micelles. The major product was found to be the 5,6-epoxyretinoic acid suggesting initial addition at C(5) or C(6) yielding an endocyclic tertiary allylic or tertiary carbon centred radical, respectively. Elimination of an alkoxy radical then furnishes the observed epoxide. Computational studies were also carried out to gain insights into the mechanism of the process.208 Theoretical calculations have also been carried out to determine the possible mechanism for oxidation of the methoxy radical to formaldehyde. Results indicated that oxidation is likely to occur via the intermediate MeO\textsubscript{2} rather than by a straightforward H-abstraction reaction.209 The reactions of the triphenylmethyl radical,210 \textit{n}-pentyl radical211 and the acetyl radical212 with O\textsubscript{2} have been investigated. The latter reaction was studied at 298 K as a function of pressure using FTIR spectroscopy. The reaction of the triphenylmethyl radical with O\textsubscript{2} was found to proceed with a negative activation energy (\(-4.1 \text{ kcal mol}^{-1}\)). The rate constants for the addition of CF\textsubscript{3}O\textsubscript{2} to O(3P)213 and \textit{p}-phenylenediamine214 have been reported to be \((6.3 \pm 1) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\), \(2 \times 10^4 \text{ mol}^{-1} \text{ s}^{-1}\), respectively.

The self-recombination reactions of HO\textsubscript{2}*, CF\textsubscript{3}CFHO*, and CF\textsubscript{3}O* have been studied using pulse radiolysis/time-resolved UV absorption spectroscopy.215 The addition of the cumylperoxy radical to a range of alkyl-substituted biphenyls has been studied and the rate constants compared with reactions with related monosubstituted benzenes.216

The reaction of 2,2,6,6-tetramethylpiperidyl radical with O\textsubscript{2} has been studied using EPR at low temperature. Evidence indicates a possible reversible reaction with initial formation of the piperidylperoxyl radical followed by conversion to the aminoxyl...
radical. Kinetic studies on the oxidation of dimethyl ether (a possible alternative to diesel fuel) have been reported.

Hydroxyl Radical

The role and behaviour of organic nitrates and acetates in the troposphere have been studied by a number of groups. Relative rate coefficients for the reactions of methyl and ethyl nitrate with \(\cdot \)OH have been determined and compared with other literature data. The reactions of a variety of alkyl nitrates have been studied using pulsed laser photolysis and discharge-flow/resonance fluorescence. The latter work studied the reaction over the pressure range 1–20 Torr and temperature range 300–400 K and concluded that the rate constants were invariant with pressure but did increase with increasing temperature, suggesting an abstraction process. The temperature dependence of the reaction between \(\cdot \)OH and alkyl acetates (used as solvents, perfumes, and flavourings) has been studied over the temperature range 253–372 K.

There has been a lot of interest into the reactions of \(\cdot \)OH with fluorinated and chlorinated organic molecules. The atmospheric chemistry of hydrofluoroethers (HFEs), possible replacements to CFCs in numerous applications, has been evaluated. The reaction of \(\mathrm{C}_4\mathrm{F}_9\mathrm{OMe} \) (HFE-7100) with \(\cdot \)OH and the fate of the intermediate radicals \(\mathrm{C}_4\mathrm{F}_9\mathrm{OCH}_2\), \(\mathrm{C}_4\mathrm{F}_9\mathrm{OCH}_2\mathrm{O}_2 \), and \(\mathrm{C}_4\mathrm{F}_9\mathrm{OCH}_2 \) have been studied and an atmospheric lifetime of 5 years was determined for HFE-7100. Reactions of \(\cdot \)OH with \(\mathrm{MeCF}_2\mathrm{Cl} \), fluorinated alkenes, and \(\mathrm{CH}_2\mathrm{Cl}_2 \) have been reported. The last report allowed for a reanalysis of reaction values for the reaction of \(\cdot \)OH with various CFCs. The reaction-pathway dynamics of hydrogen abstraction from ethane and haloethanes by \(\cdot \)OH have been determined using vibrational TS theory augmented with multidimensional semiclassical tunnelling approximations.

The rates of reaction of \(\cdot \)OH with methane, deuterated methanes, cyclohexane, and 1-bromopropane have been measured and the atmospheric implication of the results discussed. The latter study assessed the global warming potential of the industrial solvent 1-bromopropane at 20, 100 and 500 years.

The reaction of a series of dimethylbenzaldehydes and trimethylphenols (constituents of wood smoke and tobacco smoke, respectively) with \(\cdot \)OH have been studied as well as with other aromatic molecules such as indene, fluorene, and 9,10-dihydroantracene, and atmospheric implications determined.

The rate constants for the reactions between \(\cdot \)OH and a range of ethers and hydroxy ethers have been reported at 298 K as well as those for reactions between dimethyl ether and methyl t-butyl ether over the range 295–750 K. Data from the former study show deviations from simple structure–activity relationships which were postulated to arise due to H-bonding in the reaction transition states. The atmospheric lifetime of methyl ethyl ether has been determined to be approximately 2 days. Theoretical studies on the H-abstraction from propan-2-ol (a model for deoxyribose) by \(\cdot \)OH have been reported using ab initio methods (MP2/6–31G*). The temperature dependence (233–272 K) of the rate coefficients for the reaction of \(\cdot \)OH with methyl, ethyl, n-propyl, n-butyl, and t-butyl formate has been measured and structure–activity
relationships discussed. Results indicated tropospheric lifetimes of 66.9, 13.6, 6.4, 3.3, and 15.5 days, respectively.237 Volatile siloxanes have shown promise as environmentally friendly alternatives to volatile organic solvents and lubricants. As a consequence, the rate constants for the reactions of a number of siloxanes with \textsc{`}OH have been determined.238 A number of unusual cyclic siloxane products were observed in the reactions with hexamethylene-siloxane, octamethyltrisiloxane, and decamethyltetrasiloxane.

Carbon monoxide has been used to scavenge \textsc{`}OH formed from the ozonolysis of alkenes. The CO\textsubscript{2} thus generated was detected by FTIR spectroscopy and the \textsc{`}OH yields for individual reactions were calculated.239 The significance of the \textsc{`}OH-induced intramolecular transformation of glutathione thyl radicals to \textsc{z}-aminoalkyl radicals has been discussed with respect to its biological implications.240 The kinetics and mechanism of the process indicated that it could be a significant pathway for the self-removal of glutathione thyl radicals \textit{in vivo}.

References

3 Radical Reactions: Part 1

CHAPTER 4

Radical Reactions: Part 2

A. P. DOBBS AND J. N. MARTIN

Chemistry Department, Open University, Milton Keynes

Structure and Stability 139
 Carbon-centred Radicals 139
 Miscellaneous Radicals 141
Nitroxides and Spin Trapping 141
Oxidation and Reduction 143
Electron-transfer Reactions 144
 Photo-induced Electron Transfers 144
 Other Electron Transfers 149
Radical Cations 151
Radical Anions 158
Biradicals 160
Pyrolysis and Thermolysis 164
Photolysis 167
Radiolysis 169
Autoxidation 171
References 171

Structure and Stability

Carbon-centred Radicals

The energetics of free radicals\(^1,2\) and estimation of their heats of formation by kinetic methods have been reviewed,\(^3\) along with the mechanism of magnetic isotope effects in radical reactions.\(^4\) Three-electron-bonded radicals (or \(\sigma^*\) radicals) are the subject of a review which details methods of preparation and detection as well as examples of homo- and hetero-nuclear \(\sigma^*\) radicals.\(^5\)

The homolytic bond dissociation energies (BDEs) of phenolic O—H bonds has been the subject of a computational study focusing on substituent effects by \textit{ab initio} and density functional theory (DFT) methods.\(^6\) Consistent overestimation of the BDEs by MP2 and MP4 calculations was associated with spin contamination in the reference UHF wave functions, whilst the DFT calculations (particularly the B3LYP/6–31G** level of theory) were relatively unaffected. \textit{Ab initio} calculations of the photosensitized C—C BDEs of \(\beta\)-phenethyl ethers has revealed a significant configurational
dependence. The CH$_3$CHOH radical has been identified and characterized by UV photodissociation spectroscopy from the reaction of fluorine atoms and ethanol. Dissociation of the amide dimers (1) generated the corresponding captodative π-aminocarbonyl radicals (2) which were characterized by electron spin resonance (ESR) spectroscopy (Scheme 1). Kinetic and equilibrium data for these C—C cleavage reactions were used to calculate radical stabilization energies (RSEs) which compare favourably with values from ab initio calculations.

\[
\begin{align*}
\text{R} & \quad \text{O} & \quad \text{NMe}_2 \\
\text{Me}_2\text{N} & \quad \text{O} & \quad \text{R} \\
\text{(1)} & \quad \Delta & \quad \text{(2)}
\end{align*}
\]

The stabilization of methyl radicals by geminal donor and acceptor substituents has been analysed by calculations at the MP2/6–31G* level which revealed a substantial stabilization for the combination of hydroxyl and carbonyl or amino and carbonyl substitution. The geometries, excitation energies and vibrational spectra of the excited electronic states of the methyl radical have also been calculated. An ab initio study of the decomposition of formaldehyde has compared the energetics of formation of H$_2$ and CO with a competing radical reaction pathway via H$^+$ and HCO, using Hartree–Fock (H–F) and MP2 calculations on geometry-optimized intermediates and products. Differences in the ab initio calculated heats of formation, BDEs and stabilization energies of vinyl and formyl halides have been associated with the relative C—X bond lengths. Molecular structures, vibrational frequencies, and enthalpies of formation were determined in an ab initio study of radicals formed from methyl and methylene chlorides and fluorides. A new theoretical study suggested that triarylvinylic radicals are linear or an average linear structure by rapid E–Z interconversion. The bent form was the minimum energy structure for a number of vinyl radicals bearing σ-type substituents, whereas π-type substituted radicals preferred the linear structure.

Azacyclohexatriene-2-ylidene (3), the 2-isomer of pyridine, has been generated by one-electron oxidation of the corresponding radical cation in neutralization–re-ionization mass spectrometry. It was determined by ab initio H–F calculations that the charge polarization of the radical formed by H-abstraction from pyrazine can be

\[
\begin{align*}
\text{H} & \quad \text{N} \\
\text{Ph} & \quad \text{Ar} \\
\text{(3)} & \quad \text{(4)}
\end{align*}
\]
relatively easily deformed by an external electrostatic field, whereas the acetone radical was relatively unaffected.18

Miscellaneous Radicals

A room-temperature-stable 1,3-diphosphaallyl radical (4) has been isolated and characterized by mass spectrometry and ESR spectroscopy.19 A DFT study at the B3LYP and QCSID levels is reported for neutral sulfur radicals HS+ and HSO3 and the sulfur oxide radical anions, \(\tilde{\text{S}}\text{O}_x \) \((x = 2-4)\).20 There is close agreement with experimental data for geometries and electron affinities but calculated ESR hyperfine coupling constants (HFCs) show significant deviation. It was found that the exchange of a hydrogen atom for NH2 on aniline or amide nitrogens to give the hydrazine or hydrazide respectively has a significant N—H bond weakening effect towards homolysis, but a negligible effect on the acidity.21 Fourier transform ESR spectroscopy has been used to determine the sign of the exchange interaction (and thus the ferro- or antiferro-magnetic nature) of many radical ion pairs. Interestingly, addition of the Lewis acid BF3 to the DABCO+ radical and 4,4-dimethoxybenzophenone radical anion results in a change of the interaction (\(J \)) sign from positive to negative, indicating a change to ferromagnetic interaction (although the magnitude of \(J \) was not evaluated). No other Lewis acids are investigated, but the formation of the R+ BF3 adduct is confirmed by laser flash photolysis.22

Nitroxides and Spin Trapping

Under photo-stimulation, isoindolyloxyl radical (5) abstracts primary, secondary, or tertiary hydrogens from unactivated hydrocarbons including cyclohexane, isobutane, or \(n \)-butane (Scheme 1).23 The nitroxide (5) traps the resultant carbon-centred radical (R’) and so afford the \(N \)-alkoxyisoindoles (6). Blank photolysis experiments with no added hydrocarbon have shown some unprecedented \(\beta \)-fragmentation of (5) to afford the nitrone (7). A number of \(C^{60} \) nitroxide derivatives have been synthesized and characterized by ESR spectroscopy which show features common to nitroxide radicals.24 Reaction of nitroxide and thionitroxide radicals with thiol radicals have been observed, from which sulfinyl, sulfonyl, and sulfonoyloxy radicals were generated.25 The diisopropyl nitroxide radical was generated in the reaction of lithium diisopropylamide with \(\alpha \)-fluoroacetate esters.26

![Scheme 1](image-url)
A new 15N-labelled imidazole N-oxide spin trap has been synthesized and successfully trapped a number of oxygen- and carbon-centred as well as thyl and sulfite-derived radicals. The superoxide anion (O_2^-) was reacted with 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) and the resultant adduct was found to be sufficiently stable for detection by EPR. The iminyl radicals formed by H abstraction by t-butoxyl radicals from the N-substituted benzylidene amines were trapped with 2-methyl-2-nitroso propane and their ESR spectra recorded. The absolute rate constant for these abstractions were calculated on the basis of competitive experiments with addition of t-butoxy radicals to the spin trap. Two methods of synthesizing fluorinated spin adducts from nitrones have been reported. The reaction of N-t-butyl-α-phenyl nitrone (PBN) with XeF$_2$ proceeds via initial formation of the nitrone radical cation followed by reaction with F^- (‘inverted spin trapping’) to afford the α-fluoro nitroxide (8). The reaction of DMPO with XeF$_2$ which affords only the known α,α-difluoro nitroxide (9) and α-difluorination is the only observed product of the reaction of PBN with AgF$_2$. The α-monofluoro nitroxide (8) was also formed by reaction with a sulfonamide fluorinating agent (10) and it is believed to proceed by the Forrester–Hepburn mechanism via the hydroxylamine. These workers also proposed this mechanism for the formation of spin adducts in the acid-catalysed thermal reaction between PBN and trichloroacetonitrile. The spin adducts formed between heteroaromatic bases and DMPO or PBN under oxidizing conditions have been studied by EPR. The adducts form by the Forrester–Hepburn mechanism, the oxidants being too weak to initiate the necessary electron transfer of the competing radical cation-mediated pathway. Phosphorus-centred radicals were generated by the reaction of dibenzoyl peroxide with organophosphorus compounds and were trapped by PBN or DMPO. The ESR hyperfine coupling constants of the spin adducts were used in a conformational analysis.

Radical cations of PBN and derivatives were generated photolytically and identified from their ESR spectra. The radical cations of PBN, DMPO, and 3,3,5,5-tetramethylpyrroline 1-oxide (TMPO) spin traps were detected by EPR spectroscopy after exposure of dilute solutions to ionizing radiation in dry CFCl$_3$ at 77 K. The same radical cations were detected using matrices containing water and on melting formed the HO$^+$ radical adducts.

An investigation into the initiation mechanism of copolymerization of ethyl vinyl ether and acrylonitrile by t-butoxyl radicals has shown that the reaction between the two monomers competes successfully with radical trapping by the nitroxide radical trap (5). The t-butoxyl radicals react 3–6 times faster with ethyl vinyl ether than acrylonitrile; the authors proposed that this is due to selective interaction of one monomer with the radical species rather than a solvent polarity effect.
Oxidation and Reduction

A review presents the generation of radicals by one-electron oxidation with metallic oxidants and their application to C—C bond formation.38 Three articles discuss oxidation by radical mechanisms, including the role of radicals in the chain propagation of hydrocarbon oxidation,39 hydrocarbon oxidation by peroxyl radicals,40 and the mechanisms of chain termination in the oxidation of a number of organic compounds, including hydrocarbons and alcohols.41 The oxidation of primary and secondary alcohols using oxoammonium salts [e.g. (11) derived from nitroxy radical (12); (Scheme 2)] is covered in a review, which begins with the first publication of this reaction from 1965.42 A variety of methods in organic and aqueous media is discussed and the review includes mechanistic studies and experimental procedures.

\[\begin{array}{c}
\text{R}^1 \text{R}^2 \\
\text{N} \\
\text{O}^+ \\
(12) \\
\end{array} \quad \begin{array}{c}
\text{R}^1 \text{R}^2 \\
\text{N} \\
\text{O} \\
(11) \\
\end{array} \]

\[\begin{array}{c}
\text{[O]} \\
\text{[H]} \\
\end{array} \]

\text{SCHEME 2}

\[\begin{array}{c}
\text{(14)} \\
\end{array} \quad \begin{array}{c}
\text{(13)} \\
\end{array} \quad \begin{array}{c}
\text{(15)} \\
\end{array} \]

\text{SCHEME 3}

The epoxidation of alkenes and hydroxylation of alkanes by dioxiranes [e.g. DMDO (13)] has been the subject of a detailed mechanistic investigation.43 The study concludes that, provided the oxidant is handled with care to avoid conditions which trigger its decomposition, neither reaction mechanism involves radical participation. These results support reaction via the spirocyclic transition state (14) rather than the originally proposed biradical transition state (15) (Scheme 3). A structure–activity study reports rate constants of the gas-phase epoxidation of 17 alkenes with five peroxo radicals.44 Elsewhere, the temperature dependence of rate constants for the reaction of oxygen atoms with four alkenes is described.45 An \textit{ab initio} study of the singlet oxygen reactions of alkenes, enol ethers, and enamines suggest only alkenes react via a radical mechanism, in which hydroperoxides, dioxetanes, and other alkenes are formed from a biradical intermediate.46 Oxidation of nitrosobenzene by NO\textsubscript{2} has been re-examined and found to occur via a radical mechanism, in which an oxygen atom is added to the nitroso nitrogen.47 This unstable aminoxyl radical decomposes to the corresponding nitrobenzene and NO.
The kinetics of the addition reaction of the allylic isobutenyl radical with molecular oxygen have been analysed by computational methods (MOPAC-PM3 and *ab initio*) according to quantum Rice–Ramsperger–Kassel (QRRK) theory. Predictions were in good agreement with experimental data. The antioxidant butylated hydroxytoluene (BHT) was found to react slowly with singlet oxygen and a number of radical species in a study using time-resolved luminescence and pulse radiolysis. The 2-thiohydantoins (16) and related structures were found only to be weak antioxidants towards scavenging hydroxyl radicals. The oxidation of caffeine (17) by peroxodisulfate and hydroxyl radicals was studied by EPR spectroscopy and HPLC analysis which revealed 1,3,7-trimethyluric acid (18) as the major product in each case via a C(8)—OH radical intermediate (19).

![Chemical structures](image)

The photo-oxidation of *n*-butane has been modelled by *ab initio* and DFT computational methods, in which the key role of 1- and 2-butoxyl radicals was confirmed. These radicals, formed from the reaction of the corresponding butyl radicals with molecular oxygen, account for the formation of the major oxidation products including hydrocarbons, peroxides, aldehydes, and peroxycarboxylic acids. The differing behaviour of *n*-pentane and cyclopentane towards autoignition at 873 K has been found to depend on the relative concentrations of resonance-stabilized radicals in the reaction medium. The manganese-mediated oxidation of dihydroanthracene to anthracene has been reported via hydrogen atom abstraction. The oxidation reactions of hydrocarbon radicals and their OH adducts are reported.

The corrinoid-mediated reduction of polyhaloethenes has been the subject of a recent study, which reports reaction via homolytic C–halogen bond fission. The elimination of a further halogen radical affords haloalkynes, which lead to acetylene itself. The electron transfer-induced reductive cleavage of alkyl phenyl ethers with lithium naphthalenide has been re-examined in a study which showed that it is possible to reverse regioselectivity of the cleavage (i.e. ArOR to ArH or ArOH) by introduction of a positive charge adjacent to the alkyl ether bond. A radical intermediate has been detected by ESR spectroscopy in the reduction of imines to amines with formic acid which infers reacts takes place via Lukasiewicz’s mechanism.

Electron-transfer Reactions

Photo-induced Electron Transfers

The catalytic effect of acid or metal ions on the thermal or photo-induced electron-transfer reactions has been reviewed.
A novel synthesis of 5,6-dihydro-4H-1,2-oxazines (20) is presented via the photo-induced cyclization of \(\gamma,\delta \)-unsaturated oximes (21); see Scheme 4. Irradiation of (21) in the presence of 9,10-dicyanoanthracene (DCA) led to the heterocycle (20) only. The proposed mechanism proceeds via the radical cation (22), generated by single-electron transfer (SET) from the oxime (21) to the excited sensitizer (DCA. Cyclization of (22) affords the oxazine (20) after proton transfer to the DCA radical anion (DCA\(^-\)) and H abstraction.\(^{61}\)

\[
\begin{array}{c}
\text{Ph} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\text{NOH}
\end{array} \\
(21)
\]

\[
\begin{array}{c}
\text{Ph} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
DCA \\
DCA^+ \\
\text{O} \\
\text{N}
\end{array}
\]

\[
\begin{array}{c}
\text{Ph} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
DCA^+ \\
DCA \\
\text{H} \\
\text{N}
\end{array}
\]

\[
\begin{array}{c}
\text{Ph} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\text{O} \\
\text{N}
\end{array} \\
(20)
\]

\[
\begin{array}{c}
\text{Ph} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\text{O} \\
\text{N}
\end{array} \\
\text{DCA} \\
\text{DCAH} \\
\text{DCA}^- \\
\text{DCA}^+
\]

\[
\begin{array}{c}
\text{Ph} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\text{O} \\
\text{N}
\end{array} \\
(20)
\]

Scheme 4

Irradiation of benzilates [ArC(OH)CO\(_2\)] or aryl acetates (ArCH\(_2\)CO\(_2\)) with methyl viologen (MV\(^{2+}\)) at 366 nm was examined by femtosecond time-resolved spectroscopy.\(^{62}\) The transient photo-generated radical pairs (MV\(^{+}\), RCO\(_2\)) undergo electron transfer to regenerate the original ion pair or, in a competing process, the acyloxy radical (RCO\(_2\)) undergoes rapid decarboxylation (10\(^{-9}\)–10\(^{-15}\) s).

The photo-induced electron transfer of 1,4-bis(methylene)cyclohexane in acetonitrile–methanol solution with 1,4-dicyanobenzene (DCB) affords two products, both consistent with nucleophilic attack on the radical cation followed by reduction and protonation or by combination with DCB\(^-\)).\(^{63}\) In the absence of a nucleophile, the product mixture is highly complex, as is the case under electro-oxidative conditions. Under UV irradiation, trans-stilbene undergoes dimerization and oxygenation (to benzaldehyde) by a single-electron mechanism in the presence of a sensitizer such as 2,4,6-triphenylpyrriylum tetrafluoroborate (TPT).\(^{64}\) This reaction was found to yield a similar product mixture with the sulfur analogue of TPT and their relative merits as well as electrochemical and photophysical properties are discussed.

The selective two-electron reduction of C\(_{60}\) to C\(_{60}\)H\(_2\) has been achieved by photo-induced electron transfer in benzonitrile–TFA solution with 10-methyl-9,10-dihydooracridine (AcrH\(_2\)).\(^{65}\) The proposed mechanism begins with electron transfer from AcrH\(_2\) to C\(_{60}\) to afford the radical ion pair (C\(_{60}\)^-\(^-\), AcrH\(_2\)^2\(^+\)). The strongly acidic AcrH\(_2\)^2\(^+\) species protonates C\(_{60}\)^-\(^-\) to afford the C\(_{60}\)H\(^+\) radical which is rapidly converted into the dihydrofullerene (C\(_{60}\)H\(_2\)) by electron transfer from AcrH\(^-\) in the presence of TFA. The
fullerene radical anion (C\textsubscript{60}⁻), dianion (C\textsubscript{60}2⁻) and radical trianion (C\textsubscript{60}3⁻) were generated from C\textsubscript{60} using the radical anion of naphthalene as an electron-transfer reductant.66 The dianion was reacted with alkyl halides to yield the dialkyl fullerene via the radical anion (R\textsubscript{2}C\textsubscript{60}+).

![Diagram of reactions](image)

The reported photo-reaction of \(\alpha,\beta\)-epoxy ketone (23) with 1,4-diazabicyclo[2.2.2]octane (DABCO) gave exclusively the \(\beta\)-diketone (24) and no trace of the related \(\beta\)-hydroxy ketone (25).67 The authors claim the strong dependence of the product ratio on the nature of the solvent and amine reagent suggests that the diketone is formed via the radical cation-assisted \(\beta\)-H abstraction from the ring-opened epoxy ketone radical cation. Information from this study was applied to the optimization of the conversion of \(\alpha,\beta\)-epoxy ketones to the analogous \(\beta\)-hydroxy ketones with samarium diiodide. The photo-stimulated electron-transfer Cope rearrangement of (\(E,E\))\textsubscript{26}-bis(4-methoxyphenyl)octa-1,5-dienes (26) with DCA afforded quantitatively the racemic hexadienes (27) by a kinetically controlled reaction, via the biradicals (28) (Scheme 5).68

The photo-reactions of a number of organosilanes have been reported. The photo-induced electron transfer of dibenzo-7-silabicyclo[2.2.1]hepta-2,5-diene (29) with TPT leads to difluoromethylsilane (F\(_2\)SiR\(_2\), \(R = \text{mesityl}\)).69 In the proposed mechanism, an Si—C bond of the bridged structure is cleaved by BF\(_4\)− to afford a radical species, which fragments to neutral anthracene and FSiR\(_2\). This fluorosilyl radical may undergo further single-electron oxidation to the silyl cation and reaction with BF\(_4\)− affords F\(_2\)SiR\(_2\). Elsewhere, photo-induced silylène-transfer reactions have been studied with cyclic organosilanes and phenanthraquinone (PQ) in which (30) was formed from dodecamethylocyclohexasilane via a radical intermediate.70

The reaction of CO\(_2\) with phenol has been studied using a number of photo-catalysts. It was found that 2-hydroxybenzoic acid and catechol were the main products and some selectivity was achieved by judicious choice of the photo-catalyst.71

![Scheme 5](image)
A paper reports the photo-inductive reaction of di- and tri-naphthyl phosphates in the presence of sensitized DCA to afford 1,1-binaphthyl (31). No reaction was observed with mono-1-naphthyl or di- and tri-phenyl phosphate esters.\(^\text{72}\)

The irradiation of 2-morpholino-2,3-diphenylcyclopropanol (32) in the presence of DCA or TPT and triplet oxygen afforded the β-amino enone (33), whereas the 1,3-diphenyl isomer of (32) afforded the α-phenyl-substituted product. In the proposed mechanism, both products arise via the radical cation of (32) before a ring-opening reaction with $^{3}\text{O}_2$ in which the C—C bond which breaks is determined by the position of the relative positions of the phenyl groups.\(^\text{73}\) The photo-stimulated electron-transfer reaction of 7-(spiracyclop propane)quadricyclane (34) with methanol produces the radical cation (34$^{+*}$) which undergoes stereo- and regio-specific attack on one of the trisubstituted cyclopropane rings (Scheme 6). A subsequent cycloproylcarbinyl to

\[\text{Scheme 6} \]
butenyl rearrangement affords (35), which gives (36) by H abstraction and cyclopropyl ring opening, and (37) via a second electron-transfer reaction. This conversion is supported by the observation that prolonged irradiation of a mixture depletes (36) in favour of (37).74 The photo-induced rearrangement of (1R,3S)-cis-chrysanthemol (38) to the dihydropyran (39) occurs with significant retention of configuration which is rationalized by unprecedented vinylcyclopropane reaction via a radical cation intermediate in a mechanism strongly influenced by ring strain and its avoidance.75 Nucleophilic attack of the alcohol moiety on the cationic radical precipitates ejection of an isopropyl radical in an apparent S_N2° reaction to afford the cyclic ether (39) after radical capture with DCB.

\[
\text{(38)}
\]

\[
\text{(39)}
\]

Photo-stimulated reactions of neopentyl iodide with several carbanionic nucleophiles have been studied in which inhibition experiments with the TEMPO radical trap suggest the reaction occurs via an S_{RN1} mechanism.76 Comparison of 22 nucleophiles in their S_{RN1} reactions with iodobenzene by Fe(II)- and photo-induction has revealed that both are enhanced by high electron-donation ability of the nucleophile. The radical anion PhI$^-$ is a key intermediate.77 The SET reactions of perfluoroalkyl iodides have been reviewed.78 Flash photolysis of H$_2$O$_2$ was used to generate HO$^-$ and O$^-$ radicals which were reacted with α,\,α,\,α-trifluorotoluene (TFT) and 4-fluorotoluene (4FT) and the rate constants calculated.79 The diminished reactivity of TFT towards HO$^-$ or O$^-$ with respect to toluene or benzene was consistent with radical addition to the aromatic ring, whilst the reactivity of 4FT was of the same order as electron-deficient tolenes, which favour H abstraction from the aliphatic side-chain.

A number of electrocyclic reactions under PET conditions have been reported. In this way, N-benzyl-2,3-diphenylaziridine (40) underwent a 3 + 2-cycloaddition with alkene and alkyne dipolarophiles to afford substituted pyrrole cycloadducts (41) via the radical cation intermediate (42); see Scheme 7.80 Elsewhere, novel aryllallenenes have been used as dienophiles in a radical cation-catalysed Diels–Alder cycloaddition reaction with 1,2,3,4,5-pentafluoromethylcyclopentadiene, which often occurred with peri-, chemo-, facial- and stereo-selectivity.81

\[
\text{Scheme 7}
\]
Other electron transfers

A review has focused on differentiation between polar and SET mechanisms through kinetic analysis. In two separate reviews, the effects of solute–solvent interactions on electron-transfer reactions have been described. A review of the behaviour of radical cations in liquid hydrocarbons has given particular emphasis to those with high mobility. A paper presents selected studies in the formation of radicals by oxidation with manganese- or cerium-based reagents and their application to C—C bond formation by SET processes.

Marcus has introduced a model for S_N2 reactions of the ET type based on two interacting states which takes into account the relevant bond energies, standard electrode potentials, solvent contributions, and steric effects. The rate constant for intramolecular electron transfer between reduced and oxidized hydrazine units in the radical cation of the tetraazahexacyclotetradecane derivative (43) and its analogues has been determined by simulation of their variable temperature ESR spectra. The same researchers also reported their studies of the SET processes of other polycyclic dihydrazine systems.

![Diagram](43)

![Diagram](44)

The self-exchange electron-transfer (SEET) process, in which a radical is trapped by the parent molecule, has been studied using the intersecting-state model (ISM). Absolute rate constants of SEET for a number organic molecules from ISM show a significant improvement over classical Marcus theory in the ability to predict experimental SEET values. A combination of Marcus theory and the Rips and Jortner approach was applied to the estimation of the amount of charge transferred in the intramolecular ET reactions of isodisubstituted aromatic compounds.

The electron-transfer reactions of a number of organosulfur compounds have been reported. Amongst these, cumyl phenyl sulfide was reduced by aromatic radical anions to form mainly bicumyl rather than cumyllithium, contrary to an earlier report. The proposed mechanism invokes SET from cumyllithium to the disulfide substrate to give thiophenoxide and two cumyl radicals which couple to form the product. In accordance with previous findings, the mechanism of addition to the vinyl double bond of aryl vinyl sulfides, ethers, and selenides has been shown to occur via electrophilic addition rather than radical cation-mediated electron transfer. The rate constants for the addition reactions correlated more closely with the Hammett σ values (electrophilic) than the Brown σ^+ values (electron transfer) and were supported by \textit{ab initio} SCF MO calculations. This agrees with the generalization that, for a σ^+ correlation, there must be a direct resonance interaction between a \textit{para} resonance electron-donating group and a positively charged reaction site. The radical cation of azinothiazoline (44) reacts with...
phenols with rate constants unrelated to the structure of the phenol, by an initial rapid electron transfer to form the phenoxy radicals (ArO·) before self-combination or reaction with further (44⁺). 99 Other examples of nucleophilic addition to radicals include the products isolated from the reaction between Grignard reagents and thiacarbonyl compounds 100 or benzoquinone 101 as well as Reformatsky reagents and 1,1-dicyanoalkenes. 102 In each case, there are clear indications of reaction via a SET process. The treatment of arylamine (45) with cyclohexyllithium affords the expected product of nucleophilic addition to the C of the imine C=N bond, along with a number of minor by-products. Studies with t-butyllithium have shown that other imine substrates may undergo SET reactions and conjugate substitution in the aryl ring, giving rise to rearranged and oxidized products, including dimers and 4 + 2-cycloadducts. 103 A study of the utility of spirocyclopropyl radical probes (46) and (47) concludes that they can be highly useful to determine the presence of SET processes in polar, aprotic solvents but fail in protic media. 104

Many SET reactions involving alkyl and aryl halides have been studied. The reaction between LiAlH₄ (LAH) and alkyl halides has been re-examined after challenges suggested a cyclic intermediate in an S₉₂ mechanism rather than SET. 105, 106 Reaction of an alkyl iodide that cannot cyclize with LAH and LiAlD₄ (LAD) implicates reaction via a SET mechanism only. 106 The preparation of p-nitrobenzylphosphonic acids from the corresponding nitrobenzyl halides suggests a SET mechanism from product and radical-trapping studies. 107 A study of the alkaline hydrolysis of p-chloranil has the first evidence of an electron-transfer mechanism involving a radical anion intermediate from UV and ESR spectra. 108 Fourier transform ioncyclotron resonance spectrometry (FT-ICR) of the reaction of halomethanes with the atomic oxygen radical anion suggests the major reaction pathways are abstraction of H⁺ or H₂⁺ and nucleophilic substitution. 109 The reaction of CHBr₃, CCl₄, and CHCl₃ with 𝛼-cyanodiphenylmethide anion afforded dimer (48) by a SET mechanism, whereas CHCl₂ gave an S₉₂ product. 110 The competition between S₉₄₁ and S₉₂ mechanisms was investigated for the reaction of 𝛼-chloro-p-nitrophenylethane with a nitronate or thiocarbamate anion, and showed that both nucleophiles afford the products of each mechanistic pathway. 111
Calculated enthalpies (MP2/3–21G* and MP2/6–311G**) have shown that the gas-phase SET Cannizaro-type reaction between formaldehyde or benzaldehyde and their corresponding radical anions is unlikely to occur spontaneously.112 The reaction between \textit{O}-alkylated di- and tri-nitrophenylhydroxylamines and the 2,2-diphenyl-1-picrylhydrazyl radical has been re-investigated and, in accordance with the literature, the observed products arise via addition at the \textit{para} position of one of the two phenyl rings on the hydrazine moiety. The intermediacy of radical species is proposed through ESR spectroscopic evidence.113 The ozone-mediated reaction of bicumenes (49) with NO\textsubscript{2} results in almost exclusive substrate C—C homolysis over ring nitrations.114 The results are rationalized in terms of ET between NO\textsubscript{3} formed \textit{in situ} and the substrate to form the radical cation (49+) followed by benzylic C—C scission to afford a mixture of alkene, alcohol, or ketone products. The relevance of this mechanism to the Kyodai nitration is suggested. The failure of the Crigee mechanism for ozonation of alkenes to account for radical intermediates is highlighted in a paper which uses the linear correlation between rate constant and ionization potential data to suggest a SET mechanism which proceeds via a radical cationic intermediate.115

Heterocyclic substrates in SET processes have been widely studied, including the reactions of dihydronicotinamide,116 pyridine, and quinoline117 and also phenoxazine and phenothiazines.118 Phenothiazine has also been shown by ESR analysis to undergo an electron-transfer reaction with its radical cation with an appreciable 15N/14N isotope effect.119 The reaction of phenazine di-N-oxide radical cations with hydrocarbons shows evidence of non-radical processes.120

\section*{Radical Cations}

The mechanistic aspects of aromatic121 and alkene122 radical cation reactions have been reviewed. A second review article covers the structure and properties of hydrocarbon radical cations, as revealed by low-temperature ESR and IR spectroscopy.123 A review of the reactivity of trivalent phosphorus radical cations has appeared which discusses ionic and SET processes and their kinetics.124 The structure and reactivity of distonic radical cations have been reviewed, including experimental and calculated heats of formation, structures, reactivity, and mechanisms.122,125

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (1.5,0) -- (1.5,1.5) -- (0,1.5) -- (0,0);
\draw (2,0) -- (3.5,0) -- (3.5,1.5) -- (2,1.5) -- (2,0);
\draw (0,0) -- (0,1.5);
\draw (2,0) -- (2,1.5);
\draw (0.5,0.75) circle (0.25);
\node at (0.5,0.75) {S};
\node at (2.5,0.75) {S};
\node at (1,1.75) {X};
\node at (0,0) {X};
\node at (2,1.5) {X};
\end{tikzpicture}
\end{center}

(50)

X = H, Me, OMe, Cl, NO\textsubscript{2}

The electrochemical oxidation of 2,5-diaryl-1,4-dithiins (50) has been studied using various voltametric techniques and all compounds were found to undergo quasi-reversible one-electron transfers to the radical cations and dications.126 The first formal redox potential and the lifetime of the radical cation were found to decrease with increasing electron donation from the aryl ring. The major products were the 2,2’-dimers, which result via reaction of two radical cations for which rate constants are given. Dibenzothiophene radical cations reacted with tetranitromethane under
photolytic conditions to yield the corresponding sulfoxide as the major product, along with the 2-nitro compound and various products of tetrynitrormethane addition. The sulfoxide also predominates by nitration with NO₂ or nitrous acid, whilst silver(II)-mediated oxidation in acetic acid affords the 1- and 4-acetoxydibenzothioephene.127 These workers have also reported the ESR spectra of substituted dibenzothiophene radical cations, prepared by Tl(III)-mediated oxidation.128 The thioacarbencium ion \([\text{C(SH)}_{3}]^{+}\) and its radical dication \([\text{C(SH)}_{3}]^{2+}\) have been the subject of an investigation of the effect of electron correlation and spin projection on rotational barriers.129 Planar geometries were calculated for the radical cations of HSSH and MeSSMe as part of a study of the unknown thiosulfoxide species.130 The pulse radiolysis of aliphatic \(\delta\)-amino sulfides in aqueous solution has been used to generate a series of radical cations, most notably a cyclic two-centre, three-electron (S\(\cdot\cdot\cdot\)N) species. \textit{Ab initio} molecular-orbital calculations and DFT methods were employed to provide structure and property information on these species by assignment and interpretation of transient ESR and resonance Raman spectra. High-level calculations on model systems call into question the ability of hybrid DFT methods to provide a reliable description of S\(\cdot\cdot\cdot\)N species.131 Diaryl disulfide radical cations \([(\text{ArSSAr})^{+}]\) reacted with six functionalized benzenes \((\text{PhX})\) to afford predominantly the \textit{para}-substituted diaryl sulfides \([\text{p-(ArS)C₆H₄X}]\).132

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{(51)} \\
& \quad \text{NH}_2 \\
\text{(52)} & \quad \text{ } \\
\end{align*}
\]

Benzidene has been oxidized to its radical cation \((51)\) using a number of common oxidants, including cerium(IV), permanganate, dichromate, potassium peroxomono- and di-sulfates, and halogens.133 The rate constants for formation of \((51)\) and further oxidation to the biradical cation were estimated and showed good agreement with those calculated using Marcus theory. The facile rearrangement of the radical cation of hexamethyl Dewar benzene \((52)\) has made it an elusive study subject. Assignment of the ESR spectra of \((52^{+})\) and related species has been made through DFT calculations which show close agreement with experiment.134 These workers have described the effect of halocarbon matrices on the rearrangement of propene radical cations into allyl radicals by \textit{ab initio} and semiempirical calculations.135 By \textit{ab initio} calculations, the barrier to the rearrangement of 1,3-hexadien-5-yne radical cations is lower for a five-membered ring than for the classical benzene structure.136 The radical anion of methylacetylene has been generated by \(\gamma\)-radiolysis and characterized by ESR and MO studies, which assign a \textit{trans}-bent structure.137 Density functional theory (DFT) has been used to calculate the structure and vibrational frequencies for the radical cation and anion of biphenyl.138

The mechanism of base-catalysed deprotonation of the \(\alpha\)-CH of 4-methoxybenzyl alcohol radical cations in water has been examined. There is no direct attack of \(\text{HO}^-\) at the \(\alpha\)-CH as was believed, but reaction occurs via deprotonation of the OH to produce the benzylxy radical, which then forms the carbon-centred radical by a 1,2-hydrogen
atom shift. The main product of the radical cation-mediated reaction of 9-methyl- or 9-ethyl-anthracene (53) by pyridine–iodine arises from nucleophilic attack at the open C(10) position leading to the ring oxidation product (54) rather than deprotonation to oxidize the side-chain forming the 9-substituted product (55); see Scheme 8. The reactivity is rationalized in terms of stereoelectronic effects rather than substrate acidity, such that deprotonation is the dominant pathway under careful conformation control, e.g. bulky trimethylsilyl substituent introduced at C(1). The formation of neutral radicals from deprotonation of the radical cations of α- and β-pinene was found to be efficient when performed on a redox-active zeolite (NaZSM-5), but led to complex mixtures of products in solution.

![Scheme 8](image)

A mechanism has been proposed for the liquid-phase formation of aliphatic alcohol radicals (RCH(OH)) by a proton-transfer mechanism from the corresponding distonic cation radicals which, calculations suggest, are more stable than the classical cation radicals (RCH₂OH⁺). A paper reports a low-temperature ESR and UV–VIS study of the radical cation of 2,6-di-iso-butyl-4-methylphenol, generated by electron-transfer oxidation with matrix alkyl halide radical cations. A theoretical study of the structure of the methanol radical cation by MP2 methods has revealed an artificially short C—O bond length of 1.3 Å, compared with 1.37 Å at higher levels of theory. The isotropic hyperfine coupling constants (IHFCs) of the radical cations of hydroquinone and tetrahydroquinone have been studied by UB3LYP and UB3PW91 DFT calculations whilst testing the ability of various basis sets to reproduce the experimental values. A significant temperature dependence of the hydroxyl proton IHFC is predicted.

The structure of diphosphallenyl radical cations, generated from the allene ArP=CH=CHAr by electrochemical oxidation, has been examined using EPR spectroscopy. Ab initio calculations including correlation effects at the MP2 and MCSCF levels have determined that two rotamers exist compatible with Jahn–Teller distortion of the allene. Anodically generated radical cations of alkyl phosphites [(RO)₃P] and silylphosphites [(RO)₂SiMe₃] reacted with alkenes by initial attack at the C≡C bond followed by electron transfer, deprotonation, and elimination of an alkyl or trimethylsilyl cation to form identical alkyl phosphate adducts. The electron ionization-induced McLafferty rearrangement of n-hexylphosphine afford the α-distonic radical cation 1CH₂P₃⁺, the distinct reactivity of which suggests there is no
interconversion between this radical and the more conventional isomer \(\text{CH}_3\text{PH}_2^{2+} \).\(^{148}\) The distonic radical undergoes proton transfer, atom, and group abstraction reactions with neutral molecules, in contrast to \(\text{CH}_3\text{PH}_2^{2+} \), which reacts predominantly by an electron-transfer process.

The concept of aromaticity in three dimensions has been studied by a theoretical examination of the electronic structure of a number of ions formed from pentacyclo[3.3.1.1\(^3\)7.0\(^1\)3.0\(^2\)7]decane (56). The dication (57) belongs to a small group of compounds exhibiting three-dimensional electron delocalization and H–F, MP2, and DFT calculations suggest it is stable with respect to a localized structure, but less stable than the radical cation (58).\(^{149}\) Charge and spin delocalization in 1,4-diphenylpiperazine radical cations was found to be suppressed on introduction of a \(p \)-methoxy group in each phenyl ring.\(^{150}\) A paper introduces the concept of anchimeric spin delocalization in the tryptophan radical cation after the observation by H–F/DFT calculations of a through-space interaction between the \(\pi \)-system of the indole and the alanyl side-chain.\(^{151}\)

![Diagram](image)

The ease of electrochemical oxidation of a number of 4-halogenated diadamantanes (59) to their radical cations was found to agree with AM1 predictions and is attributed to a resonance contribution through the \(\sigma \) framework.\(^{152}\) The structure of the four-centre, three-electron cyclobutane radical cations of pagodane-type molecules was the subject of a review which combines an \textit{ab initio} study.\(^{153}\) Both the parent cyclobutane and the rearranged diene forms of the radical cations are discussed as intermediates in a \(2 + 1 \)-cyclodeaddition reaction coordinate. A paper describes the asymmetric distortion of several alkane radical cations as studied by EPR at low temperatures in various matrices.\(^{154}\) The direction of the distortion is unique to each system and is not affected by the matrix used, although the magnitude of distortion shows some matrix dependence. A paper reports CIDNP characterization of the radical cations of both the \textit{syn}- and \textit{anti}-isomers of the bridged dicyclopropane system tricyclo[5.1.0.0\(^1\)3.0\(^2\)7]octane.\(^{155}\) The quadracyclane radical cation is a closely related system and its rearrangement to the corresponding norbornadiene radical has been studied\(^{156}\) by comparison of \textit{ab initio} methods with the principles of radical electrocyclic reactions. The calculated activation energy agreed with the work of Bach \textit{et al.},\(^{157}\) at about twice the current experimental estimate.

The AM1-calculated structure and charge distribution of radical the trication of \(\beta \)-carotene have been reported and its UV absorption spectrum estimated from INDO/S methods.\(^{158}\) The decomposition of the furan radical cation proceeds by two separate pathways according to a recent theoretical study, one via formation of propene radical cation and CO, the other a lower energy process via acetylene and a ketene radical cation.\(^{159}\) As a result of a reflection mass spectrometric study, a likely mechanism is
proposed for the elimination of H₂ from ethene radical cations by the tunnelling of hydrogen atoms through a transfer barrier. The rearrangement of the dimesityl enol derivatives (60), and the corresponding enol carbamates (61) and carbonates (62) proceeds via a proposed radical intermediate (63) to afford the benzofurans (64) (Scheme 9). The radical cations (65) were characterized by ESR and ENDOR. The reaction of acetylene and its radical cation has been studied theoretically in a paper that suggests that a low-energy pathway exists in which an initial T-shaped ion–molecule complex forms. Delocalization of the spin and charge collapses the complex to the cyclobutadienyl radical cation via a linear complex or a cyclopropenylcarbene cation. The formation of dihydropyrene radical cations and their potential application to NMR studies of polycyclic aromatic hydrocarbons (PAHs) is reported. Nanosecond laser photolysis of bis(p-methylphenyl)diazomethane generated the radical cation from which a carbene radical cation formed. Reactions of this radical species with a number of nucleophiles and radicalophiles are reported.

\[
\begin{align*}
\text{Mes} & \quad \text{O} \quad \text{X} \\
\quad \text{Mes} & \quad \text{R} \\
\end{align*}
\]

(60) X = H, COR', SiR'₃, TiCp₂Cl, PO(OR')₂

(61) X = H, CONHBu'

(62) X = CO₂R'

R = Me, Bu', Ph, Mes

A paper reports an ab initio study of the structure and vibrational spectra of the radical cations generated from \(N,N,N',N'-\)tetramethyl-\(p\)-phenylenediamine (TMPD) and piperidine and piperazine diamines. It was shown that, whilst the hybrid H–F/DFT (B3LYP) calculations are the best practical method for aromatic diamines, DFT theory calculations (BLYP) are far superior for piperidine and piperazine diamines owing to the tendency of the former to localize the positive charge on one of the amino groups. A series of linear and branched high-spin radical di- and tri-cations of aniline oligomers have been synthesized and characterized as potential polaronic ferromagnets. The radical cations of novel 18-\(\pi\) aromatic azines were generated by oxidation with AgClO₄ and characterized by their ESR spectra and the effect of substitution on their spin densities and oxidation potentials is discussed. Anodic oxidation of 2,6-bis(\(N,N\)-dimethylamino)anthracene (DMA) with tetrabutylammonium acetate resulted in formation of products derived from initial attack of the acetate ion at the 9-position of the DMA radical dication (DMA²⁺). Kinetic data for the
combination of DMA$^{2+}$ with acetate ions and nitrogen nucleophiles are presented. The 4,5-diphenylimidazole radical cation has been generated by UV irradiation of the parent molecule with Hg(TFA)$_2$ and characterized by ESR and ENDOR.171 15N-CIDNP investigations of the nitration of anisole with nitric acid suggests formation of 2- and 4-nitroanisole by a recombination reaction of the anisole radical cation with NO$_2$.172

The radical cation-initiated cycloaddition reactions of 2-vinylindole heterodienes (66) and β-substituted enamionitriles (67) have been examined. The electrochemically generated radical cation (66$^{+}$) affords either the cyclopropyl-substituted adducts (68) or the formal product (69) of a 4 + 2-cycloaddition followed by a 1,4-dialkylation shift; see Scheme 10. The product isolated depends strongly on the substitution pattern of the two reactants and judicious choice of substituents may lead to product selectivity.173 In a related report, the gas-phase reaction of o-quinodimethane and styrene radical cations towards propene was found to include 4 + 2-cycloaddition products.174 The major isolated products of the reaction between 2-pyridylhydrazones with radical cations were formed either by intramolecular cyclization or intermolecular cycloaddition.175 The formation of (70) and (71) during the reaction of variously substituted allenes with pentamethylcyclopentadiene has been explained by a radical cation-mediated 4 + 2-cycloaddition which shows high facial-, chemo-, and stereo-selectivities.176 Three novel radical probes have been developed which apply the cyclobutatanation or Diels–Alder cycloaddition chemistry of photo-generated arylalkene radical cations with varying success.177 An ab initio study of the nature of Frontier MOs of 1,3-dipoles has concluded that ozone and diazomethane are amongst those which exhibit significant biradical character,178 in contrast to the widely accepted mechanism.179,180 The oxidation of the novel enediynes (72) under SET conditions in methanol affords the 3-methoxy enediyne (73) and the corresponding 3-keto enediyne181 rather than the cyclization product (74) recently reported for a similar system.182 The structures of α-ammonium distonic radicals cations and their reactivity towards 5- or 6-exo radical cyclizations have been described.183,184
A study of the photo-sensitized ring-opening reactions of the radical cations (76) of arylecyclopropanes (75) with methanol, water, and cyanide nucleophiles suggests a three-electron $S_{N}2$ mechanism (Scheme 11). The isolated products are methyl propyl ethers, derived from nucleophilic attack of methanol on the radical cation (76). They were detected by UV–VIS spectroscopy and shown to react with nucleophiles by transient kinetic methods. The benzyl radical (77) reacts with the DCB radical anion to afford monoaromatic ether (78) by oxidation and protonation or the disubstituted ether (79) by addition of DCB$^-$. Regio- and stereo-selectivity of the substitution were complete; regiochemistry and rate constant were profoundly effected by the electronic nature of the aryl substituents. Elsewhere, a combined ab initio and CIDNP study.
has been made of the structure and reactivity of three bicyclic cyclopropane radical cations,187 whilst the nucleophilic ring-opening reactions of naphthylcyclopropyl radical cations have been explored.188 Examination of the ring cleavage of the cyclobutadiene radical cation using H–F, DFT and correlated MO calculations found cis-butadiene is formed via a concerted, unsymmetric pathway.189 A combination of the valence bond configurational model and CASPT2 calculations agreed with experimental findings in the regiochemistry of addition of nucleophiles to the radical cations of non-alternant systems, such as dibenzofuran and azulene.190 A paper reports the nucleophile-assisted cleavage of benzyltrialkysilane radical cations. The absolute rate constants were determined for C—Si bond lysis and decreased by up to four orders of magnitude by increased steric bulk at Si, with a similar but smaller effect by increasing crowded nucleophiles.191 Conjugated diene radical cations have been generated by photolytic methods for characterization by flash photolysis and their reactions with anionic nucleophiles discussed.192 Studies of the reactivity of 9-substituted-anthracene radical cations towards nitrogen nucleophiles with emphasis on the nucleophile structure and the nature of the 9-alkyl or aryl substituent have concluded that the configuration mixing model193 does not apply.194,195 High-level ab initio calculations on the ethane radical cation at the CCSD(T)/TZ (2df,2pd) and CCSD(t)/TZ2P levels have shown the \(^2A_g \) state (\(C_{2h} \) symmetry, C—C bond length ca 1.7 Å) and the \(^2A_{1g} \) state (\(D_{3d} \), C—C bond length ca 1.9 Å) to be almost degenerate in energy. The transition state separating these minima is very low in energy, giving rise to an equilibrium between these two structures and only one averaged structure is observed.196

A study of a number of aryl bromide and \(\alpha \)-phenoxyacetophenone radical cations has found a linear correlation between Hammett plots of cleavage rate constants versus \(\sigma \)-values for a selection of analogous radicals.197 The reaction of vinyl chloride and bromide radical cations with ammonia was studied by FT-ion cyclotron resonance spectrometry and ab initio calculations. In this way it was established that halide substitution is the dominant pathway via a highly exothermic reaction.198 An ab initio study of the effect of neutral bases on the isomerization of methyl radical cations (\(CH_3X^+ \)) to their distonic isomers (‘\(CH_3\bar{X}H \)) found the mechanism to be largely determined by the relative proton affinities of the base and the parent radical ʻ\(CH_2X \).199 Methyl radicals are reported to be released by the radical cation of 1-methyl-1,3-dioxacyclohexane before hydrogen abstraction at the carbon atom adjacent to both oxygens, as determined by deuterium studies.200 The radical cations of substituted indol-3-ylacetic acids undergo a substituent-dependent decarboxylation with radical lifetimes of \(10^{-6}−10^{-3} \) s.201 The photo-induced fragmentation of \(\alpha \)-anilino carboxylates proceeds by way of the radical cation which decarboxylates to a radical which self-terminates to the diamine or combines with the DCB sensitizer.202

Radical Anions

A review has examined the use of radical anions in elucidation of the role of electron transfer in nucleophilic reactions through the determination of rates of electron-transfer reactions or obtaining reduction potentials of short-lived radical species.203 The control of conjugation and high-spin formation of radical anions of linear and ladder-type \(\pi- \)
systems has been reviewed. A review of the literature has been combined with *ab initio* calculations to conclude that aromatic radical anions containing fluorine substituents do not readily dissociate to the aryl radical and fluoride ions.

A B3P86 hybrid H–F/DFT computational method using the 6–31-G(d) basis set was used to determine the structure, spin properties, and vibrational frequencies and mode assignments for the radical anions of *p*-chloranil, *p*-fluoranil, and *p*-benzoquinone. There is good agreement between calculated and published neutral structures and the radical anion bond lengths are consistent with a shift towards a more phenolic structure. The calculated spin and vibrational properties show good qualitative correlation but fail to reproduce several important details. The stabilities, properties, and AM1-calculated C—Cl bond dissociation energies of a range of halohydrocarbon radical anions are reported. A related paper made an *ab initio* study of the formation of the radical anions of mono- and tri-chloromethylbenzenes and their 4-pyridyl isomers, which adopt identical planar geometries. The only significant factor to effect the C—Cl BDEs of these radical anions was found to be the number of chlorine atoms at the radical centre. The reductive cleavage of C—F bonds in trifluoromethylarenes led to completely defluorinates products. In contrast to other polyhalomethyl compounds, the initially formed radical anion rapidly protonates to afford the hydrogenolysis product rather than defluorination to the carbene probably due to the increased strength of C—F over other C—halogen bonds. The halide elimination from haloethanol substrates affords a ketyl radical anion which has found application as a mechanistic probe in the radical reaction mechanisms of galactose oxidase. An *ab initio* study found competing electron-transfer and substitution mechanisms for the reaction of ketyl anion radicals with chloromethane. An MP2/3–21G theoretical study of the radical anions and dianions of cyclooctene analogues reports planar conjugation and varying degrees of aromaticity.

The radical anions of phosphafulvene (80) and dibenzophosphafulvene (81) were generated by electrochemical reduction and their EPR spectra recorded between 110 K and room temperature. Comparisons of calculated spin densities and charge distributions are presented along with experimental data. The radical anions of *o*-, *m*-, or *p*-thiobenzoate esters were generated by electro-reduction and found by their ESR spectra to be persistent.

![Phosphafulvene](80) ![Dibenzophosphafulvene](81)

The role of radical anions in the detonation of nitroaromatic explosives has been examined. The potassium salts of such radicals were formed by mono-, di-, and tri-nitrobenzenes and -toluenes in liquid ammonia solution and, on removal of the solvent, render the material highly susceptible to loss of the metal nitrite, which increases with nitro substitution. Cleavage of the C—NO₂ M⁺ bond follows the ‘regioconserved’ or
heterolytic mode and it seems likely that radical anion contamination of field explosives may be responsible for ‘chemically induced hot-spots’ that lead to inadvertent explosion. A number of gem-nitronitroso radical dianions have been prepared from the reaction of sodium nitrite with sulfur-containing compounds in the presence of ascorbic acid in the dark.216 The initially formed anionic intermediates are reduced to the observed radicals once the reaction mixtures are made alkaline.

![Diagram](image_url)

Scheme 12

Reaction of anthracenide radical anion (82) with cis- and trans-1-pivaloyl-2,3-diphenylaziridines (83) yields the same product, erythro-(84).217 The loss of steric differentiation is attributed to homolytic ring cleavage to give the same radical anion (85). Very rapid reaction (< 10 s) gives rise to exclusively erythro products, the threo compound being discounted on the basis of electrostatic repulsion between \(A^- \) and the anionic tail. These short reaction times mean that radical coupling is not always complete and so (85) is also observed. Longer reaction times ensure radical coupling is completed at the expense of (86); see Scheme 12.

Biradicals

The photochemically generated cyclopentane-1,3-diyli diradials (87) were part of a study of spin delocalization through the EPR \(D \)-parameter. These biradicals were a model system for cumyl and benzyl radicals and experimental data were combined with MO calculations to map the electronic effects on \(D \) by varying the aromatic substituent (Ar = heterocycle).218 This parameter was also measured for a related series of
cyclopentene biradicals in which the aromatic groups were chosen from a range of mono- or di-substituted benzenes.219–222 A paper discusses the structural dependence of spin–orbit coupling in biradicals, covering the importance of through-bond coupling and the origin of substituent effects, in particular heavy atoms.223

The biradical benzo-1,2:4,5-bis(1,3,2-dithiazolyl) (BBDTA) is known in the literature but characterization is incomplete. A new study reports the electronic, molecular, and solid-state structure of BBDTA.224 The lifetime of an alkyl phenylglyoxalate-derived 1,4-biradical has been estimated, using the cyclopropylmethyl ‘radical clock’, to be in the range 35–40 ns.225 The indanols (88) and their C(3) methyl and trideuteromethyl analogues have been prepared from phenyl benzyl ketone via photo-cyclization of an intermediate 1,5-biradical species.226,227 Selectivity for these products over their C(1) epimers is high but is profoundly effected by substitution in the benzyl ring or the alkyl side-chain. The findings are rationalized in terms of the conformational preference of the intermediate 1,5-biradicals.

It has been shown that the singlet and triplet states of 2,3-dimethylmethylene cyclohexane-1,4-diyl (89) are almost degenerate, in agreement with computational results.228 The modelling of simple non-Kekulé hydrocarbons such as trimethylenemethane using a dicycloprenyl derivative (90) has been extended to conformational analysis from its ESR hyperfine splitting pattern.229 Semiempirical quantum chemical calculations (AM1/Cl and PM3/Cl) on 3,4-dimethylenepyrrole biradicals have shown that electron-withdrawing substituents on N should create a near-zero energy separation of the singlet and triplet states.230 Most notably, the N-tosylpyrrole biradical was prepared by photolysis of the corresponding diazene and found to possess persistent triplet and singlet species. An \textit{ab initio} study has been made at the ROHF, GVB, and CASSCF levels with the 6–31G* basis sets of \textit{m}-phenylenediamine and \textit{m}-diamino-1,3,5-triazine dication biradicals as models of potential high-spin polymers.231 The gas-phase ionization of 2,4,6-tribromobenzene in the presence of \textit{m}-fluoropyridine afforded the \textit{N}-aryl-\textit{m}-fluoropyridine adduct from which the biradical cation was generated by loss of two bromine radicals.232 This biradical species was isolated and characterized using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and its chemical properties are discussed. FT-ICR was also used to isolate and characterize the products of electron ionization of fluorinated acetyl compounds, which included a biradical anion.233 The thermal racemization of vinyl- and phenyl-substituted allenes (91) has been studied, which suggests the involvement of a biradical intermediate (92) (Scheme 13).234 The experimentally determined racemization enthalpies are lower than the
estimate derived from the parent system after correction for the extra stabilization of the biradical intermediate. The authors claim this is indicative of increasing importance of further stabilization by the carbene-type structure (93). These workers also determined the energy profile for the equilibrium between 1,8-naphthoquinodimethane and its thermally generated biradical (94). Furthermore, they established that a thermal equilibrium exists between 1,6-cyclobutadiene and the bicyclic biradical (95) by isolation of radical-trapping products with NO and O₂; the enthalpy of formation of (95) is 116.2 kcal mol⁻¹. The lifetimes of the triplet state of biradical (96) and a related structure, photogenerated from the analogous anthraquinones, have been determined using cyclopropylmethyl-derived radical clocks as 1–2 ns. The reactivity of these biradicals is discussed and a mechanistic pathway for their formation is proposed.

The tandem radical cyclization of tetryne (97) and its derivatives has been performed to generate the polycyclic pyran (98) via a biradical intermediate. The cycloaddition reaction of a biradical species (or diyl) and a multiply bonded species (the diylphile) has been observed with unique allene diylphiles. The short-lived biradical formed by the irradiation of the diazene (99) is trapped by an allene diester to form a second biradical species (100). Intramolecular cyclization occurs such that all steric interactions are minimized and so enforces stereocontrol in the formation of the cycloadduct (101); see Scheme 14. A paper reports the rearrangement of 2-vinylmethylene cyclopropane (102) to 3-methylcyclopentene (103) via the triplet biradical (104), which has been characterized for the first time by IR spectroscopy.
The photo-reaction is strongly dependent on the wavelength of irradiation and (103) is only observed in the presence of Br2.

\[
\begin{align*}
\text{R}^1 &= \text{CH}_2\text{OAlkyl} \\
\text{R}^2 &= \equiv \\
\end{align*}
\]

\[
\begin{align*}
\text{(97)} \\
\text{(98)}
\end{align*}
\]

\[
\begin{align*}
\text{R}^1 &= \text{CH}_2\text{OAlkyl} \\
\text{R}^2 &= \equiv \\
\end{align*}
\]

\[
\begin{align*}
\text{(99)} \\
\text{(100)} \\
\text{(101)}
\end{align*}
\]

\[
\begin{align*}
\text{R}^1 &= \text{CH}_2\text{OAlkyl} \\
\text{R}^2 &= \equiv \\
\end{align*}
\]

\[
\begin{align*}
\text{(102)} \\
\text{(104)} \\
\text{(103)}
\end{align*}
\]

Nitroxides are the most common of the oxygen-centred biradicals to be reported. As a model for spin-crossover molecules, the nitronyl nitroxide (105) was prepared and by oxidation with PbO2 afforded the triplet biradical (106) which was characterized by ESR (Scheme 15).242 The one-electron oxidation of (105) afforded the singlet cation (107) which was seen to exist in equilibrium with (106) in solution. The authors claim that pH-controlled interconversion between two species of different spin multiplicities in this way may provide the basis for novel magnetic switches or pH sensors. The \(N,N\)-dialkylamino nitronyl nitroxides (108) were prepared and afforded the triplet-state biradical cation species by one-electron oxidation with iodine.243 The authors propose that, by the similarity of the electronic structures, these structures can be regarded as hetero-analogues of trimethylenemethane. A paper confirms the conversion of 3,3-dimethyldioxetane into the corresponding ring-opened 1,2-diol but refutes the
intermediacy of the 1,4-dioxy radical, proposing instead ring cleavage by a radical species to a radical intermediate rather than O—O homolysis as the initial step.244

\begin{center}
\textbf{SCHEME 15}
\end{center}

\textbf{Pyrolysis and Thermolysis}

Formation of stable radical species from cellulose, starch and sucrose during cooking has been reviewed.245

Thermolysis of 1,1-difluoro-2,3-diphenylcyclopropane in supercritical CO\textsubscript{2} has allowed the rate of geometrical isomerization [i.e. \textit{cis-(109)} to \textit{trans-(109)}] and racemization [i.e. \((R)-(109)\) to \((S)-(109)\)] to be determined from O\textsubscript{2} dependence of the trapping rate of the postulated intermediate 1,3-biradical.246 Above 150 °C, the formation of 2,2-difluoroindane and its decomposition products is reported. A similar thermally induced equilibrating series of stereomutations has been observed with the analogous non-fluorinated cyclopropane in which rate constants and deuterium exchange isotope effects are reported.247 Theoretical studies of this isomerization have focused on classical248 and quasi-classical trajectories.249

\begin{center}
\textbf{Scheme 15}
\end{center}

Single-pulse shock-tube thermal decomposition of furonitrile (1135–1380 K) affords primarily but-2-yne 1-nitrile via a radical intermediate.250 Radicals are also implicated in the thermolysis of furan-2,3-dione analogues.251 Explosive-driven shock waves of up
to 16 GPa and accompanying temperatures of 900–1400 K have been used for the measurement of the rates of a number of organic reactions. It was reported that, whilst extreme pressure favours reaction via an ionic mechanism, homolytic mechanisms are favoured by extreme temperatures. Thus, neopentyl nitrate afforded 2-nitro-2-methylpropane after thermally induced homolysis, β-scission and recombination.\(^{252}\)

Time-of-flight (TOF) mass spectrometric analysis of the pyrolysis fragments of di-t-butyl peroxide suggests t-BuCO$^-$ as the primary product, followed by decomposition of this radical into CH$_3$.\(^{253}\) Elsewhere, the kinetics of the pyrolysis of dimethyl, diethyl, and di-t-butyl peroxides in a modified adiabatic bomb calorimeter have been investigated.\(^{254}\) The lifetime of acyloxy radicals, generated by the photolysis or thermolysis of acetyl propionyl peroxide, have been studied. Chemical nuclear polarization has been used to determine the rate constant for the decarboxylation of these radical intermediates.\(^{255}\)

A number of papers report investigations of the pyrolytic cleavage of aromatic hydrocarbons. The oxidation and pyrolysis of anisole at 1000 K have revealed first-order decay in oxygen exclusively via homolysis of the O—CH$_3$ bond to afford phenol, cresols, methylocyclopentadiene, and CO as the major products.\(^{256}\) A study of PAH radical anion salts revealed that CH$_4$ and H$_2$ are evolved from carbene formation and anionic polymerization of the radical species, respectively.\(^{257}\) Pyrolysis of allylproparglytosylamine was studied at temperatures of 460–500 °C and pressures of 10–16 Torr. The product mixture was dominated by hydrocarbon fragments but also contained SO$_2$ from a proposed thermolysis of an intermediate aldimine by radical processes.\(^{258}\)

The kinetics of the pyrolysis of n-butenes with propane and n-butane were studied to obtain the relative rate constants and so calculate the effective relative reactivities towards Me$^-$ and H$^-$.\(^{259}\) As part of a detailed study on hydrocarbon cracking, UHF calculations of the thermolysis of alkanes have shown that the modelled values agree well with the generally accepted free-radical mechanism.\(^{260}\) The BDE for C—C homolytic fission has been calculated as 95 kcal mol$^{-1}$ at the MP2/6–31G* level and 89 kcal mol$^{-1}$ at the B3LYP/6–31G* level. The decomposition of cyclopentadiene was investigated by pyrolysis in argon using a single-pulse shock-tube (1080–1550 K, 1.7–9.6 atm).\(^{261}\) Gas chromatographic analysis determined the main products in order of abundance to be acetylene, ethylene, methane, allene, propyne, butadiene, propylene, and benzene and reaction occurs via the cyclopentadienyl radical in the proposed mechanism. Pyrolysis of benzotricyclene (110) revealed the benzocyclooctene (111) as the initial product by GC/MS which was converted into α- and β-allylnaphthalenes via radical (112).\(^{262}\)

\[\begin{array}{c}
\text{(110)} \\
\begin{array}{c}
\Delta \\
\text{(111)} \\
\end{array} \\
\text{(112)}
\end{array}\]

A paper reporting the pyrolysis of pyrazine, pyrimidine, and pyridine combined with laser-Schlieren densitometry and TOF mass spectrometry proposes decomposition via a
radical mechanism. It is suggested that the C—H homolytic BDEs of these heteroaromatic structures are lower than that for benzene owing to stabilization in the heterocyclic radicals by interaction of the N lone pair with adjacent C—H.263 The thermal decomposition of azomethane has been the subject of an \textit{ab initio} study, which predicted the lowest energy pathway to be homolytic C—N cleavage to afford CH\textsubscript{3} and CH\textsubscript{3}N\textsubscript{2} using DZP and TZ2P basis sets. The calculations also indicated the \textit{trans}-azomethane isomer to be more stable than the \textit{cis}-isomer by 9.3 kcal mol-1.264 In the single-pulse shock-tube pyrolysis of 3-picoline, HCN, acetylene, benzene, methane, pyridine, and cyanoacetylene were isolated. \textit{Ab initio} analysis of the enthalpy of formation of the intermediate 3-picoly radical indicates a value lower than that for 2-picoly, suggesting 3-picoly decomposition more closely resembles that of toluene than of the 2-isomer.265

The products of the thermolysis of 3-phenyl-5-(arylamino)-1,2,4-oxadiazoles and thiazoles have been accounted for by a radical mechanism.266 Flash vacuum pyrolysis of 1,3-dithiolane-1-oxides has led to thiocarbonyl compounds, but the transformation is not general.267 In an ongoing study of silacyclobutane pyrolysis, CASSCF(4,4), MR-CI and CASSCF(4,4)+MP2 calculations using the 3–21G* and 6–31G* basis sets have modelled the reaction between silenes and ethylene, suggesting a cyclic transition state from which silacyclobutane or a \textit{trans}-biradical are formed.268 An AM1 study of the thermolysis of 1,3,3-trinitroazacyclobutane and its derivatives has identified gem-dinitro C—N bond homolysis as the initial reaction.269 Similar AM1 analysis has determined the activation energy of the formation of 'NO\textsubscript{2} from methyl nitrate.270 Thermal decomposition of nitromethane in a shock tube (1050–1400 K, 0.2–40 atm) was studied spectrophotometrically, allowing determination of rate constants.271

A re-examination of the pyrolysis of TFA has used FTIR specotscopy to confirm the postulated mechanistic pathway, which proceeds via initial loss of HF to give the biradical \textquotesingle CF\textsubscript{2}CO\textsubscript{2}. The authors claim the first direct observation of HF produced from this reaction from which the principal products were CHF\textsubscript{3}, CF\textsubscript{3}COF, and CO\textsubscript{2}.272 Elsewhere, the equilibrium and rate constants for the homolytic pyrolysis of a number of polyhalomethanes are reported.273,274 Shock-tube pyrolysis of methyl iodide has been studied by I-atom atomic resonance spectrometry combined with unimolecular theoretical analysis.275 The intermediacy of iodine radicals has been proposed in the thermolysis of \textit{t}-butylperoxyiodinanes (113).276 The products and kinetic data for decomposition of (113) in various organic solvents suggest thermolysis proceeds via initial I—O bond homolytic fission to give radical (114) from which the isolated iodinated aromatic alcohols (115) or ketones (116) were formed; see Scheme 16.

\begin{equation}
\begin{aligned}
\text{O} - \text{OBu}^t &\xrightarrow{\Delta} \left[\begin{array}{c}
\text{I}^* \\
\text{O}
\end{array} \right] \\
\text{(113)} &\xrightarrow{\Delta} \left[\begin{array}{c}
\text{I}^* \\
\text{O}
\end{array} \right] \\
\text{(114)} &\xrightarrow{\Delta} \left[\begin{array}{c}
\text{I} \\
\text{OH}
\end{array} \right] + \left[\begin{array}{c}
\text{I} \\
\text{C} = \text{O}
\end{array} \right]
\end{aligned}
\end{equation}

\textbf{SCHEME 16}
Photolysis

The photolysis of nitrosopregnone steroid (117) afforded the 18,20-benzo-fused compound (118) as the major product (24%) along with the diol (119) (6%), whilst the expected C(18) rearranged product (120) is not isolated (Scheme 17). Reaction proceeds via the C(18) alkyl radical (121), formed in accordance with the accepted C(11) O—NO bond homolysis and H-abstraction pathway, before either addition of C(11) radical (121) to the aromatic ring to afford (118) or H abstraction to give (119).

\[\begin{align*}
\text{RO} & \quad \begin{array}{c}
18 \\
\text{Ph}
\end{array} \\
(117) & \quad R = \text{NO} \\
(119) & \quad R = \text{H}
\end{align*} \]

\[\begin{align*}
\text{HO} & \quad \begin{array}{c}
18 \\
\text{Ph}
\end{array} \\
(121)
\end{align*} \]

\[\begin{align*}
\text{RO} & \quad \begin{array}{c}
\text{O}
\end{array} \\
(118)
\end{align*} \]

\[\begin{align*}
\text{HO} & \quad \begin{array}{c}
\text{Ph}
\end{array} \\
(120)
\end{align*} \]

SCHEME 17

The photolytic cleavage of alkyl aryl sulfoxides has been shown to occur via initial C—S bond homolysis, in accordance with the common mechanistic assumption. Secondary and tertiary alkyl groups show high chemoselectivity for alkyl C—S cleavage. Uniquely, alkene products have been isolated, formed by disproportionation of the initial alkyl radical, with the formation of benzaldehyde and racemization of primary alkyl compounds. An investigation into the photochemical conversion of N-propylsulphobenzoic imides into amides in various solvents revealed a solvent dependence of the observed mechanism. In ethanol, sulfur dioxide extrusion forms a biradical which abstracts a hydrogen atom from the solvent, whereas in aromatic solvents biradical formation by a single electron transfer is implicated. The photolysis and thermolysis of 1,9-bis(alkylthio)dibenzothiophenes and p-aminophenyl disulfide have been studied.

The allylic radical (124) has been characterized by ESR as an intermediate in the photolysis of the deoxyribose phosphate (122), a model system for DNA cleavage by antitumour antibiotics (Scheme 18). The proposed mechanistic pathway follows that...
assumed for natural DNA, whereby the initially formed radical (123) undergoes
dephosphorylation to afford a radical cation, from which the detected allylic radical
(124) is formed by simple deprotonation of this acidic species. In a related report, a
similar deoxyribophosphate moiety was photolysed, affording dihydrofuran and acetal
products via an identical mechanism.283

The photolysis of aromatic species with tetranitromethane in perfluoro alcohol
solvent has been studied, in which the radical cations were observed by EPR
spectroscopy.284 Photo-stimulated reaction of 1- and 2-haloadamantanes and 1,2- and
1,3-dihaloadamantanes with various carbanionic nucleophiles afforded products
rationalized through an S_{RN1} mechanism.285,286 Photolysis of the cycloadduct formed
between a functionalized derivative of C$_{60}$ and diazomethane has been shown to afford
a pair of ring-opened structures (125) and (126) via a proposed biradical intermediate
(127) (Scheme 19). The UV-photolytic fragments of t-butyl iodide (t^- and t-Bu$^-$) have
been ionized by resonance-enhanced multiphoton ionization for TOF mass spectrometric
analysis.287 A two-dimensional position-sensitive detector provided angular
distribution and translational energy data.
Recombination fluorescence has been used to study the decay of radical ion pairs generated photolytically.\(^{288}\) Simulation of quantum beats caused by hyperfine interaction in the \(R^-\) and \(R^+\) enable the values of hfc to be determined for very short-lived species. In the case of one \(R^-\) excellent agreement with the value of hfc as determined by ESR is reported. The primary reaction in the photolysis of 1-arylalkyl radicals (128) is the heterolytic cleavage of the \(\beta\)-halogen (X), generating the radical cation (129).\(^{289}\)

![Reaction diagram](image)

Radiolysis

A review of radiolysis in liquid methanol has appeared which compares the relative abilities of methanol and water towards electron solvation.\(^{290}\) The cyclopentane-annelated azoalkane (130) and related housane (131) have previously been shown to rearrange under SET conditions to give the corresponding cyclopentene (132) (Scheme 20).\(^{291,293}\) According to a new study, the mechanism for pulse-radiolytic rearrangement of (130) begins by generation of the substrate radical cation and nitrogen extrusion.\(^{294}\) Using time-resolved optical absorption to detect the transient radical intermediates, it has been determined that this radical cation follows two reaction pathways: (i) via the 1,2-radical cation (134) to give the fused

![Scheme 20](image)
cyclopentene (132), or (ii) via the 1,3-distonic radical cation (133), which cyclizes to the housane (131) or undergoes a 1,3-methyl migration to generate (134). In contrast, radiolysis of the corresponding urazole-annelated analogue (135) formed the relatively stable 1,3-radical cation.294 Radical formation rate constants, lifetimes, and optical spectra are also presented.

The radical-mediated degradation of trihalogenated acids has been studied by γ-radiolysis.295 Irradiation of tribromoacetic acid (TBAA) in aqueous solution at pH 10 generated the radical anion ‘CBr3CO2-. The major fate of this species was self-termination to tetrabromosuccinic acid which itself thermally decomposed to HBr, CO2, and tribromoacrylic acid. Dibromofumaric acid, dibromomalic acid, and CO were minor secondary products. It was observed that TBAA reacted with a number of radical species and the rate constants are presented. In contrast, trichloroacetic acid was efficiently reduced only by CO2, whilst trifluoroacetic acid was highly stable towards γ-radiolysis. An ESR study of fluorinated benzene radical cations generated by γ-radiolysis showed close agreement between the calculated and observed hyperfine couplings.296 The paper concludes, through ab initio calculations for the optimum radical geometries, that the structure and symmetry of the singly occupied molecular orbital (SOMO) are affected by the number and position of fluorine substitution. Elsewhere, radical anions were observed upon radiolysis of pentafluoroacetophenone and pentafluoronoribenzene.297

X-ray ionization of o-vinylbenzaldehyde (136) in argon matrices leads to the quinoketene (137) via the radical cation, detected by IR spectroscopy.298 The product identity was confirmed by the independent preparation of (137) and (137+) by the photo-stimulated ring-opening of 2-methylbenzocyclobutene (138) (Scheme 21). The reactions of benzaldehyde, acetophenone, and benzophenone with 2OH, O2- and SO42- have been studied by pulse radiolysis in aqueous solution.299 The addition of 2OH to the carbonyl moiety of benzaldehyde predominates over addition to the aromatic ring, whereas ring addition is predominant in the case of acetophenone. Disproportionation of the exocyclic OH adduct is proposed to explain the formation of benzoic acid, which is a major product in the reaction of benzaldehyde and 2OH or SO42-. Rate constants for each reaction have been calculated.

![Scheme 21](image)

The vinylcyclopropane radical cation, generated at 77 K by X-irradiation of (139) in a Freon-113 matrix, was shown to rearrange at 105–110 K to afford two ring-opened distonic radical cationic species.300 The rearrangement reactions of the radical cations of 1,3- and 1,4-pentadiene and cyclopentene and the formation of spin adducts with 2,4,6-tri-tert-butyl nitrosobenzene (BNB) are discussed. The pulse radiolysis of 1,1’-binaphthyl-2,2’-diyl hydrogenphosphate (BiNPO4H) (140) in deaerated tert-butanol at
pH 9.5 generated the radical anion.301 Reaction with ‘OH is reported to afford an adduct which formed the radical cation by acidic dehydroxylation. This radical cation was also produced in the reaction of (140) with oxidizing radicals, e.g. SO$_4^-$ and Cl$_2^-$.

![Diagram](image1)

Pulse radiolysis has been used to afford the radical cations of thioanisole, p-methylthioanisole, and benzyl phenyl sulfides. The absorption spectra of these radicals and their reaction with a number of nucleophiles and electron donors are reported.302 Exposure of trimethylphosphine sulfide to 60Co γ-radiation at 77 K gave the radical anion Me$_3$PS$^-$, identified by its ESR spectrum, from which other radicals, including Me$_2$PS, were formed at higher temperatures.303

Autoxidation

The autoxidation of 4-undecanone in air at 130 °C leads to the formation of hydroperoxides, which decompose at 120–160 °C via different radical pathways to give CO, CO$_2$, and H$_2$ by parallel pseudomonomolecular processes.304 An extremely sterically crowded heptatriene (141) is reported to undergo autoxidation at 25 °C in cyclohexane. The isolated products were rationalized by the dissociation of (141) to the tropy radical (142) or fluorenyl radical (143) and subsequent attack by molecular oxygen (Scheme 22).305

![Diagram](image2)

Scheme 22

References

CHAPTER 5

Oxidation and Reduction

B. G. DAVIS and J. A. G. WILLIAMS

Department of Chemistry, Durham University, South Road, Durham DH1 3LE

Oxidation by Metal Ions and Related Species

- Chromium, Manganese, and Nickel .. 179
- Silver, Copper, and Thallium .. 183
- Cerium, Cobalt, Vanadium, Molybdenum, Rhenium, Bismuth, Palladium, and Iridium .. 183
- Group VIII Metals ... 186

Oxidation by Compounds of Non-metallic Elements

- Nitrogen, Selenium, and Sulfur ... 190
- Halogens ... 191

Oxidation by Metal Ions and Related Species

Chromium, Manganese, and Nickel

Chromyl chloride (CrO₂Cl₂) reacts with isopropylcyclopropane to generate the dimethylcyclopropylcarbinyl ‘radical clock’ by a mechanism probably involving initial hydrogen atom abstraction.¹ The resulting radical can be trapped by CrO₂Cl₂, to form 2-cyclopropyl-2-chloropropane or 2-cyclopropylpropan-2-ol, or ring open to give 4-methylpent-3-enyl radical which is trapped similarly. The only material observed from permanganate oxidation of this substrate is acetone, which is the product of vigorous oxidation of the ring-opened radical.

Different reactivities of some substituted oxan-4-ols on oxidation by pyridinium chlorochromate (PCC) are rationalized on the basis of their conformational features, including twist conformations.² A rate-determining carbon–carbon bond cleavage step in a glycol–PCC complex is proposed in the oxidation of butane-2,3-diol to acetaldehyde.³ Steroidal 6β-hydroxy-4-en-3-one was isolated as an intermediate in the oxidation of steroidal 5-en-3β-ol with PCC.⁴

ISBNs: 0-471-89935-6 (Hardback); 0-470-84580-5 (Electronic)

© 2001 John Wiley & Sons, Ltd

179
The oxidation of diols by quinolinium dichromate (QDC) shows a first-order dependence on QDC and acid.5 The oxidation of phenols to quinones by quinolinium dichromate in aqueous acetic acid is acid catalysed; rate-determining formation of a cationic intermediate is indicated by a ρ value of -3.79 and further analysis shows the rates to be influenced equally by both inductive and resonance effects of the substituents.6

Oxidation of alkyl phenyl sulfides by pyridinium bromochromate (PBC) is accelerated by electron-donating alkyl groups or aryl substituents, indicating an electron-deficient sulfur centre in the transition state; this is accounted for in terms of rate-determining electrophilic oxygen attack from PBC to the sulfide in an S_N2-like process.7

The kinetics and mechanism of oxidation of benzyl alcohol by tetraethylammonium chlorochromate have been studied.8

From the temperature dependence of the substantial kinetic isotope effect (KIE) observed in the oxidation of diols to hydroxycarbonyl compounds by $2,2'$-bipyridinium chlorochromate (BPCC), it is proposed that hydride transfer occurs in a chromate ester intermediate, involving a six-electron Hückel-type transition state.9 A similar conclusion is drawn for the oxidation of substituted benzyl alcohols by quinolinium chlorochromate.10

The kinetics of oxidation of allyl alcohol with quinolinium fluorochromate have been studied.11 This reagent has also been used to oxidize benzyl alcohols; the activation enthalpies and entropies obtained for the substituted derivatives are linearly related, and a Hammett relationship ($\rho = -1.04 \pm 0.08$) is obeyed.12

The oxidation of homoserine by Cr(VI) has been compared with that of simple alcohols and 4-hydroxybutyric acid (HBA). The formation of CrO_2^{2+} during the oxidation was taken as evidence for the intermediacy of Cr(II). Whilst the rate law for homoserine has a first- and a second-order term, the rate laws for alcohols and HBA display only the second-order term. The second-order rate constants for HBA and homoserine are similar (suggesting that the amino group of homoserine does not participate in binding to the chromium in this pathway), and about 10 times lower than for the alcohols, accounted for in terms of carboxylate binding to Cr(VI) in the intermediate ester (2), lowering the rate. The additional first-order term seen only for homoserine must arise from involvement of the amino group and this additional pathway is proposed to proceed via a tricyclic intermediate (1).13
The pyridine-catalysed Cr(V) oxidation of organic sulfides to sulfoxides may be explained by Michaelis–Menten (MM) kinetics between intermediate Cr(V)–catalyst and Cr(V)–catalyst–substrate complexes.14

The orders of reaction in the oxidation of \(N,N\)-dimethylaniline by chromic acid are one and zero, respectively.15 The reaction is catalysed by metal ions such as \(\text{Cu}^{2+}\) and \(\text{Ag}^{+}\), but retarded by \(\text{Mn}^{2+}\); a mechanism is proposed. In contrast, in the chromic acid oxidation of \(o\)-toluidine, the reaction is first order in both oxidant and substrate.16

Although (salen)manganese(III) complexes are widely studied, those with other metals are largely unexplored. The stereochemistry of Cr–salen-catalysed epoxidation of dimethylchromenes and styrenes was found to be highly solvent-dependent, with polar solvents giving the opposite sense of induction to non-polar.17 This may be explained by competitive collapse of diastereomeric metalloexetanes either directly to epoxide or via a cationic intermediate.

The kinetics of surfactant-catalysed oxidation of alanine by permanganate ion have been studied.18 An intermediate hypomanganate ester was observed in the oxidation mechanism of various cinnamic acid C=\(\text{C}\) bonds by permanganate ion.19 Hammett plots revealed reaction constants between \(-1\) and \(0\) at pH between 7 and 13. The kinetics and role of HMnO\textsubscript{4} in permanganate oxidations of alkylbenzenes have been investigated.20 The permanganate oxidation of nucleobases is first order in MnO\textsubscript{4}- and fractional order in base.21 X-ray diffraction analysis and X-ray photoelectron spectroscopy (XPS) studies of barium manganate have shown that Mn(VI)O\textsubscript{4}2- is reduced to Mn(IV)O\textsubscript{3}2- when it acts as an oxidant.22 The oxidation of aldehydes by permanganate in organic solvents has been studied. Under acidic conditions, acid-catalysed nucleophilic attack of MnO\textsubscript{4}- occurs on the aldehyde or the hydrate form, the latter being more reactive, as indicated by the acceleration induced by addition of water. In alkaline media, electron abstraction from the alkoxy anion of the hydrate (with simultaneous \(\text{H}^+\) elimination) is proposed to be the dominant process.23 In the permanganate oxidation of a series of \(z\)-amino acids, H(CH\textsubscript{2})\textsubscript{n}CH(NH\textsubscript{2})CO\textsubscript{2}H \((n = 0–4)\) in a weak acid, a sawtooth variation in rate as a function of chain length is observed, the reasons for which are not clear.24 Oxidative cleavage of 4-oxanones by acid permanganate has been studied.25

The Mn(II)-catalysed oxidation of glucose by peroxodisulfate ions occurs via a radical-chain mechanism.26 Kinetics of oxidation of thiodiglycollic acid by (trans-cyclohexane-1,2-diamine-\(N, N, N', N'\)-tetraacetato)manganese(III) have been investigated.27 Oxidations of ketoses and aldoses by manganese(IV) in sulfuric acid media have a first-order dependence on sugar and fractional-order dependence on oxidant.28 A mechanism has been proposed for the oxidation of L-malic acid by Mn(III) pyrophosphate in aqueous acid, involving complex formation and radicals.29

The use of Mn–salen catalysts for asymmetric epoxidation has been reviewed.30 Oxo(salen)manganese(V) complexes, generated by the action of Ph\(\text{IO}\) on the corresponding Mn(III) complexes, have been used to oxidize aryl methyl sulfides to sulfoxides.31 The first example of C–H bond oxidation by a (\(\mu\)-oxo)manganese complex has been reported.32 The rate constants for the abstraction of \(\text{H}^+\) from dihydroanthracene correlate roughly with O–H bond strengths.
Manganese(III) Schiff base complexes, but not those of iron(III), activate dioxygen in the presence of aliphatic aldehydes.33

A kinetic study of the reaction of phenol and several substituted derivatives with oxomanganese(IV) tetra(2-N-methylpyridyl)porphyrin in aqueous solution reveals that the rate-determining step involves hydrogen atom abstraction from the phenol by the oxomanganese(IV) species, as found in the reactions of the analogous oxoiron(IV) porphyrin.34 The manganese(III) complex of the same porphyrin has been used as a catalyst in the oxidation of 1,3-dimethylthymine with oxone.35 Oxidation of the 5-methyl group to $\text{---CH}_2\text{OH, }\text{---CHO} \text{ and } \text{---CO}_2\text{H}$ is observed, and accounted for in terms of a hydrogen abstraction and recombination mechanism. Two additional products, cis-1,3-dimethylthymine-5,6-glycol and 1,3,5-trimethyl-5-hydroxybarbituric acid, may be formed either by electron transfer followed by oxygen atom transfer, or by the involvement of hydroxy radicals.

In the oxidation of substituted benzyl alcohols to aldehydes by the mild oxidant bis(2,2'-bipyridyl)copper(II) permanganate (BCCP), the formation of an intermediate complex between the alcohol and BCCP in a pre-equilibrium is followed by rate-determining decomposition to the products; this probably involves hydride transfer, based on the substantial kinetic isotope effect observed.36 Michaelis–Menten-type kinetics were observed in the oxidation of organic sulfides by BCCP.37 Negative polar reaction constants indicate an electron-deficient sulfur centre in the rate-determining step. Similarly MM kinetics were observed in the oxidation of diols by BCCP.38 No primary KIE was observed for perdeuteroethane-1,2-diol. The oxidations of phosphinic, phenylphosphinic, and phosphorous acids by BCCP are catalysed by hydrogen ions.39 Similarly, in the oxidation of glycolic, lactic, mandelic, and nine monosubstituted mandelic acids by BCCP, the rate is found to increase with $\left[\text{H}^+\right]$; a Hammett analysis was carried out and thermodynamic parameters for the formation and decomposition of hydroxy acid–BCCP complexes calculated.40

Nickel(III) complexes of oxime–imine ligands, such as (3), are oxidizing agents: the oxidation of formate and oxalate to CO_2 and of malonate to mesoxalic acid by this complex has been studied at different pH values. The higher reactivity of the carboxylic acids compared with their monoanions was attributed to the formation of a hydrogen-bonded adduct between the carboxylate hydrogen and the oximato oxygen atom ($\equiv\text{N--O}^-$; the Ni(III) complex is a strong acid and is fully deprotonated under the conditions used here), providing a lower energy pathway for electron transfer from the reductant to the Ni(III) centre.41 The oxidation of thiols to disulfides by the same complex, (3), has been investigated.42
5 Oxidation and Reduction

The nickel(IV) complex of ligand (4) has been used to oxidize thiourea and alkyl derivatives to the respective disulfides, \(\text{NH}_2\text{C(S)NHR} \rightarrow \text{NH} = \text{C(NHR)} - \text{S} - \text{S} - \text{C(NHR)} = \text{NH} \). Autocatalysis is observed around pH 4.5, whilst at pH \(\geq 6 \), a faster Ni(IV)→Ni(III) reduction step is followed by slower Ni(III) → Ni(II) reduction. In the intervening pH region (ca 5.5), behaviour indicative of a single step two-electron-transfer reduction of the Ni(IV) is observed.\(^{43}\)

Silver, Copper, and Thallium

Intramolecular electron transfer in a stepwise manner from the amine substrate to the silver(III) center in a 1:2 complex, \([\text{Ag(OH)}_2]^–\text{N,N-dimethylaniline}\), has been observed.\(^{44}\) The kinetics of oxidation of some aliphatic, heterocyclic, and aromatic aldehydes towards bis(dihydrogentellurato)cuprate(III) and argentate(III) in alkaline medium have been studied.\(^{45}\) A negative salt effect was observed in the oxidation of aminoacetic acid by diperiodatocuprate(III) complex in alkaline medium.\(^{46}\) The oxidation of glutamic acid by thallium(III) perchlorate is catalysed by Ru(III), Os(III), and Nd(III) in a free radical mechanism and the rate is inversely dependent on \([\text{H}^+]\) concentration.\(^{47}\)

Cerium, Cobalt, Vanadium, Molybdenum, Rhenium, Bismuth, Palladium, and Iridium

Multinuclear NMR and ESR spectroscopy have been employed for the in situ detection and characterization of reactive intermediates in a variety of transition metal-catalysed oxidations.\(^{48}\)

The cerium(IV) oxidation of lactylactic acid\(^{49}\) and of 4-oxopentanoic acid\(^{50}\) in aqueous nitric acid solutions shows first-order dependence of the reaction on both cerium(IV) and substrate. A 1:1 complex formation between manganese(III) and amine, which later decomposes in the rate-limiting step, best explains the kinetics of oxidation of aliphatic amines by cerium(IV) in nitric acid medium in the presence of manganese(II).\(^{51}\) The kinetics of oxidation of naphthalene, 2-methylnaphthalene, and \(\alpha\)-naphthol with cerium(IV) in perchloric acid solutions have been studied.\(^{52}\) Use of a 50-fold molar excess of cerium(IV) perchlorate results in complete oxidation of fluoro phenols to CO\(_2\), HCO\(_2\)H, and HF in 48 h at 50 °C.\(^{53}\)

The kinetics of chromium(III)-catalysed oxidation of formic acid by Ce(IV) in aqueous H\(_2\)SO\(_4\) can be rationalized in terms of initial formation of an outer-sphere complex involving oxidant, catalyst, and substrate (S), Ce(IV)(S)Cr(III), followed by an inner-sphere complex Ce(III)(S)Cr(IV). It is proposed that electron transfer occurs within this complex from substrate to Cr(IV) (with elimination of H\(^+\)) followed by fast reaction to give CO\(_2\) (again with elimination of H\(^+\)).\(^{54}\) In contrast, there was no kinetic evidence for the accumulation of a corresponding inner-sphere intermediate in the osmium(VIII)-catalysed Ce(IV) oxidation of DMSO to dimethyl sulfone: here, the observed rate law was rationalized in terms of rate-determining bimolecular electron transfer from DMSO to Os(VIII) in an outer-sphere step.\(^{55}\) The kinetics of oxidation of 2-hydroxy-1-naphthalidene anil by cerium(IV) in aqueous sulfuric acid have been
studied.56 Polymerization of acrylonitrile was used as evidence for the formation of a radical intermediate during the oxidation of 2-methylpropan-1-ol by cerium(IV) in sulfuric acid.57

The kinetics and product distribution of oxidation of methylmalonic acid by Ce(IV) have been studied by 1H NMR spectroscopy. In the presence of at least six equivalents of Ce(IV), acetic acid is the only product whilst lower relative amounts of cerium led to hydroxymethylmalonic acid and pyruvic acid as end products, also shown to be intermediates in the formation of acetic acid.58

Steady-state hydroxocobaloxime(III) precursor forms a superoxocobaloxime(III) intermediate, which acts as the active oxidant in the cobaloxime(II)-catalysed oxidation of tetra-\textit{t}-butyl-4,4'-dihydroxystilbene by atmospheric oxygen.59 The catalytic oxygenation of alkenes and alkanes by oxygen donors catalysed by cobalt-substituted polynoxotungstate has been investigated.60 The formation of bromocyclohexane in cyclohexane hydroxylation upon addition of CH\textsubscript{2}Br\textsubscript{2} suggests the participation of cyclohexyl radical. The activation of dioxygen to form cobalt(III) superoxo complexes was shown by EPR to be enhanced by aliphatic ketones and aldehydes acting as ligands.61 It is suggested that intramolecular H− transfer from carbonyl compound and subsequent oxygen transfer to carbonyl leads to a cobalt(IV) Co=O oxo species akin to the Fe=O formed as an intermediate in cytochrome P450 enzymes. This species is able to oxidize a wide range of substrates with a different spectrum of activity to oxidation by cobalt(salens). It is also suggested that the formation of the initial cobalt(III)–superoxo complex is aided by hydrogen bonding to the hydroxymethyl group of equatorial ligands on the cobalt complex used in these reactions.

Asymmetric epoxidation, dihydroxylation, aminohydroxylation, and aziridination reactions have been reviewed.62 The use of the Sharpless asymmetric epoxidation method for the desymmetrization of \textit{meso} compounds has been reviewed.63 The conformational flexibility of nine-membered ring allylic alcohols results in \textit{trans}-epoxide stereochemistry from \textit{syn} epoxidation using VO(acac)\textsubscript{2}–hydroperoxide systems in which the hydroxyl group still controls the facial stereoselectivity.64 The stereoselectivity of side-chain epoxidation of a series of 22-hydroxy-\textgreek{A}23 sterols with C(19) side-chains incorporating allylic alcohols has been investigated, using \textit{m}-CPBA or \textit{t}-BuOOH in the presence of VO(acac)\textsubscript{2} or Mo(CO)\textsubscript{6}.65 The \textit{erythro}–\textit{threo} distributions of the products were determined and the effect of substituents on the three positions of the double bond (\textit{gem} to the OH or \textit{cis} or \textit{trans} at the remote carbon) partially rationalized by molecular modelling.

Dependence of the rate on pH in the epoxidation of allyl chloride by sodium orthovanadate-catalysed hydrogen peroxide is indicative of the active species being H\textsubscript{3}VO\textsubscript{5}.66 The kinetics of oxidation of valine by vanadium(V) has been studied in sulfuric acid.67 In an unusual mechanism, the hydrated polyoxometalate H\textsubscript{5}PV\textsubscript{2}Mo\textsubscript{10}O\textsubscript{40} oxidizes substrate thioethers. Since \textit{t}-BuOOH oxidant only reoxidizes the reduced form of the polyoxometallate this leads to a highly selective oxidation to sulfoxide.68 The oxidation of benzaldehyde phenyl sulfides (PhCH=CHSPh) and \textit{para}-substituted derivatives by vanadium(V) has been investigated.69 Vanadium-catalysed oxidation of alkenes with hydrogen peroxide in acetic acid results in the formation of the corresponding aldehydes.70
Molybdenum oxidoreductase enzymes are well known, but tungsten analogues less so, although they have been found in some hyperthermophilic organisms which grow at high temperatures. A model study of their activity was made using the complexes \((\text{NEt}_4)\text{M(VI)}\text{O}_2(\text{S}_2\text{C}_6\text{H}_4)_2\) (M = Mo or W, \(\text{S}_2\text{C}_6\text{H}_4 = 1,2\)-benzenedithiolate) and benzoin as the substrate (oxidized cleanly to benzi1). The mechanisms involve rate-limiting \(\alpha\)-H abstraction. Although the W complex reacts more slowly than the Mo complex, the difference in rate is much smaller at 100 °C than 30 °C, and the product yield is higher for the W system. This might explain the adoption of W by thermophilic organisms.

The oxidation chemistry of methylrhenium trioxide (MTO) has been reviewed. The oxidation of thiophenes by hydrogen peroxide has also been studied, using MTO as a catalyst. The latter reacts with \(\text{H}_2\text{O}_2\) to generate 1 : 1 and 1 : 2 rhenium peroxides, which are able to transfer an oxygen atom to the sulfur of the substrate, to give first the sulfoxide and then the sulfone. Whilst electron-donating substituents accelerate the first oxidation, the reverse trend is observed for oxidation of the sulfoxide.

The use of much-neglected bismuth derivatives for the oxidation of organic compounds has been reviewed. Bismuth(III) carboxylates, obtained by reaction of \(\text{Bi}_2\text{O}_3\) with pyridine mono- and di-carboxylic acids and with phthalic acid, act as catalysts for the oxidation of styrene oxide to benzoic acid in DMSO in the presence of \(\text{O}_2\). It is proposed that the bismuth may activate both epoxide and oxidant in a solvate, from which dimethyl sulfoxide evolution and elimination leads to a ketoaldehyde–bismuth complex (and hence to the initial product, 2-hydroxyacetophenone). Further oxidation to the ketoaldehyde and acid requires molecular oxygen, but is also found to be catalysed by bismuth.

The stereochemistry of the Wacker reaction, oxidation of terminal or methyl-substituted alkenes to aldehydes and methyl ketones using stoichiometric Pd(II) at low chloride concentration, has been probed using concepts of chirality transfer. The use of chiral allyl alcohols invoked the intermediacy of \(\pi\)-complexes in which the bulky substituent at the chiral centre is furthest away from a \(\text{cis}\) substituent on the other side of the C=C bond (A\(^1,3\) strain). Upon hydroxypalladation \(R\) stereochemistry was transferred but at high chloride concentration isomerization resulted in an inversion of configuration in the products, implying opposite stereochemistry. Assuming that the same \(\pi\)-complex is involved at both high and low chloride concentrations, it was deduced that the Wacker hydroxypalladation occurs via a \(\text{syn}\)-type intramolecular mechanism. The kinetics of oxidation of benzyl alcohol with a palladium(II) aqua complex in perchloric acid have been studied. The kinetics of palladium(II)-catalysed oxidation of digol and ethyldigol by \(\text{N}\)-bromosuccinimide (NBS) have been investigated. The mechanism of Pd(II)-catalysed oxidation of penta-1,3,diene by hydrogen peroxide has been studied.

The oxidation of trimethylene glycol and dimethyldiethylene glycol by NBS is catalysed by iridium(III) in acidic media. The kinetics have been investigated in the presence of mercury(II) acetate as a bromide ion scavenger, and \([\text{IrCl}_5(\text{H}_2\text{O})]^{2-}\) is thought to be the reactive iridium species under the conditions employed.
Group VIII Metals

The use of a catecholato iron(III) complex to catalyse the hydroxylation of 4-tert-butylphenol to 4-tert-butylicatechol by molecular O₂, in the presence of a hydroquinone as the proton and electron donor, has been investigated.⁸¹ Both Fe(II) and Fe(III) species have been found to be important for effective oxidation [e.g. trapping of Fe(II) as its phenanthroline complex inhibits reaction, but use of FeCl₂ did not give the high yields observed with FeCl₃]. Electron-withdrawing groups on the catechol lead to higher yields, possibly owing to their making the metal centre a better Lewis acid towards the phenolic substrate. An iron–oxygen active intermediate is proposed, possibly relevant to the mechanism of action of tyrosine hydroxylase, where oxidation by a non-iron peroxytetrahydropterin has been put forward.

The kinetics of the potassium hexacyanoferate(III)-catalysed oxidation of glucose with ammonium peroxydisulfate have been studied.⁸² The kinetics and mechanism of oxidation of some cycloalkanols by alkaline Fe(CN)₆³⁻ have been reported.⁸³ The same group has also studied the oxidation of cycloalkanones under comparable conditions and determined the order of reactivity as cyclohexanone > cyclopentanone > cyclo-octanone > cycloheptanone.⁸⁴ Palladium(II) has been found to catalyse the oxidation of formaldehyde, thiourea, and thioacetamide by alkaline Fe(CN)₆³⁻, whereas no effect is observed in the oxidation of acetaldehyde.⁸⁵ The orders of reaction have been determined and a mechanism was proposed.

From the kinetics of oxidation of diols by Fe(CN)₆³⁻ in aqueous alkali catalysed by RuCl₃, it is concluded that oxidation proceeds not by hydride ion transfer from alcohol to Ru(III) but via hydrogen atom transfer, to generate Ru(II) species and an intermediate radical which is further oxidized by more Ru(III).⁸⁶ Similar conclusions were made from a related study of the oxidation of propan-1-ol under comparable conditions.⁸⁷

In the stoichiometric oxidation of secondary alcohols to ketones by tetraoxoferrate(VI), the second-order rate constant depends on pH. Rate acceleration at high [HO⁻] is attributed to formation of HOFeO₄⁻, proposed to be more susceptible to attack by nucleophiles (alcohols, R₂CHOH) than FeO₂⁻ itself, to generate a ferrate ester, HOFe(O⁻)₄–OCHR₂. A second effect accounting for the steep dependence on [HO⁻] is attributed to ionization of alcohols to generate the more readily oxidized alkoxide ions.⁸⁸

The kinetics of oxidation of aldehydes by the Fenton reagent [Fe(II)–H₂O₂–OH⁻] have been studied.⁸⁹ It has been suggested that different reactivities of PhO in iron(III)–porphyrin-catalysed alkene epoxidation may be due to the formation of a more reactive iron(IV)–O–IPh complex.⁹⁰ The iron(III) complex of tetrakis(3,5-disulfonato- mesityl)porphyrin catalyses the oxidative degradation of 2,4,6-trichlorophenol to 2,6-dichloro-1,4-benzoquinone with KHSO₅ as the oxygen atom donor; a peroxidase-type oxidation is thought to be involved.⁹¹

Ru(II) halosulfoxide complexes catalyse the oxidation of secondary alcohols by N-methylmorpholine-N-oxide (NMO) via a proposed Ru(IV)oxo species.⁹² Ruthenium (VI) catalyses the oxidation of diethylene glycol by alkaline solution of potassium bromate.⁹³ Acid bromate oxidation of butylethylene glycol is catalysed by ruthenium(III).⁹⁴ Ruthenium(III) catalyses DMF oxidation by periodate in alkaline
solution.95 The ruthenium complex $[\text{Ru(azpy)}_2(\text{H}_2\text{O})_2]^{2+}$ has been used as a catalyst in the oxidation of several sugars by sodium bromate. The activity and selectivity of the reaction are strongly dependent on the structure of the sugar substrate.96

The dihydroxylation of cyclohexenols by OsO$_4$ alone is known to proceed with high anti diastereofacial selectivity. In order to determine the origin of this stereoselectivity, the oxidation of conformationally locked cyclohexenols, namely the cis and trans isomers of 5-\textit{t}-butylcyclohex-2-enol, has been examined.97 For catalytic OsO$_4$ oxidation in aqueous acetone using NMO, the anti-syn isomer was obtained in high diastereoselectivity, as for cyclohex-2-enol (Scheme 1). This has been attributed to the steric effect of the OH group differentiating the faces of the adjacent alkene and possible electrostatic repulsion between OH and the oxidant, favouring anti attack. The use of a non-hydrogen-bonding solvent (CH$_2$Cl$_2$) to encourage H-bonding between the OH and OsO$_4$, with the aim of reversing the anti selectivity, led to moderate selectivity for syn oxidation under catalytic conditions. That this is indeed due to intermolecular H-bonding was confirmed by the lack of such an effect when the OH group was methylated.

![Scheme 1](image)

| Condition (i) | 85 : 15 |
| Condition (ii) | 45 : 55 |

| Condition (i) | 57 : 43 |
| Condition (ii) | 54 : 46 |

Reagents: (i) catalytic OsO$_4$, NMO, acetone, H$_2$O
(ii) OsO$_4$ (1 mol%), Me$_3$NO\cdot2H$_2$O (1.3 equiv.), CH$_2$Cl$_2$

\textbf{Scheme 1}
In the dihydroxylation of cyclohexene by Me₃N⁺—O⁻, catalysed by OsO₄, aromatic amines and aliphatic chelating (TMEDA) or bridging (DABCO, hexamine) amines were found to retard the oxidation, owing to the formation of amine adducts of the dioxomonoglycolatoosmium(VI) ester intermediates, which are more resistant to the further oxidation required for product formation.⁹⁸ Alkenes derived from Garner’s aldehyde, N-Boc-N,O-acetonide of the aldehyde of L-serine, may be dihydroxylated by OsO₄ with excellent selectivities that may be explained by A¹.⁵ strain.⁹⁹

Definitive evidence for the mechanism of Sharpless’ asymmetric dihydroxylation (AD) system is still a matter for discussion. The agreement¹⁰⁰ of Becke3LYP¹⁰¹ DFT calculations with experimental high-precision NMR-based kinetic isotope effect methods¹⁰² has provided strong evidence to support a 3 + 2 mechanism. H–D and $^{13/12}$C KIEs for t-butylethene, chosen to avoid complications from regioisomeric 2 + 2 transition states, using the (DHQD)$_2$–PYR–OsO₄ system agreed well with calculations on OsO₄·NH₃ and ethene or propene. The results predict a 3.1–3.4 kcal mol⁻¹ activation energy for the 3 + 2 mechanism as opposed to the prohibitively high 41–44 kcal mol⁻¹ for the 2 + 2 mechanism and 29–31 kcal mol⁻¹ for four-ring to five-ring expansion. It should be noted, however, that a one-step 3 + 2 cycloaddition does not explain previously observed electronic and temperature effects that supported a complex overall mechanism. These calculations are in very close agreement with earlier calculations made on the same system using both LANL2DZ and 631G* basis sets that explored systems with and without amine base ligands.¹⁰³ The conclusion was also that the 2 + 2 pathway is prohibitively high in energy.

Corey and Noe published an extensive manifesto in support of the CCN (Criegee–Corey–Noe) 3 + 2 model (5).¹⁰⁴ They argue convincingly that all of the evidence previously cited as being inconsistent with CCN can be explained using CCN. This includes non-linear Eyring temperature effects on enantioselectivity that could simply be a function of the Michaelis–Menten-like kinetics. Working on the assumption of an early transition state, much of the discussion is based on the relative geometries of the U-shaped for CCN and L-shaped for 2 + 2 binding pockets that would be required. In support of CCN, enantioselectivities correlate better with varying alkene substrate structures fitting into a U-shaped pocket. Also in support of CCN is that $e e s$ are affected.
little by varying the spacer from, e.g., phthlazine to pyridazine, yet the $2 + 2$ model requires significant interaction of this spacer with substrate. Similarly, variation of the quinoline rings does affect ee and this would be expected to be influential in the CCN model, although influence on the $2 + 2$ L-pocket would also be expected to some lesser extent. Additional heuristic arguments are also invoked: the CCN model has proved useful in the design of novel systems for, e.g., terminal hydroxylation of higher terpenes.

Sharpless and co-workers have studied the effect of the variation of amine ligands on the dihydroxylation process and concluded that it involves a complex mixture of at least two reaction manifolds.105 The equilibrium constant of ligand binding and the corresponding reduction potential of the amine–OsO$_4$ complex increase with ligand basicity induced by electron-donating substituents. However, Hammett linear free energy relationships do not apply and only slight rate variation was observed. Moreover, substituent effects on quinuclidine bases were slight. Relationships for substrate substituent effects were parabolic and this is attributed to a combination of a $3 + 2$ pathway for the positive ρ value region (termed ‘nucleophilic’) of plots and a $2 + 2$ pathway for the negative ρ value region (‘electrophilic’). Thus, at high ligand concentrations with strong binding ligands the L–OsO$_4$ complex is nucleophilic and rates increase with electron withdrawal in the substrate. In contrast, with poorly binding ligands at low concentrations, electron-donating substituents in the alkene increase the concentration of the 16-electron osmoxetane formed in the $2 + 2$ pathway. Sharpless and co-workers conclude that the former case dominates with pyridine-type ligands but that a $2 + 2$ pathway seems most likely for the low concentrations of quinuclidine used in AD systems. They also suggested that Corey and Noe’s arguments based on the shape of the supposed binding pocket rely on inadequate evidence. A clear reduction in enantioselectivity and rate is observed as the substituent on styrene substrates becomes more electron withdrawing, something attributed to decreased interaction with the binding pocket of the ligand. They also dismissed the observed Michaelis–Menten kinetics as being due to a step other than osmylation and cited unpublished evidence that the kinetics are, in fact, first order with respect to substrate in the organic phase of the system. Finally, they acknowledged that observed changes in the curvature of the Hammett plots with ligand concentration imply that both pathways operate together although even this does not adequately explain all observed aspects of the system’s properties and contrasts with the ligand-free system in which linear free energy relationships are clearly observed.

Reverse Sharpless selectivity for terminal over internal dihydroxylation of non-conjugated dienes can be performed using AD-mix reagent α or β provided the internal alkene is sufficiently sterically hindered, and this may be attributed to the larger size of the reagents as compared with NMO–OsO$_4$ systems, which show lower selectivities.106 It should be borne in mind, however, that the interaction with key ligand faces may also have a critical and more subtle influence on regioselectivity107 and simple steric arguments will clearly not stretch so far.

Os(VIII)-catalysed oxidation of allyl alcohols by NBS in alkaline solution was found to be of first order in NBS and in $'Os$(VIII) and of fractional order in allyl alcohol and in alkali.108
Oxidation by Compounds of Non-metallic Elements

Nitrogen, Selenium, and Sulfur

Chiral Davis oxaziridines allow the oxidation of phosphonates to \(\alpha \)-hydroxyphosphonates in good ee with apparently wide generality and with a sense of induction that is well controlled by the chirality of the reagent used.\(^{109}\) mCPBA oxidation of a bicyclic endo-campohrylsulfonylimine surprisingly resulted in an exo-campohrylsulfonyloxaziridine, whereas all other campohrylsulfonylimines resulted only in endo-oxaziridines.\(^{110}\) Asymmetric oxidation of sulfides to sulfoxides and the \(\alpha \)-hydroxylation of enolates were predicted by models in which steric interactions are minimized.

The oxidation of primary and secondary alcohols by stable organic nitroxy radicals has been reviewed.\(^{111}\) The kinetics of reactions of alkanes and arenes with peroxynitrous acid suggest the participation of the same active oxidizing species in both gas and aqueous phase: HOONO or its decomposition product OONO\(^-\).\(^{112}\) The oxidation of the alkaloids reserpine and rescinnamine by nitric acid has been studied.\(^{113}\)

The sodium salt of \(N \)-chloro-4-chlorobenzensulfonamide (the \(p \)-chloro analogue of chloramine-T), upon addition of a 0.01–0.03 molar amount of dimethyl-2,2'-diselenodibenzooate, oxidizes secondary and \(\beta \), \(\gamma \)-unsaturated primary alcohols to the corresponding carbonyl compounds in good yield.\(^{114}\) Reaction does not proceed in the absence of the Se reagent. The compound ArSeNSO\(_2\)C\(_6\)H\(_4\)Cl was isolated under conditions of large excess of alcohol relative to oxidant and is thought to be a catalytic species in the cycle proposed. This is an unusual case of a compound of a main group element (Se) acting as a redox catalytic centre.

Swern oxidation of \(\beta \)-amino alcohols has been shown to be a useful alternative to metal-based oxidants, which may be chelated by the substrate.\(^{115}\) \(N \)-Methylpyrrollidine, \(N \)-ethylpiperidine, or triethylamine proved optimal as bases. The reaction, although successful for \(\beta \)-secondary amino alcohols, gave products that readily polymerized.

The peroxomonosulfate ion HSO\(_5^-\) (as Oxone) has been used in the oxidation of phosphorus esters of thiols to generate phosphorus(V) and sulfinic acids: \(\text{Ph}_3\text{P}(\text{O})-\text{S}-\text{C}_6\text{H}_4\text{R} \rightarrow \text{PhPO}_2\text{H} + \text{SO}_3\text{C}_6\text{H}_4\text{R} \). A kinetic study using a range of substituents (R) confirms earlier suggestions that the first step in such reactions is oxidation at sulfur, followed by attack of water and P—S bond cleavage.\(^{116}\) The use of HSO\(_5^-\) in the oxidation of a series of alkyl-substituted 2,6-diphenyl-4-piperidones has been described; a radical mechanism is excluded and a constrained epoxide transition state proposed.\(^{117}\) The oxidation of benzene by peroxodisulfate is not an important sink for benzene in the troposphere due to the higher concentrations of OH\(^-\) radicals present.\(^{118}\)

Like many fluoroxy compounds, in caesium fluoroxy sulfate-mediated oxidations competition between fluorination and oxidation is often observed.\(^{119}\) Cyclic and acyclic secondary alcohols gave ketones without any fluorination or oxidation although phenyl-1-naphthylmethanol gave 1-fluoronaphthalene. Primary alcohols gave acid fluorides derived from fluorination of aldehydes. Benzyl groups geminal to the hydroxyl group resulted in the formation of benzyl fluoride. Radical inhibitors retarded the rate. Hammett correlation for the oxidation of 1-phenyl-1-ethanols to acetophenones gave \(\rho^+ = -0.32 \). A mechanism involving initial rate-determining SET to give an alkoxy radical cation is proposed.
5 Oxidation and Reduction

Halogens

The HOF-CH₃CN complex readily oxidizes sulfides to sulfones. The electrophilic nature was confirmed by an X_{SO} value (see Peroxides and Peracids for a discussion of X_{SO}) of 0.45. Examples include electron-deficient sulfides that cannot be oxidized to sulfone by any other method.

The involvement of ArSO₂NCl₂ during the oxidation of benzhydrol (PhCHOHPh) by chloramine-T (CAT) in the presence of RuCl₃ is ruled out, owing to the first-order dependence of the rate on [CAT]. The oxidizing species here is likely to be H₂OCl⁺, formed in two fast equilibria which are catalysed by H⁺ and retarded by added p-toluenesulfonamide. Similar conclusions were drawn from an analogous study employing chloramine-B. Chloramine-T oxidation of D-glucuronic acid and D-galacturonic acid involves the formation of an enediol anion followed by its oxidation in a rate-determining step. The oxidation of aliphatic acetals with N-chlorobenzamide (NCB) follows first- and zero-order dependence in [NCB] and [acetal], respectively.

The kinetics of oxidation of selected ω-amino acids and aliphatic aldehydes by trichloroisocyanuric acid (TCICA) in aqueous acetic acid–perchloric acid is first order in both TCICA and substrate. The kinetics of Ru(III)-catalysed oxidation of aliphatic alcohols by TCICA in aqueous HOAc–HClO₄ are zero order in [TCICA], fractional order in alcohol and first order in Ru(III).

A radical chain oxidation mechanism, involving the formation and decomposition of an intermediate hydroperoxide, is consistent with the observed kinetics in the oxidation of cumene andacenaphthene by oxygen in the presence of alkylammonium perchlorates.

Belousov–Zhabotinsky (B–Z) oscillations in a 1,2-dimethoxybenzene–BrO₃⁻–manganese(II)–H₂SO₄ system have been studied. A system of fructose–BrO₃⁻–Ce⁴⁺–H₂SO₄ also gives rise to B–Z oscillations in the range 0.035–0.7 M fructose, which are promoted by tartaric acid. Potassium bromate has been used to oxidize the Schiff base 2-hydroxy-1-naphthalidene anil in aqueous acetic acid, and a kinetic study made. The kinetics of oxidation of formamide and dimethylformamide by HBrO₃ have been reported.

The oxidation of ω-hydroxy acids by benzyltrimethylammonium tribromide (BTMAB) to the corresponding carbonyl compounds shows a substantial solvent isotope effect, k(H₂O)/k(D₂O) = 3.57, but no KIE for ω-deuteromandelic acid. The oxidation of glucose by hypobromous acid is first order in glucose and the acid. [1,1⁻²H₂]Ethanol shows a substantial kinetic isotope effect when oxidized by hexamethylenetetramine–bromine (HABR) in acetic acid to aldehyde. Kinetics of the oxidation of aliphatic aldehydes by hexamethylenetetramine–bromine have been studied by the same group. Dioxoane dibromide oxidizes γ-tocopherol to 5-bromomethyl-γ-tocopherylquinone, which spontaneously cyclizes to 5-formyl-γ-tocopherol.

The kinetics of oxidation of caffeine by sodium N-bromo-p-toluenesulfonamide (bromamine-T) in dilute HCl have been studied. In the oxidation of ω-phenylbenzenemethanols by bromamine-T catalysed by ruthenium(III), the reaction constant ρ is −2.1 for electron-releasing substituents. It is proposed that the
oxidation of indigo carmine by bromamine-T at pH 5 proceeds via initial formation of dibromamine-T (ArSO₂NBr₂) in two fast equilibria, followed by its attack on the substrate in a rate-determining step.¹⁴⁰ The oxidation of primary amines with bromamine-B (BAB) in the presence of OsO₄ under alkaline conditions leads to the corresponding aldehydes. A kinetic study reveals that PhSO₂NBr⁻ is the likely reactive species, which forms a complex intermediate with OsO₄ in a rate-determining step, accounting for the lack of dependence on amine concentration.¹⁴¹ The kinetics of the oxidation of cyclopentanone and cyclohexanone by BAB in perchloric acid are first order in ketone.¹⁴² A kinetic study of the oxidation of six aryl-substituted phenethyl alcohols by BAB has been made, including a Hammett analysis.¹⁴³ The kinetics of oxidation of acetophenone and substituted acetophenones by N-bromophthalimide (NBP) in aqueous acetic acid are first order in substrate.¹⁴⁴

Oxidation of arylmethyl ketoximes by phenyliodoso diacetate in glacial acetic acid was second order overall, first order each in substrate and oxidant.¹⁴⁵ Iodine allowed the oxidative dimerization of glycine ester enolates with low to moderate diastereoselectivity that is consistent with kinetic control.¹⁴⁶ Although malonic acid is not oxidized by iodate under acidic conditions, oxidation proceeds in the presence of catalytic ruthenium(III). A mechanism is put forward to account for the observed orders of reaction.¹⁴⁷ The rate of periodate oxidation of m-toluidine in acetone–water increases with ionic strength.¹⁴⁸

Further to its ability to perform allylic and benzylic oxidations,¹⁴⁹ t-butylperoxyiodane (6) effects radical oxidation of 4-alkylphenols to give 2,5-cyclohexadien-1-ones under mild conditions in good yields.¹⁵⁰ o,o'-Coupling dimers as side products and inhibition of the reaction by added galvinoxyl radical scavenger support a radical oxidation mechanism.

\[
\begin{align*}
\text{Bu'O} & \quad \text{I} \quad \text{O} \\
(6)
\end{align*}
\]

Negative reaction constants \(\rho^+\) for the oxidation of sulfides by [10-I-3]-(t-butylperoxy)iodanes are consistent with a mechanism involving rate-limiting formation of a sulfonium species by nucleophilic attack of sulfide on the iodine(III) atom followed by attack of water to give sulfoxide.¹⁵¹ However, in dichloromethane, inhibition by galvinoxyl implicates a free radical mechanism perhaps by homolytic cleavage of the weak iodine(III)–peroxy bond.

The kinetics of oxidation of Dess–Martin periodinane (DMP) and its iodoxybenzoic acid (IBX) precursor have been compared to explain their often different selectivities.¹⁵² A fast pre-equilibrium produces transient iodic esters, whose axial alkoxy structure for IBX was determined by \(^1\)H NMR spectroscopy, which then disproportionate in a rate-limiting manner to product. As a result, steric effects in alcohol oxidation reflect a balance between opposing effects on equilibrium constants and rate constants for disproportionation. With 1,2-diols DMP gives spirobicyclic
periodinane adducts whereas IBX binds only reversibly; as a result, IBX forms an oxide that oxidizes to z-hydroxy ketones whereas DMP gives rise to C—C bond cleavage.

Ozonolysis and Ozonation

One study suggests that there are no compelling experimental data in support of HO· formation in the ozonolysis of alkenes.\(^\text{153}\) Nevertheless, other studies have been directed towards quantifying HO· formation during ozonolysis and the use of CO as a scavenger of HO· has been reported for this purpose.\(^\text{154}\) The resulting formation of CO\(_2\) is monitored by FTIR spectroscopy and the HO· yields are found to be highly dependent on the alkene, with ethene displaying the lowest value.

In accord with previous limited observations, a thorough investigation of ozonations of ammonia, amines, anilines, and p-phenylenediamines has shown that reaction occurs via a SET process.\(^\text{155}\) Furthermore, and more controversially, the correlation of rate constants for ozonations of various alkenes and arenes with ionization potentials led the authors to suggest that these substrates also react via a rate-limiting electron-transfer mechanism prior to primary ozonide formation. In the light of these results, it is interesting that the transition state for the overall reaction of ozone with cycloalkenes is likely to be closer in structure to the biradical intermediate, rather than to the initial ozonide intermediate; the apparent contradiction with earlier results is attributed to the fact that the latter have dealt with more complex systems, where steric effects rather than changes in ring strain probably determine the reactivity.\(^\text{156}\)

Ab initio calculations suggest that in ozonolysis, as the two fragments formed by dissociation of the primary ozonide start to move apart, a strong electrostatic attraction builds up between newly formed dipoles.\(^\text{157}\) The torque created causes a ‘flip’ of one relative to the other, with formation of a dipolar complex which converts to the secondary ozonide. Thus, the authors suggest that the carbonyl oxide and carbonyl are never actually separated to a van der Waals distance. This argument goes some way to explaining some observed experimental stereoselectivities.

Carbonyl oxides formed in the gas-phase ozonolysis of alkylated alkenes give rise to a much larger amount of OH· radicals when there is a *syn*-positioned alkyl group.\(^\text{158}\) This can be attributed to O—O bond cleavage being more favourable in these circumstances than decomposition to dioxirane. Isoprene, a minor atmospheric component, gives a 19% yield of OH· from ozone. The formation of \(\alpha\)-oxo carbonyl oxides by ozonolyses of alkynes was confirmed by \(3 + 2\)-cycloaddition trapping with carbonyl compounds and reaction of the resulting \(\alpha\)-oxo ozonides to form corresponding \(O\)-methyl oximes.\(^\text{159}\) Indeed, \(\alpha\)-oxo carbonyl oxides were found to trap ketones readily, which carbonyl oxides from alkene ozonolysis do not.

Whilst ozonolysis of cholesterol and related steroids in non-hydroxylic solvents is known to give the expected ozonides (which may be reduced to the 5,6-diols), the product of reaction in water or alcohols has previously been assigned as the hydroxyperoxide (7). Conclusive crystallographic evidence is presented showing that the products formed under these conditions are in fact hydroperoxides of the form (8),
reinforcing spectroscopic evidence such as the presence of a low-field 1H NMR signal, assigned to the OOH group.160

![Chemical structure](image)

The oxidation of 1,3,5-trifluorobenzene and trifluoromethylbenzene by ozone in acidic aqueous solution, and by OH$^-$ radicals generated from the action of ozone on hydrogen peroxide, has been studied.161 No hydroxylated aromatic compounds could be detected amongst the products of reaction of O$_3$ with 1,3,5-trifluorobenzene, presumably owing to rapid ring opening following 1,3-dipolar cycloaddition on the highly reactive intermediates initially formed. In contrast, a number of hydroxylated fluoroaromatics were obtained from the action of HO$^-$ radicals, thought to arise via the intermediacy of fluorohydroxycyclohexadienyl radicals. For trifluoromethylbenzene, the products are mainly hydroxylated trifluoromethylbenzenes.

The kinetics and product distributions of ozonolysis of vinylcyclohexane and methylene cyclohexane have been investigated.162 Steric hindrance of the cyclic substituent largely offsets electronic effects in determining the rate of reaction. The main products of ozonation of catechols were quinones, while catechol acetals gave rise to compounds with an opened benzene ring.163 The ozonolysis of azoles such as pyrroles, oxazoles, and imidazoles has been reviewed.164

Peracids and Peroxides

Oxygen-transfer agents for the oxidation of organic substrates by H$_2$O$_2$ have been reviewed and categorized according to whether they are used in stoichiometric amounts (carboxylic acids, nitriles, and amides) or in catalytic amounts [e.g. transition metal compounds, metal-containing zeolites, poly(amino acid)s and enzymes].165 When carried out in the presence of poly(amino acid)s, the epoxidation of α,β-unsaturated ketones by H$_2$O$_2$ occurs with high stereoselectivity for some substrates, but such reactions normally require triphasic systems (alkaline H$_2$O$_2$, an organic solvent, and an insoluble polymer) and the reaction times are often very long (several days), during which time the base may degrade the poly(amino acid). These problems have been circumvented using a two-phase non-aqueous system of oxidant (complex of H$_2$O$_2$ with urea or DABCO) and a non-nucleophilic base (DBU or DBN) in an organic solvent (THF and other polar aprotic solvents) with the immobilized poly(amino-acid).166 Many substrates are transformed much more quickly (typically 50 min) with high selectivity, and substrates such as styryl methyl ketone which are unreactive under
triphase conditions are oxidized (albeit more slowly). The diastereoselective alkylation of the resulting epoxides using MeLi/BrLi and CeI3 leads to epoxides formally derived from allylic tertiary alcohols which, it is noted, are not readily obtainable in optically active form by Sharpless methodology.

An interesting asymmetric Baeyer–Villiger reaction of prochiral ketones via chiral ketals (9) allowed the synthesis of chiral 3-butyrolactones in ees of up to 89%.167 An SnCl4 : mCPBA ratio of >1 in dichloromethane at –100 °C gave the best results and this is attributed to a high S_N1 character due to lowered nucleophilicity of peracid by coordination to SnCl4. This is mirrored by the better selectivity of BH3 than Et3SiH in acetal reductions.

\[\text{diol/H}^+ \rightarrow \text{peracid} \]

The Baeyer–Villiger oxidation of 1-\(\rho\)-methoxyphenyl-4-formyl-\(\beta\)-lactams to give 4-(formylxylo)-\(\beta\)-lactams is a rare example of preferred carbon over hydrogen migration in an aliphatic aldehyde; addition of 1-benzyl or 3-acyloxy/acylaza substituents gave only hydrogen-migration products.168 A theoretical investigation of the Baeyer–Villiger reaction in non-polar solvents was carried out using ab initio MO calculations;\(^{169}\) \(p\)-anisaldehyde was the substrate chosen. Addition of peroxyacetic acid to the carbonyl substrate is calculated to be the rate-determining step in the absence of catalyst and also using TFA as the catalyst. TFA also catalyses the subsequent migration step of the carbonyl adduct intermediate. Catalysis by acetic acid switches the rate-determining step from carbonyl addition to the migration. The effect of the trifluormethyl groups on the Baeyer–Villiger reaction of di- and tri-fluoromethyl ketone derivatives has been discussed.\(^{170}\)

A monocyclic methylsulfonyl ester has been suggested as a possible intermediate in the oxidation of 4-methyl-2,6,7-trioxo-1-phosphabicyclo[2.2.2]octane-1-sulfide by \(m\)CPBA.\(^{171}\) The mole fraction of SSO2 product (\(X_{SO2}\)) was determined from the product ratio of bissulfoxide (SOSO) to sulfone (SSO2) obtained on oxidation of thianthren-5-oxide (SSO) by a range of peracids.\(^{172}\) No significant steric effect was discerned for aliphatic peracids but a significant electronic effect for both aliphatic and benzoic peracids was observed. For example, CF3COOOH yielded almost no sulfone whereas nucleophilic peracid anion gave exclusively sulfone. Interestingly, the more reactive oxidants are also the more selective, a finding justified by orbital control and a lower energy gap between LUMO(oxidant) and HOMO(sulfide). This study nicely demonstrates the utility of thianthren-5-oxide as a probe of relative nucleophilicity or electrophilicity of oxidants. Whilst it is known that electrophilic oxidation of phenyl-1,5-dithioglycopyranoside gives primarily oxidation at glycosidic S(1) for the \(\alpha\)-axial anomer, but at ring sulfur S(5) for the \(\beta\), it has not been clear whether the reduced
nucleophilicity of the ring S(5) in the \(\alpha \)-anomer is really due to the anomeric effect [interaction between a non-bonding (n) orbital of S(5) and the antibonding \(\sigma^* \) of the glycosidic bond, C(1)—S(1)]. Oxidation of 4-substituted phenyl\(\alpha \)- and \(\beta \)-5-thioglucopyranosides (10) with \(m \)CPBA revealed that the rate of oxidation of the \(\beta \) form was 5–7 times higher than that of the \(\alpha \) form, consistent with an n–\(\sigma^* \) interaction.\(^{173} \) Moreover, the nucleophilicity of the ring S (as measured by the observed reaction rate constant) in the \(\alpha \) form is 1.5 times more sensitive than that in the \(\beta \) form to the electronic properties of the substituent \(X (\sigma_p) \). For example, electron-withdrawing groups (NO\(_2\)) lower the energy of \(\sigma^*[C(1)—O(1)] \) and hence nucleophilicity of the lone pair on S\(_5\) through increased (n–\(\sigma^* \)) endo anomeric interaction.

![Diagram](image)

(10)

\[X = \text{OMe, H, F, Cl, CF}_3, \text{NO}_2 \]

The reaction mechanism for \(N \)-oxidation by performic acid has been studied by AM1 calculation methods.\(^{174} \) The iminium salt \(N \)-methyl-3,4-dihydroisoquinolinium \(p \)-toluenesulfonate has been used to catalyse the oxidation of the azo dye calmagite by peracetic acid. The mechanism at pH 10 involves peracid oxidation of the quinolinium ion to form an oxaziridinium salt, which then acts as an oxygen transfer agent for oxidation of calmagite.\(^{175} \) The presence of lithium salts affects the course of the reaction determining the formation of benzoyl peroxide and benzoic acid as final products in the oxidation of benzaldehyde by perbenzoic acid.\(^{176,177} \)

The debate about two contrasting transition states for the epoxidation of alkenes by peracids (Prilaschajew reaction) continues. An excellent study has been conducted by Houk and co-workers\(^{178} \) in which the agreement of Becke3LYP\(^{179} \) DFT calculations with experimental high-precision NMR-based kinetic isotope effect methods\(^{102} \) using slightly asymmetric alkenes strongly supports the classical synchronous Bartlett butterfly epoxidation transition state. They also highlight the large differences between output from different calculation methods, which in some cases had suggested high asynchronicity.\(^{180} \) This method clearly has great potential for tackling many other systems for which differences in interpretation remain. The \(\alpha \) \(k_H/k_D \) KIE of 0.81 and \(\beta \)-secondary KIE of 0.96 reported for peracid epoxidation of 1-phenyl-3-methylbut-2-ene are consistent with a symmetrical rather than an asymmetric transition state, which would be expected to lead to a small positive \(\beta \) KIE due to hyperconjugative effects.\(^{181} \) A rate study of peracid oxidation of several \(\alpha, \beta \)-unsaturated aldehydes has revealed the dependence on the structure of both the aldehyde and peracid \(\text{RCO}_2\text{OH} \).\(^{182} \)

A modest increase in the rate of alkene epoxidation by peroxo acid in benzene occurs on addition of TCA or TFA.\(^{183} \) Calculations predict a much lower activation barrier for epoxidation of ethene with fully protonated peroxyformic acid (\(\Delta E^+ = 6.4 \text{ kcal mol}^{-1} \));
however, the concentration of such an intermediate in a non-polar solvent would be low and general-acid catalysis via a cluster of HA and peracid is another possibility. In calculations this lowered the activation barrier by 3 kcal mol$^{-1}$ to ca 15 kcal mol$^{-1}$.

Dioxiranes, such as dimethyldioxirane (DMDO) and (trifluoromethyl)methyldioxirane (TFDO), are powerful oxidants which exhibit electrophilic oxygen transfer to nucleophilic substrates as well as oxidation of unactivated alkanes. Primary k_H/k_D kinetic isotope effects of up to 6.76, determined through yields of competition experiments for the oxidation of cyclohexane and methylcyclohexane, suggest an electrophilic oxygen insertion mechanism for the oxidation of alkanes by DMDO. Lowered, but still significant, KIE values and continued formation of cyclohexanone products in the gas phase suggests that direct C—H bond insertion, rather than a radical solvent-cage mechanism, is operating.

The effect of intramolecular hydrogen-bonding on the C—H bond oxygen-insertion reactions of DMDO has been investigated by measuring the rate constants for its reactions with a series of aliphatic alcohols containing a single tertiary C—H bond, separated from the OH group by varying numbers of CH$_2$ units. The study showed that rate acceleration occurs when the distance between the reacting C—H bond and the OH group is such as to allow intramolecular H-bonding stabilization of the transition state; maximum rate acceleration (by a factor of six in acetone solution, compared with the analogous alkane incorporating CH$_3$ in place of the OH group) occurs when there are two interposed CH$_2$ groups.

DMDO produces sulfoximines efficiently while maintaining configuration and ee in the oxidation of optically active sulfilamines. Substituent effects suggest an electrophilic oxidation and nucleophilic attack by the weakly nucleophilic sulfonium sulfur. Use of TFDO led to N-oxidation and hence fragmentation. The oxidation of cumene by DMDO is reported to follow a chain-radical mechanism and is inhibited by oxygen. Aurones (furanones/pyranones with exocyclic C=C bonds) and dihydroflavanols can be epoxidized by DMDO. Whereas furanoïd systems gave epoxide products only, pyranoid structures gave largely rearranged products, presumably via epoxide formation also.

Encouraged by the good agreement between theory and experiment in their investigation of peracid epoxidations of alkenes, Houk and co-workers have extended the application of density functional theory methodology to those reactions involving DMDO, oxaziridine, and peroxynitrous acid. The transition states were all predicted to be concerted and of spiro geometry. Substituents on the alkene increased the degree of asynchronicity, and created a preference for the substituent to be anti to the oxidant substituents, as did the transition from peroxy acid or dioxirane to oxaziridine. This may be explained by the lower leaving group ability of N versus O which favours FMO interactions (12) between the oxygen lone pair n orbital and the π* of the alkene over the interaction (11) between π and the O—O σ* orbital, which is involved in the σ^*2-like attack of the alkene π system on the DMDO O—O bond. The n → π* interaction is also responsible for the large spiro preference. The results of this transition state modelling were extended using MM2 force-field calculations and shown to correlate with observed stereoselectivities of DMDO and oxaziridines already reported in the
literature. Previous calculations with MP2/6–31G* gave a synchronous transition state for oxaziridine191 but this was shown just to be a secondary saddle point 10.8 kcal mol-1 higher in energy. Short-lived peroxynitrous acid has never been observed to epoxidize alkenes but a transition state geometry that is in between those for DMDO and oxaziridine is suggested by this work to lie at a relatively accessible energy.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{molecules.png}
\caption{(11) (12)}
\end{figure}

AM1 and PM3 calculations reveal that epoxidations by DMDO and TFDO involve peroxyde-bond \(\sigma^*\) at a very early stage and that TFDO is the most reactive dioxirane as the CF\(_3\) group in it stabilizes this \(\sigma^*\) level. In accord with previous calculations a spiro transition state is predicted. Furthermore, allene is predicted to be less reactive than alkenes toward epoxidation by DMDO.192 DFT calculations on the oxidation of primary amines by dimethylidioxirane predict a late transition state with a barrier of 17.7 kcal mol-1 which is drastically lowered by hydrogen bonding to the O–O bond to just 1.3 kcal mol-1 in protic solvents.193

In a study aimed at dismissing conclusively the proposition that alkene epoxidation by DMDO involves a biradical mechanism, the oxidation of \(\alpha\)-methylstyrene, trans-cyclooctene and 1-vinyl-2,2-diphenylcyclopropane with DMDO was found to give the corresponding epoxide in high yield with no allylic oxidation via radical products.194 Were radicals to be involved, the strained trans-cyclooctene would be predicted to undergo trans to cis isomerization on epoxidation and, for the third substrate, the classical ultrafast ring opening of the cyclopropane ring would be expected. Neither process was observed to occur, rendering the radical pathway highly unlikely.

Shi and coworkers have found195 that pH has a dramatic effect on the epoxidation efficiency of their carbohydrate-based ketone reagent used previously196 for asymmetric epoxidations of alkenes. Raising the pH to 10.5 allows the use of 20 mol\% as opposed to the 3 equiv. It is suggested that a competing Baeyer–Villiger reaction is suppressed under these higher pH conditions; \textit{ees} of epoxidation remain as high.

Johnson and Taylor have shown that for the first time episulfones may be prepared by oxidation of a variety of the corresponding mono- and bi-cyclic episulfides using oxone–trifluoroacetone, although \textit{cis}-stilbene and cyclohexene episulfides failed.197 Preliminary mechanistic studies indicated that neither TFDO or Oxone alone was the
active oxidant. The chemistry of carbonyl oxide biradicals R₂COO and their cyclic isomers, dioxiranes, have been reviewed, including methods of generation and oxygen transfer activity.¹⁹⁸

In the molybdenum-catalysed epoxidation of oct-1-ene and cyclohexene with organic hydroperoxides ROOH, the steric effect of the substituent R on the reaction rate has been studied.¹⁹⁹ Substitution of an alkyl group in place of one of the methyl groups in Bu'OOH leads to a reduction in rate, the magnitude of which increases with increasing steric bulk of the substituent introduced. Substitution of a second and third methyl group in Bu'OOH led to further reductions in rate; for example, a 99% reduction in rate is observed for Et₃COOH. These observations are rationalized in terms of nucleophilic attack of the alkene on an alkylperoxomolybdenum(VI) intermediate: the effect of bulky substituents in the alkyl hydroperoxide is to impede the approach of the olefin to the O—O bond. Oxobisperoxo molybdenum complexes with chelating pyrazolylpyridine ligands are thought to catalyse the epoxidation of alkenes by activating the oxidizing agent (Bu'OOH or H₂O₂), rather than transferring an oxygen atom directly from an η²-peroxo ligand to the alkene.²⁰⁰,²⁰¹ In the perborate oxidation of aniline to azobenzene catalysed by Mo(VI) and W(VI), H₂O₂ is the reactive species. The reaction is zero, first, and second order in oxidant, catalyst, and substrate respectively, based on which a mechanism is discussed.²⁰² Peroxonioibium(V) complexes oxidize PhCH₂OH to PhCHO in a two-phase system of aqueous H₂O₂ as the oxidant and 1,2-dichloroethane as the organic solvent. The effect of phenylphosphonic acid and bipyridine as ligands for Nb has been investigated; in the latter case, selective oxidation to benzaldehyde (with no formation of PhCO₂H) was observed.²⁰³

A material prepared by anchoring titanium(IV) on to the walls of a high-area, crystalline mesoporous silica (MCM-41) has been used as an alkene epoxidation catalyst with alkyl hydroperoxides.²⁰⁴ The effect of replacing one of the three O—Si≡ groups to which the Ti(IV) is bound by an O—Ge≡ group is reported to lead to an increase in catalytic activity of up to 18% in the epoxidation of cyclohexene, although no explanation is provided and it is notable that the selectivity towards the formation of cyclohexene oxide (versus cyclohexenol and cyclohexane-1,2-diol) was inferior to that with the non-modified system.²⁰⁵

Oxidation of 3-mercaptopropanoic acid by H₂O₂ involves rate-determining nucleophilic attack of sulfur on the peroxide, which is accelerated at high pH owing to the faster rate of attack by the dianion compared with the monoanion or acid.²⁰⁶ The sulfinic acid (RSOH) so formed then undergoes fast reaction with further thiol to give the disulfide product. The kinetics (including pH dependence) of oxidation of DMS and DMSO by several hydroperoxides ROOH has been studied, with reference to their fate in the atmosphere.²⁰⁷ For conversion of DMS to DMSO, the rate constant is higher for ROOH than for ROO⁻. The logarithm of the rate constants for both species correlate well with the pKₐ values of the corresponding alcohol (ROH) but not with the values of ROOH: an electron-withdrawing group on RO⁻ (stronger acid ROH) favours cleavage of the RO⁻ anion in the rate-determining step, thereby favouring oxygen transfer to form Me₂SOH⁺, which deprotonates rapidly. The lower rate constants for ROO⁻ compared with ROOH then reflect the lower electrophilicity of the former in interaction with the nucleophilic sulfur of DMS. On the other hand, for the oxidation of DMSO to
dimethyl sulfone, the reaction is faster with the anion \(\text{ROO}^- \) (for most of the peroxides studied). DMSO acts here as a sulfur-based electrophile, and the reversal reflects the lower nucleophilicity of ROOH compared with ROO\(^-\). Again, a good correlation of the rate constants with \(pK_a \) (ROH) is found, accounted for in terms of pre-equilibrium addition of ROO\(^-\) to S=O followed by rate-determining release of RO\(^-\) on formation of

\[\text{SO}_2 \].

Photo-oxygenation, Singlet Oxygen, and Superoxide

Photosensitized oxygenation of significantly twisted 1,3-dienes has been studied to investigate the unusually high reactivity of vinylic hydrogens towards \(^1\text{O}_2 \).\(^{208}\) Thermal decomposition of diphenyldiazomethane in the presence of oxygen is accompanied by chemiluminescence.\(^{209}\) Laser flash photolysis to produce singlet oxygen allowed the oxidation of variously substituted diazomethanes;\(^{210}\) the \(\text{N}_2 : \text{N}_2\text{O} \) product ratio was determined by GC–MS and interpreted as being indicative of the ratio of formation of carbonyl oxide to ketone products. These were not affected by the use of protic solvents and appeared to be controlled by the relative stabilities of the resulting carbonyl oxides since electron-donating groups favoured their formation. A mechanism involving the intermediacy of dioxodiazole (13), with too short a lifetime to be observed, was suggested.

\[
\begin{align*}
\text{R}_1^1\text{C} = \text{N}_2 + ^1\text{O}_2 \\
\text{R}_1^1\text{N} = \text{N} \\
\text{R}_2^2\text{O} = \text{O} \\
(13) \\
\text{a} \rightarrow \text{R}_1^1\text{C} = \text{O}_2^- + \text{N}_2 \\
\text{b} \rightarrow \text{R}_1^1\text{C} = \text{O} + \text{N}_2\text{O}
\end{align*}
\]

Reaction of \(^1\text{O}_2 \) with a water-soluble 1,4-disubstituted naphthalene (14) leads to a 5,8-endoperoxide (16), in addition to the 1,4-endoperoxide (15) which is normally obtained as the exclusive product in such reactions (in the absence of methyl groups at position 6, 7 or 8).\(^{211}\) Formation of the 5,8-isomer is probably due to the effect of steric hindrance of the bulky substituents impairing the approach of \(^1\text{O}_2 \) to the more crowded
ring; the greater thermal stability of the 5,8- than the 1,4-compound is also likely to be due to steric hindrance in the butterfly structure of the latter.

\[R = \text{CH}_2\text{CH(CONCH}_2\text{CH(OH)CH}_2\text{OH)}\text{H}_2\]

In the ene reaction of singlet oxygen with alkenes bearing an electron-withdrawing group at the \(\beta\)-position, the driving force to form the new double bond in conjugation with the allylic position in the resulting product may be counterbalanced by the electronic repulsion between perepoxide and the negatively polarized allylic functionality found in C=O-, P=O-, and S=O-containing systems.\(^{212}\) This degree of counteraction appeared to vary with the degree of polarization in the order S=O > P=O > C=O. The quenching of singlet oxygen by five amines at different pressures, observed by time-resolved phosphorescence, revealed activation volumes from \(-33\ \text{cm}^3\text{mol}^{-1}\) in non-polar to \(-9\ \text{cm}^3\text{mol}^{-1}\) in polar solvents.\(^{213}\) These were used to calculate dipole moments that indicate that only a partial charge transfer takes place in the quenching process.

\textit{Ab initio} molecular orbital calculations, coupled with activation energies and entropies from experimental data, have been employed to determine the nature of the intermediates in the reaction of singlet oxygen with alkenes, enol ethers, and enamines.\(^{214}\) Allylic alkenes probably react via a perepoxide-like conformation, whereas the more likely pathway for enamines involves a zwitterionic cycloaddition mechanism. The reactions of enol ethers are more complex, since the relative stabilities of the possible intermediates (biradical, perepoxide, and zwitterionic) here depend sensitively on the substituents and solvent polarity.

The oxidation of vitamin K hydroquinone monoanion (17) with labelled \(^{18}\text{O}\) in THF leads to vitamin K oxide (18) in which the epoxide oxygen is fully labelled. In addition, partial incorporation of \(^{18}\text{O}\) at the carbonyl oxygen is observed (on the basis of the mass spectrum).\(^ {215}\) This is most readily explained by invoking a dioxetane intermediate (19) as opposed to the alternative intermediacy of a 2-hydroperoxide (20), where only the epoxide oxygen would be expected to be labelled.

Different ratios of inter- and intra-molecular chain propagation imply involvement of \(\alpha\)-keto hydroperoxides in the oxidation of ketones to \(\text{CO}_2\) and \(\text{CO}\) at 120–155 °C.\(^ {216}\)

The role of anthraquinones as mediators of one-electron transfer to molecular oxygen has been studied by cyclic voltammetry in DMSO and DMF solution.\(^ {217}\) The reduction potentials of those anthraquinones containing OH groups were substantially shifted towards more positive values in the presence of \(\text{O}_2\), whereas those without OH groups
showed no such effect. Indicative of a significant interaction with oxygen, this effect has been explained, with the aid of theoretical calculations, in terms of formation of hydroperoxide anion radicals which can be formed only by anthraquinones possessing OH groups. A study of the oxidative deamination of benzylamine to benzaldehyde catalysed by quinonoid cofactors supports the transamination mechanism of quinone-catalysed aerobic deamination involving an aminophenol intermediate that is
autoxidized to an iminoquinone during the catalytic cycle.218 Electrochemical results suggest that an asymmetric orthoquinone structure is a requirement.

\textit{Ab initio} and semiempirical molecular orbital calculations have been used, together with charge-transfer theories, to investigate the structures of organodioxide anions and related charge-transfer complexes between carbanions and molecular oxygen.219

The kinetics of quenching of 1O\textsubscript{2} by the alkaloid boldine in a number of solvents have been studied.220 Solvent-effect correlations of the quenching rate constant suggest that the predominant mode of quenching is the formation of a charge-transfer complex between the aromatic rings and the excited oxygen. Back-electron transfer of the electron in such a complex regenerates boldine and ground-state oxygen (physical quenching with no net chemical transformation) whilst combination leads to products (chemical quenching). The rate of consumption of boldine (as measured by HPLC) reveals that the latter accounts for up to 5\% of the total quenching rate.

\textbf{Atomic Oxygen, Triplet Oxygen, and Autoxidation}

The formation of a biradical, involving the addition of an oxygen atom to the double bond, is proposed to occur in the oxidation of acrylonitrile and crotononitrile by atomic oxygen(3P).221

The oxidation of cyclohexene by means of molecular oxygen in the presence of cobalt naphthenate, vanadyl acetylacetonate, and molybdenyl acetylacetonate as catalysts has been studied.222 The mechanism of \textit{p}-toluenesulfonic acid-catalysed oxidation of styrene epoxide by O\textsubscript{2} has been discussed, including the influence of [O\textsubscript{2}] on radical formation, drawing on literature data and comparison with the reaction in the absence of O\textsubscript{2}.223 With the aim of acquiring a better understanding of the factors responsible for knock in spark ignition engines, the oxidation mechanisms of pentane and cyclopentane have been probed by oxidation at 873 K and chromatographic determination of the product distribution according to the time of passage in the reactor.224

Study of the oxidation of aromatics at high temperature is relevant to their use in augmenting the octane rating of hydrocarbon fuels. Oxidation of anisole at 1000 K is shown to proceed via the same pathway as pyrolysis under inert conditions.225 Modelling of the experimental kinetics and product mixtures indicates that the first step is cleavage of the O—CH\textsubscript{3} bond to generate phenoxy and methyl radicals, from which cresols are obtained by attack of CH\textsubscript{3} at positions ortho, meta, or para to the oxygen, phenols by subsequent cleavage of the C—CH\textsubscript{3} bonds in the excited products, and methylcyclopentadiene by elimination of CO. A symposium has dealt with the mechanisms of oxidation of a range of aromatic and aliphatic hydrocarbons under combustion conditions, together with the role of NO\textsubscript{2}.226

In the oxidation of octan-2-one, undecan-4-one, 1,3-diphenylacetone, and 2-phenylacetophenone, different ratios of intermolecular and intramolecular chain propagation are proposed to lie behind the varying distribution of products, CO\textsubscript{2}, CO, H\textsubscript{2}, hydroperoxides, and acids; a mechanism involving \textit{\textnu}-keto hydroperoxides was proposed.227
Other Oxidations

The oxidation of cholesteryl esters and low-density lipoproteins by free radicals has been reviewed. The use of bis(pentafluorophenyl)borinic acid as a strong Lewis acid allows efficient Oppenauer oxidation of allylic and benzylic alcohols using Bu’CHO as oxidant. Saturated alcohols were only slowly oxidized and this allowed selective conversion of allylic alcohols in the presence of saturated alcohols.

The main effect of solvents on the rate of oxidation of tetrabutylammonium and sodium 1-acetonil-2,4,6-trinitrocyclohexa-2,5-dienide with tetrachloro-1,4-benzoquinone were basicity, polarizability, and polarity. Selective oxidations of benzyl ethers can be achieved using DDQ. Oxidation is favoured by electron-donating ether alkyl groups. Interestingly, the reaction rate is reduced by aromatic ring steric hindrance but not side-chain hindrance, which suggests an initial rate-determining aromatic stacking that is dependent on steric and electronic effects. Flavinium salts can be used as catalysts for the oxidation of benzylamines to aldmines under aerobic conditions. The mechanism proceeds via addition at C(4a) followed by amine-promoted elimination before the dihydroflavin is reoxidized by atmospheric oxygen back up to the flavinium form and provides a good model for monoamine oxidase enzymes. Oxidation of veratryl alcohol by the enzyme lignin peroxidase has been studied.

Reduction by Complex Hydrides

An excellent, broad review of the last 60 years of hydride reductions has been published and the use of selectrides, Li and K tri-σ-butylborohydrides or trisiamylborohydrides, has also been reviewed. A review of sodium borohydride–carboxylic acid as a reagent with novel selectivity in reductions has been written; in particular, this reagent is useful for the N-alkylation of primary and secondary amines, through a sequence that is believed to involve sequential carboxylic acid to aldehyde reduction followed by reductive amination.

The reductive fragmentation of cyclic α-amino oximes using NaBH₄ in acetonitrile gave α-amino nitriles in good yield. Low stereospecificities were interpreted as being a result of the reduction of acyclic iminium intermediates. Rates and substituent effects were consistent with a preceding rate-determining synchronous ring-opening step requiring alignment of the nitrogen lone pair, scissile bond and oxime N—O bond. The requirement for aliphatic nitrile as solvent was interpreted as involvement of solvent in various B—N adduct formations to create a suitable oxime O leaving group.

Reductions of cyclic enediones by NaBH₄ in the presence of CeCl₃ are controlled by accessibility for complexation by the Lewis acid and therefore more regioselective than those conducted without complexation. This combination of reagents in MeOH has been used for the selective reduction of a decalin-based ketone from the more hindered, equatorial face of the molecule. Use of 1.4 equiv. of NaBH₄ and 1.1 equiv. of CeCl₃ at high dilution (0.005 M) and low temperature (−95 ºC) led to a 95 : 5 ratio of the axial to equatorial alcohol (compared with a 20 : 80 ratio in the absence of cerium).
The influence of β-cyclodextrin on the reduction of acetophenone by aqueous NaBH₄ is to induce a small ee of (S)-1-phenylethanol. The addition of stoichiometric amounts of triethylamine has been found to invert the absolute configuration of the main product, and substantially higher ee values (up to 56%) are then observed. In a separate study, the stereoselectivity of the same reaction has been reversed through use of 6-deoxy-6-(ethylenediamine)-β-cyclodextrin.

A range of 2,3-epoxyamines were prepared and reduced with sodium cyanoborohydride in the presence of BF₃ · Et₂O. Generally good selectivity in favour of the products of sequential Lewis aza-Payne rearrangement, induced by Lewis acid epoxide opening, followed by reduction was observed, although, in some cases, straight epoxide reduction products or mixtures of products from both processes resulted. syn-1,3-Amino alcohols were synthesized in good diastereomeric excess by reductive amination of 3-hydroxy-ketones with sodium cyanoborohydride in the presence of benzylamine. The presence of a 2-alkyl substituent markedly reduces selectivity.

A thorough study of the reduction of hindered alkyl iodide by LAH has provided convincing evidence that reductive deiodination is a result of SET processes rather than SN₂ reaction. Product ratios showing varying, less than complete, incorporation of deuterium in LAD reductions for a variety of proposed intermediates also discounts the idea that radical-type products are the result of impurities. The nature of the vessel hardly affected SET levels but bromide reductions showed less SET character and tosylate reductions none at all. An unusual debrominative [1,2]-hydride shift is observed in the reduction of cis-2-azido-1-bromoindane with LAD whereas the corresponding cis-1-mesylate or trans-1-bromide underwent the expected SN₂ displacement. LAH reduction of artemisinin gave (21) and (22), the suggested mechanism shown was supported by the sequential reduction of artemisinin to lactol by NaBH₄ and treatment with base to give (21).

In the so-called Exterior Frontier Orbital Extension (EFOE) model (which applies only to the spatial expanse of a frontier orbital outside the repulsive molecular surface), the location in cyclohexanone of a ‘blocking wall’ formed in the equatorial region of space between the C=O π* and the 1s orbitals of Hₐₓ(2) and Hₐₙ(6) suggests that the stereochemistry of hydride reduction of cyclohexanone is determined at an early stage in the exterior region of the LUMO of the molecule to give axial approach. The authors suggest that this second-order mixing is caused by the three methylene carbons C(3–5) and not by the orbitals of the hydrogens themselves. Interestingly, the level of mixing should also depend on the conformation of the cyclohexanone. It should be noted that the original Felkin–Anh model employed a lower level STO-3G basis set which effectively neglected such distortion effects. This work suggests that this effect appears to be as important a factor as torsional effects in the nucleophilic π-facial selectivity in such systems. N-Alkylloxindoles may be reduced by LiAlH₄ whereas those which are unsubstituted on nitrogen are unreactive, probably owing to deprotonation of the amide NH. Similar protection of the oxindole carbonyl is reported in 3-(methylthio)oxindoles, where deprotonation of the rather acidic C(3)—H similarly protects the carbonyl. Interestingly, deprotonation also results in donation of electron density into the benzene ring to such an extent that an ester substituent in the ring ortho
to C(3) is greatly deactivated towards reduction to the alcohol, whereas forcing conditions lead to over-reduction to a methyl group. A mechanism is proposed, supported by a second study that shows that when deprotonation at C(3) is blocked by alkylation, reduction proceeds normally.250 The relative rates of hydride addition to the carbonyl group of a conformationally locked bridged biaryl ketone and its \(\alpha \)-methyl, \(\alpha \)-methylthio, \(\alpha \)-methoxy, \(\alpha \)-chloro, and \(\alpha \)-fluoro axial and equatorial derivatives (23) have been measured for each of three hydrides (LAH, NaBH\(_4\), and Et\(_3\)SiH); rate constant partitioning, based on diastereoselectivities, allowed the determination of facial selectivities.251 The results were not consistent with either Cieplak or Anh models and can be explained on the basis of through-bond and electrostatic through-space effects in the transition state.
Competition experiments have revealed that ionic triethylsilane-mediated reductions of alcohols exhibit dramatic substituent effects whereas only slight effects apply for ketones; this suggests that there is substantial carbocation character in the transition state for the former reaction but that counterbalancing effects on basicity and electrophilicity control the rate of the latter.252 A helpful rule of thumb results from this work: ‘ionic hydrogenation of carbonyl compounds only yields alcohols selectively under the conditions described in this work if the ethanolysis rate constants at 25 °C of the corresponding alkyl chlorides are smaller than 10^{-6} s$^{-1}$, otherwise the carbonyl group is immediately reduced to a methylene group,’ which translates to dialkyl ketones being selectively reduced successfully to alcohols but diaryl ketones being reduced all the way to diarylmethanes regardless of the number of equivalents.

An impressive new route to enantiopure syn- and anti-1,2-diols involves sequential diastereoselective DIBAL reduction of oxalyl-di(N-methyl-N-methoxyamide) following conversion to a corresponding intermediate β-keto sulfoxide; a route that involved control of both reductions by the chiral sulfoxide auxiliary.253 Comparison of β-hydroxy ketone systems with the γ-sulfoxide-β-keto systems used here showed this to be the first example of such asymmetric induction by a γ-sulfoxide substituent.

Other Reductions

An economical in situ method for the preparation of borane diisopinocampheylicloride (DIP-Cl or Ipc$_2$BCl) from NaBH$_4$, BCl$_3$ and 85% ee α-pinene has been demonstrated to be as effective as pure DIP-Cl for the reduction of aryl ketones.254 The successful use of this lower ee reagent is a consequence of positive non-linear effects or asymmetric amplification which is itself a consequence of the (+)-Ipc, (−)-IpcBCl isomer being almost inactive. Interestingly, however, closer inspection showed that these effects do not precisely follow those that would be predicted if DIP-Cl isomers were formed statistically. HCl and mesylic acid increase the rate of intramolecular asymmetric reduction of o-amino-substituted aceto- and benzo-phenones by diisopinocampheyliclorborane (DIP-H).255 This can be explained by the formation of an initial azaborane intermediate, observed by 11B NMR, which then reduces the carbonyl. Protonation of the nitrogen atom by these strong acids increases the Lewis acidity of the boron and hence accelerates the reaction.

Building on previous use of phosphonamides, a combined phosphonamide–dioxoborolidine has been prepared to operate via the predicted matched transition state (24) resulting in an S absolute configuration in product alcohols from the reduction
of acetophenone.256 Interestingly, the low ee of 59% was matched by using a chiral phosphonamide and dioxoborolidine in an intermolecular combination.

![Chemical structure](image)

(24)

The use of oxazaborolides as asymmetric reduction catalysts257 and the enantioselectivity of diphenyloxazaborolidine reduction of ketones have been reviewed.258 Large-scale practical enantioselective reduction of prochiral ketones has been reviewed with particular emphasis on the Itsuno–Corey oxazaborolidine and Brown’s B-chlorodiisopinocampheyldiborane (Ipc_2BCl) as reagents.259 Brown himself has also reviewed the use of Ipc_2BCl.260 Indolinoalkylboranes in the form of dimers have been confirmed by 11B NMR as the products of the reduction of trifluoroacetylindoles by diborane.261

The deoxidation of heterocyclic N-oxides has been reviewed.262 Cobalamin, cobinamide, and cobamidine have been used as electron-transfer mediators for the reduction of three chlorinated alkenes using titanium salts as the terminal electron donors.263 Dissociative one-electron transfer yields the corresponding vinyl radicals in a rate-limiting step and the direct formation of acetylene from trichloroethene is accounted for by elimination of a chloride radical from the 1,1-dichlorovinyl radical. The direct observation of a bicyclic aldime radical by EPR supports a mechanism for the reduction of benzaldehyde imines by formic acid in which formate addition is followed by decarboxylative homolytic bond cleavage.264 The aldimine radical formed then abstracts hydride from another imine–formate adduct to complete the chain. The observations by EPR were supported by spin trapping and NMR line broadening. The kinetics and mechanisms of reductions by ascorbic acid have been investigated in aqueous solution using p-benzoquinone as substrate, over the pH range 2–4.87.265 It is proposed that ascorbate anion is the reactive species and that the highly negative volume of activation under acidic conditions relates to its formation. Fast one-electron transfer is followed by reversible and rate-determining hydrogen atom transfer, consistent with a maximum kinetic isotope effect. Proton transfer completes the reaction, accounting for the observation that only in H$_2$O do ascorbate reductions proceed well.

Intramolecular protonation on the more hindered face of a steroid from a neighbouring hydroxyl group best explains a reversal of diastereoselectivity in the Birch reduction of styrene double bonds.266 The kinetics and product distribution of lithium metal reduction of benzaldehyde to benzyl alcohol in THF have been studied; electron transfer from Li to PhCHO occurs in a slow step, but absorption of the PhCHO onto the metal surface is also crucial in determining the overall kinetics. The proposed mechanism successfully accounts for the formation of minor products, benzoin and
A mechanism for the Clemmensen reduction of 3-arylpuruvic acid has been put forward, based on 1H NMR spectroscopic study of the enol form.268

Methods for the catalytic reduction of alkynes under homogeneous and heterogeneous conditions have been reviewed.269 The catalytic reduction of \{[4-nitrophenyl]methyl]sulfonyl\}acetic acid in alkaline dioxide–water proceeds via (α-hydroxy-4-nitrosobenzyl)sulfonylacetate as intermediates.270 Study of the kinetics and mechanism of the hydrogenation of N-(1,4-dimethylpentyl)-4-nitrosobenzeneamine to N-(1,4-dimethylpentyl)-1,4-benzenediamine over 5% Pd/C revealed faster reaction rates with decreasing pressures of hydrogen.271 Alkenes derived from Garner’s aldehyde, N-Boc-N,O-acetonide of the aldehyde of L-serine, may be hydrogenated with fair selectivities explained by A1,3 strain.99

π-Allyltricarbonyl iron lactone complexes bearing ketone groups in the side-chain may be reduced diastereoselectively by triisobutyl aluminium, since nucleophilic attack occurs anti to the bulky tricarbonyl iron unit. This has been exploited in a key step in the enantioselective synthesis of β-dimorphicolic acid, where diastereoselective reduction of a carbonyl-containing intermediate is thereby achieved, amounting to a 1,5-transfer of chirality.272 The metal carbonyl HCo(CO)$_4$ reacts with cinnamaldehyde in methylcyclohexane to generate hydrocinnamaldehyde and styrene.273 The reduction of the double bond is effected by H from the HCo(CO)$_4$ and from the solvent, in a free-radical chain mechanism. Formation of styrene arises from thermal decomposition of the initial product PhCH$_2$CH$_2$C(O)Co(CO)$_4$.

A tandem 1,4-addition–Meerwein–Ponndorf–Verley (MPV) reduction allows the reduction of α, β-unsaturated ketones with excellent ee and in good yield using a camphor-based thiol as reductant.274 The 1,4-addition is reversible and the high ee stems from the subsequent 1,7-hydride shift; the overall process is thus one of dynamic kinetic resolution. A crossover experiment demonstrated that the shift is intramolecular. Subsequent reductive desulfurization yielded fully saturated compounds in an impressive overall asymmetric reductive technique with apparently wide general applicability.

Intramolecular hydride transfer under MPV reduction conditions occurs in substrate (25) with complete stereospecificity to generate (26).275 A 2 : 1 mixture of product to reactant was observed, irrespective of reaction time or relative excess of Al(O3Pr)$_3$, indicative of an equilibrium. Intermolecular hydride transfer to give (27) does not occur and the absence of the epimer of (25) implies that complete stereodifferentiation also occurs in the reverse process (Oppenauer oxidation). Stereodifferentiation under
equilibrium conditions has not previously been reported for the MPV–Oppenhauer reaction and may be a consequence here of the restricted orientation of the carbonyl group and the alcohol in the intramolecular transition state; coordination to Al will also inhibit the intermolecular reaction.

The diastereoselectivity of reduction of 2-substituted cyclohexanones with 4-substituted aluminium phenoxides has been investigated over a wide temperature range (−75 to +80 °C). Hydride transfer dominates at high temperature whereas an MPV-type reaction contributes at lower temperatures.

HI in acetic acid allows the reduction of β-peracetates of the higher sugar N-acetylneuraminic acid to the corresponding anomeric deoxy compounds. At room temperature this method gave exclusively the α-anomer, whereas at −20 °C a 4:1 α:β ratio resulted. This may be explained by thermodynamic and kinetic protonation of ester enolates generated in situ from anomeric iodide in a manner reminiscent of previous reductions of 2-iodo sugar lactones.

Cationic sulfonamides of the form (29) [obtained from dialkynes (28) upon treatment with acids or halogens] undergo stereoselective reduction of the sulfonamide group to generate a sulfinamide (31) under very mild conditions. Indirect 1H NMR evidence suggests that the reaction proceeds via the intermediate (30). Further reactions occur in the presence of I₂, including the reduction of the sulfinamide to a sufenamide.

\[
\begin{align*}
\text{OH} & \quad \text{NH} \quad \text{C} \equiv \text{C} \quad \text{Ph} \\
\text{SO}_2 \quad \text{NH} \quad \text{C} \equiv \text{C} \quad \text{Ph} \\
\end{align*}
\]

(28)

\[
\begin{align*}
\text{OH} & \quad \text{NH} \quad \text{C} \equiv \text{C} \quad \text{Ph} \\
\text{O} \quad \text{S} \quad \text{C} \equiv \text{C} \quad \text{Ph} \\
\end{align*}
\]

(29)

\[
\begin{align*}
\text{OH} & \quad \text{NH} \quad \text{C} \equiv \text{C} \quad \text{Ph} \\
\text{O} \quad \text{S} \quad \text{C} \equiv \text{C} \quad \text{Ph} \\
\end{align*}
\]

(30)

(31)

An intramolecular model for the reductive acyl transfer catalysed by α-keto-acid dehydrogenases relies on the presence of PhHgCl to trap the thiolate generated by reduction of the lipoate disulfide bond by enamine. This shows a 10-fold increase in loss of enamine UV–visible absorption over background decomposition attributed by the authors to reductive acyl transfer. However, no reaction products were isolated and
the rate is ca 10^5-fold lower than that in dehydrogenase enzyme-catalysed systems. Although it has been established that Cu$^+$ brings about the decomposition of S-nitrosothiols in aqueous solution, $2RSNO \rightarrow RSSR + 2NO$, the effect of the presence of the corresponding thiols has been unclear. In a kinetic study, large differences in behaviour have been found for five such nitrosothiols derived from 2-amino- or 2-carboxylato-thiols: in some cases, catalysis was observed by the added thiols, whereas in others, stabilization was the outcome. The results have been interpreted in terms of the requirement of some thiol for reduction of Cu$^{2+}$ to Cu$^+$, offset at higher thiol concentrations by complexation of the Cu$^{2+}$, making it less available. Studies aimed at addressing the evolutionary origin of the stereospecificity of enzymatic reactions have been reviewed. Results from hydratase–dehydratase enzymes, enoyl thioester reductases and coenzyme B$_{12}$-dependent rearrangements are presented in support of the notion that stereospecificity is a historical contingency, arising from an arbitrary choice made early and then retained during the evolutionary process. Conversion of esters/lactones to their carbothionyl ester derivatives, followed by treatment with triphenylstannane in the presence of AIBN, gave reduced ether products, yet the use of tributylstannane failed. A two-step reductive mechanism involving radicals is implicated.

The thermodynamics and kinetics of reductions by NAD(P)H model compounds, such as 1-benzyl-1,4-dihydronicotinamide, have been investigated. With xanthylum ion as the substrate, it is proposed that rate-determining electron transfer is followed by fast hydrogen atom abstraction. Imanishi’s group have expanded their study of chiral sulfinyl-containing NADH models. By using (32) it was shown that the C(4) hydrogen syn to the S—O bond was stereospecifically transferred to ketones. However, an observed lack of kinetic isotope effect contrasts with amide NADH models and suggests a three-step electron, proton, electron process (with initial electron transfer being rate determining) rather than direct hydride transfer. Furthermore, similar enantioselectivities and NMR data were obtained from a 2-methyl derivative (33), in which additional A$_{1.3}$ strain between S—O and methyl is present. This lends support to a transition state in which the S—O bond is aligned with the hydrogen that is transferred.

![Diagram](image_url)

(32) $R^1 = \text{Bu, } R^2, R^3 = H, R^4 = D$

(33) $R^1 = \text{Bu, } R^2 = \text{Me, } R^3 = H, R^4 = H$

Compound (35) has been synthesized to mimic the NADH/NAD$^+$ cofactor and product in the transition-state model (34) of hydride transfer in dehydrogenase enzymes. The intended use of (35) is to act as a hapten for the generation of catalytic antibodies with the potential to act as dehydrogenase mimics.
Retention of configuration and regioselectivity of PPh₃ mediated O—O bond cleavage in 1,2-dioxolanes (wherein the more sterically congested O atom is abstracted preferentially) has been attributed to biphilic insertion of PPh₃ to form a labile phospholane intermediate which equilibrates with the alternative zwitterions formed on P—O bond scission; the regiochemistry is apparently determined by the relative rates of zwitterion fragmentation.²⁸⁷ Rhodium complexes of sulfonated (−)-(2S,4S)-2,4-bis(diphenylphosphino)pentane [(S,S)-(BDPP)] have been shown to be effective catalysts for the asymmetric hydrogenolysis of sodium cis-epoxysuccinate to sodium hydroxysuccinate in an aqueous–organic two-phase solvent system or in aqueous solution.²⁸⁸

References

5 Oxidation and Reduction

5 Oxidation and Reduction

5 Oxidation and Reduction

CHAPTER 6

Carbenes and Nitrenes

J. G. Knight

Department of Chemistry, University of Newcastle-upon-Tyne

Reviews ... 221
Structure and Reactivity 221
Generation .. 225
Addition ... 228
Insertion and Abstraction 229
Rearrangement .. 231
Nitrenium Ions .. 234
Nucleophiles and Electrophiles 234
Silylenes and Germynes 237
References .. 237

Reviews

Reviews have appeared on the absolute kinetics of intramolecular alkylcarbene reactions,\(^1\) the reactions between carbenes and the O–H bond,\(^2\) carbenes and carboranes,\(^3\) the use of carbenes and carbenoids in the synthesis of heterocycles,\(^4\) and the physical organic chemistry of Fischer carbene complexes.\(^5\)

Structure and Reactivity

Energy-resolved rate constant measurements near the threshold for triplet methylenecarbene formation from ketene have been used to provide confirmation of the fundamental hypothesis of statistical transition state theory (that rates are controlled by the number of energetically accessible vibrational states at the transition state).\(^6\) The electronic structure and aromaticity of planar singlet \(\Pi^2\)-carbenes has been studied by \(\pi\)-electron coupling perturbation theory.\(^7\) The heats of formation of three ground-state triplet carbenes have been determined by collision-induced dissociation threshold analysis.\(^8\) The heats of formation of methylene, vinylcarbene \((H_2C=CHCH)\), and phenylcarbene were found to be \(92.2 \pm 3.7, 93.3 \pm 3.4,\) and \(102.8 \pm 33.5\) kcal mol\(^{-1}\), respectively.

\textit{Ab initio} and molecular orbital calculations have been used to study the interactions of organic radicals coupled by \(m\)-phenylene.\(^9,10\) These methods were used to explain the low-lying excitation spectra of radical ions such as (1).\(^9\) The tricarbene (2) was also shown to have a high-spin ground state irrespective of the value of the dihedral angle.
This reflects the importance of through-bond interactions in comparison to through-space effects. The chemical reactivity of the 1,2,4-triazol-5-ylidene species (3) has been studied. Reactivity typical of a stable nucleophilic carbene was seen (insertion into OH, NH, SH bonds, protonation, nucleophilic attack on heterocumulenes).

The dihydrothiazol-2-ylidene (4) was generated by photolysis of matrix-isolated thiazol-2-carboxylic acid. Calculations suggested that the barrier to isomerization to thiazole is about 42.3 kcal mol\(^{-1}\) and that the carbene resembles the related imidazol-2-ylidene in structure. An \textit{ab initio} study of hydroxyoxiranone predicted that the decarboxylation of the zwitterion (5) to form hydroxycarbene (6) would be favourable \textit{in vacuo} but not in water. A theoretical study showed that dihalosulenines (X\(_2\)C=SO\(_2\)) are best viewed as dihalocarbene–SO\(_2\) complexes with a carbon–sulfur bond order of approximately zero. In a study directed at the elusive thionformic acid (7), tandem mass spectrometric methods were applied to isomeric ethyl thioformates. The results suggest that the radical cations generated have the carbene structure [(HS)C(OH)]\(^{+}\).

Analysis of the product distributions arising from both sensitized and non-sensitized irradiation of 2-allyloxyphenyldiazao species (8) showed that the C–H insertion product and much of the cyclopropanation arise from the triplet carbene. For the singlet carbene, intermolecular O–H insertion with methanol is about 50 times faster than intramolecular addition to the double bond. In this system, intramolecular reactions and intersystem crossing of the triplet carbene proceed at similar rates. In the closely related indanyln system (9), the smaller RCR angle stabilizes the singlet state relative to the triplet and the intramolecular reactivity is dominated by the singlet state.
Non-stereospecific cyclopropanation reactions of the diazafluorenylidene (10), generated by photolysis of the diazo compound, indicated a triplet carbene.18 Competition experiments suggested a singlet–triplet equilibrium at room temperature and a Hammett study of additions to substituted styrenes indicated that the carbene reacts as an electrophile ($\rho = -0.65$).

It was found that significant Arrhenius curvature arose due to the intrusion of intermolecular channels to give azine and carbene dimers during the reactions of mesitylchlorocarbene (11).19 This curvature disappeared upon dilution of the diazirine precursors. The authors comment that such effects must be carefully excluded before interpreting Arrhenius curvature in similar systems. The invariance of the ratio of 1,2-H shift and intermolecular reaction with methanol on photolysis of the diazo compound (12) under both sensitized and non-sensitized conditions is consistent with competing reactions of a spin-equilibrated carbene.20 The simpler diphenyl system [PhC(N$_2$)CH$_2$Ph] gave results consistent with some product formation via excited states of the diazo precursor. An account has appeared describing the role of steric and electronic effects in determining the reactivity of persistent triplet carbenes such as (13) ($t_{1/2} = 16$ s in benzene at room temperature).21

Phenylcarbene and o-tolylcarbene (produced by laser flash photolysis of the diazo compounds) could not be directly observed in pentane at room temperature.22 Ylide formation in the presence of pyridine allowed the lifetimes of these species to be determined as 74 ns. In contrast, transient spectra of triplet mesitylcarbene were
observed and the lifetime measured as 500 ns. The co-product benzoquinodimethane (14) was observed to arise by H-atom transfer in the excited state of the diazo compound in solution and directly from the carbene in a low-temperature matrix.

Studies of sterically crowded diarylcarbenes (15) have shown that dimesitylcarbene (15; Ar = 2,4,6-Me$_3$C$_6$H$_2$) decays by dimerization with a half-life of 160 ms.23 Didurylcarbene (15; Ar = 2,3,5,6-Me$_4$C$_6$H) has a lifetime of 410 ms due to buttressing of the o-Me groups by the m-Me groups and decamethylidiphenylcarbene (15; Ar = Me$_5$C$_6$) has a lifetime of only 180 ms owing to an increased rate of intramolecular H-abstraction from the o-Me groups. The related tri(t-butyl)diphenylcarbene (15; Ar = 2,4,6-But$_3$C$_6$H$_2$) had a lifetime of 125 s and decayed by H-abstractions from the o-But' groups. The use of bulky bicyclo[2.2.2]octyl groups gave rise to a triplet carbene (16) with a lifetime of 1.5 s in benzene at 20 °C.24 Rate measurements showed that this species was actually more reactive than didurylcarbene towards typical triplet quenchers.

Density functional theory calculations showed that for vinylidenecarbenes, through-bond inductive stabilization effects were of greatest importance in determining the influence of substitution on singlet–triplet splittings.25 For halogenated carbenes, orbital rehybridization and charge redistribution effects are large. The absolute kinetics of reactions of phenylcarbene and pentafluorophenylcarbene with various carbene quenchers was studied by laser flash photolysis.26 Both carbenes have triplet ground states (with single–triplet splittings of 2.3 and 3.1 kcal mol$^{-1}$, respectively) but react in solution at room temperature via the low-lying singlet state. Unlike the phenylnitrenes, perfluorination does not have a significant effect on the kinetics. This is probably due to the fact that phenylcarbene is a closed-shell structure whereas phenylnitrene is an open-shell ground state which can become a stabilized closed-shell form upon perfluorination.

Laser flash photolysis of perfluorophenyl azide and perfluorobiphenyl azide gives the singlet nitrenes (17).27 The fluorine atoms significantly raise the barrier to rearrangement of the nitrene, and increase the lifetime (32 ns for X = F and 254 ns for X = C$_6$F$_5$ at 21 °C). Absolute rate constants for intersystem crossing, ylide formation with pyridine, and rearrangement were determined. Singlet phenylnitrene has been spectroscopically observed in pentane at various temperatures.28 The decay of this species yielded an activation energy of 6.2 ± 0.4 kcal mol$^{-1}$ with $A = 10^{13.6±0.4}$ s$^{-1}$.
The barrier to rearrangement is larger than previous deductions because intersystem crossing is much slower than originally anticipated. Photoysis of mesitylzamide in the presence of tetracyanoethane gave rise to the azomethine ylide (18) by trapping of the singlet nitrene with a rate constant of approximately 10^9 mol^{-1} s^{-1}.^{29} Above 200 K, photo-decomposition of the azidophenylpyrazole (19) gives rise to the pyrazolobenzotriazole (20) by cyclization of the singlet nitrene.^{30} At lower temperatures the azo compound forms together with products derived from the triplet nitrene. The dehydroazepine (which would form by ring expansion of the nitrene) is not a kinetically distinguished isomer (or is in equilibrium with the singlet nitrene).

\[\text{(18)} \quad \text{NC} \quad \text{CN} \]
\[\text{NC} \quad \text{N}^+ \quad \text{CN} \]
\[\text{NC} \quad \text{N}^+ \quad \text{CN} \]

\[\text{(19)} \]
\[\text{N}^+ \quad \text{N}_3 \]

\[\text{(20)} \]
\[\text{N}^+ \quad \text{N}^- \]

Generation

The reaction of CHBr\(_3\) and CHCl\(_3\) with magnesium under Grignard conditions was shown to form cyclopropanes in the presence of alkenes.^{31} Treatment of 1,1,1,3-tetrahalopropanes (21; X = Cl, Br, F; Y, Z = Cl or Br) with KOBu' or alkali metal hydroxides under phase transfer conditions in the presence of excess alkene gave rise to cyclopropanes via a postulated alk-1-ynylhalocarbene (22).^{32}

Density functional theory was used to show that unimolecular formation of CO\(_2\) and dihydroxycarbene from oxalic acid has a barrier of 31 kcal mol^{-1}.^{33} The barrier for H-migration in dihydroxycarbene to form formic acid was shown to be less than 37 kcal mol^{-1} if an exchange with oxalic acid was involved (23). QRRK analysis of the pyrolytic decomposition of 2-chloro-1,1,1,2-tetrafluoroethane (F\(_3\)CCFCIH) indicated that the primary route is \(\alpha\)-elimination of HCl to form singlet F\(_3\)CFC:.^{34}

\[\text{(21)} \]
\[\text{R} \quad \text{Z} \quad \text{Y} \quad \text{X} \]

\[\text{R} \quad \equiv \quad \text{Y} \quad \text{X} \]

\[\text{HO} \quad \text{H} \quad \text{O} \quad \text{OH} \]

\[\text{(22)} \]

\[\text{(23)} \]
Electron impact mass spectrometry of the cyclobutanedione (24) gives rise to dimethylcarbene radical cation.35 Appearance energy measurements and \textit{ab initio} calculations indicated that the radical cation lies 84 kJ mol-1 above the propene radical cation and is separated from it by a barrier of 35 kJ mol-1. Diarylcarbene radical cations have been generated by double flash photolysis of diaryldiazomethanes in the presence of a quinolinium salt (by photo-induced electron transfer followed by photo-initiated loss of N\textsubscript{2}).36 Absolute rate constants for reactions with alkenes showed the radicals to be highly electrophilic. In contrast to many other cation radicals, they also showed significant radicophilic properties.

The attempted trifluoromethylation of pentamethycyclopentadienyllithium by reaction with F\textsubscript{3}Cl in the presence of \textit{N}-phenylmaleimide gave rise to the unexpected Diels–Alder adduct (25).37 The authors proposed that the cyclopentadienyl anion captures the iodine of CF\textsubscript{3}I to give (26) and trifluoromethyl lithium which then produces difluorocarbene (F\textsubscript{2}C:) which inserts into the C–I bond of (26) to form the difluoriodomethylated product. The observed regioselectivity of addition of thiazyl chloride (N=S–Cl) to 2,5-diarylfurans provided support for a mechanism involving carbene and nitrene intermediates (27).38
A carbene intermediate (28) was proposed in the photo-decomposition of the antibiotic agent lomefloxacin. Treatment of isoxazole-containing tetrachlorocyclopropanes such as (29) with MeLi gave rise to 1-aza fulvenes via postulated vinylcarbene intermediates (30).

Reaction of the benzyolphosphonate (31; \(X = O\)) with trimethylphosphite was proposed to proceed via deoxygenation to form the carbene (31; \(X = \cdot\)). In a single case, flash vacuum pyrolysis of the \(\beta\)-oxophosphorus ylide (32; \(X = \text{Bu}_3\text{P}\)) gave rise (by extrusion of \(\text{Bu}_3\text{P}\)) to products derived from the corresponding carbene (32; \(X = \cdot\)). Similar compounds with larger groups than Me next to the carbonyl did not undergo the same chemistry perhaps due to different conformational preferences (leading to loss of \(\text{Bu}_3\text{P}=\text{O}\) instead). An \textit{ab initio} study of the zwittazido cleavage of 4-azido-2-pyrrolines (33) failed to detect any nitrene intermediate. Rate determining loss of \(\text{N}_2\) from the \textit{trans} conformer (33) leading to an azirine intermediate was the most favoured path.

\(+R\)-type \textit{para} substituents lead to large increases in the rates of thermolysis of azidobenzenes. In nitrobenzene at 120 °C the rates follow the Hammett-type relationship \(\log k = -5.44 - 2.33\sigma_1 - 1.44R^+\) indicating conjugative stabilization of a nitrene-like transition state. \(+R\)-type \textit{ortho}-substituents cause even larger rate increases, suggesting a special resonance proximity effect (34).
Addition

A review has appeared on the synthesis of enantiomerically enriched aziridines by the addition of nitrenes to alkenes and of carbenes to imines. A study of the metal-catalysed aziridination of imines by ethyl diazoacetate found that main group complexes, early and late transition metal complexes, and rare-earth metal complexes can catalyse the reaction. The proposed mechanism did not involve carbene intermediates, the role of the metal being as a Lewis acid to complex the imine lone pair. Ruthenium porphyrins were found to be efficient catalysts for the cyclopropanation of styrenes. High diastereoselectivities in favour of the anti-product were seen but the use of chiral porphyrins gave only low ees.

The slight preference for syn addition of singlet methylene to cyclohexenes (35; X = Cl, OMe) was attributed to a reversible interaction between the carbene and the substituent. This was not, however, obviously ylide formation but could be long-range dipole–dipole interactions or a contact pair. The stereoselectivity of addition of H(Br)C to cycloalkenes was seen to increase from cycloocta-1,3-diene (unselective), cyclohexene (1.6 : 1 endo : exo), cyclooctene (2.2–2.8 : 1), to cycloocta-1,5-diene, (Z)-cyclodecene, and cyclodecene (which all gave exclusively endo addition). The authors proposed a close approach of one or more distantly bound hydrogen atoms to the double bond resulting in favourable H-bonding to the bromine of the carbenoid. The addition of glycosylidene carbenes (36) to dihydrofuran only gave good yields when R = pivaloyl. Reactions with other enol ethers gave poor yields and/or low diastereoselectivities.

\[
\begin{array}{c}
\begin{array}{c}
N_2^+ N^- \\
\text{OMe}
\end{array} \\
\text{(34)}
\end{array}
\begin{array}{c}
\begin{array}{c}
X
\end{array} \\
\text{(35)}
\end{array}
\begin{array}{c}
\begin{array}{c}
\text{RO}
\end{array} \\
\text{OR}
\end{array} \\
\text{(36)}
\]

The production of buta-1,3-dienes (37) by reaction of 1,2-diarylcyclopropenes with dihalocarbenes is thought to involve electrophilic attack of the carbene to give a dipolar intermediate (38). The addition of carbene to CO and H2C=O has been studied by MNDO calculations. Photolysis of diethyl diazomalonate in a CO matrix at low temperature gave rise to ketenes by immediate trapping of the postulated carbene (39). The major products of reaction between dichlorocarbene and cyclone were CO and the gem-dichloro species (40). The predominance of this pathway over formation of the dichlorooxirane or the cyclopropane is attributed to the aromatic nature of the carbonyl ylide and its twist geometry.

Addition of dimethoxycarbene (generated by thermolysis of the corresponding oxadiazoline) to 9-fluorenone gave rise to the unstable oxirane (observed by 1H NMR). This species was shown to rearrange to the ester (41) by an intramolecular methoxy transfer from (42) [and not by a 5-endo-tet methyl transfer from (43)].
Dialkoxycarbenes (44) with a tethered triple bond undergo intramolecular cyclization to give dialkoxvinylcarbene intermediates. The regioselectivity (to give endocyclic or exocyclic carbenes by attack on the far or near end of the alkyne) is dependent on the alkyne substituent (R). Moderate to high _anti_-diastereoselectivity was observed in the attack of ethoxycarbonylnitrene on ß-silylated silyl ketene acetics (45) to give ß- amino acid derivatives. A laser flash photolysis study of the reactivity of singlet pentafluorophenyl nitrene showed that it is most reactive towards electron-rich alkenes. The reactivity spread is, however, very small (and similar to that of phenylcarbene).

Insertion and Abstraction

No trace of any ring expanded products due to C–C insertion was seen in the reactions of methylene with strained spirobicyclic molecules (46) and (47). _Ab initio_ calculations on the reaction between quartet methylidyne (CH) with methane predicted a barrier of 3.5 kcal mol⁻¹.

Reaction of alkylnbisiodonium ditriflates (48) with sodium phenoxide gave rise to good yields of benzofurans by 1,5-CH insertion of the intermediate alkylidene carbene (49). The selectivity of 1,5-CH insertion of carbene (50) was observed to be highly dependent on the method of carbene generation.
The arylcarbenes (51; X = CH₂, O, SiMe₂) underwent β-CH insertion via the triplet carbene.⁶³ The related systems (52) underwent predominant insertion into the C–X bonds. In fact, when X = SiMe₂, products of insertion into all four C–Si bonds were observed. Treatment of the dibromophosphinaethene (53) with butyllithium gave rise to the phosphanaphthalene (54) by 1,6-CH insertion of an intermediate phosphinidenecarbene.⁶⁴

A reversible vinylidene insertion was proposed to explain the formation of (55) on flash vacuum pyrolysis of the anthracene derivative (56) at 1100 °C.⁶⁵ The expected loss of HCl followed by 1,2-H shift and 1,5-CH insertion of the resulting vinylidene species would give rise to the strained paracyclophane (57). This is proposed to ring open to the alternative alkylidene (58) before proceeding to the observed product (55).

The relative rates of insertion into the OH bond of methanol and addition to 2-methylbut-2-ene indicate that the β-thiophosphinoylecarbene (59) has enhanced nucleophilicity.⁶⁶ This was interpreted as being due to hyperconjugative electron
donation by the C–P bond. The insertion of nucleophilic carbenes (such as dimethoxy carbene) into the acidic C–H bond of β-diketones was rationalized by proton abstraction from the enol form to give an ion pair (60) followed by C-alkylation to form the products.57 The BF\textsubscript{3}OEt\textsubscript{2}-catalysed reaction between diazomethylphosphonates and disulfides or diselenides leads to insertion of the carbene RO\textsubscript{2}P(O)CH\textsubscript{2} into S–S and Se–Se bonds.68 Flash vacuum pyrolysis of the imidazole (61) occurs exclusively by insertion of the nitrene into the 2-CH bond.69 A mechanism involving H-abstraction by the triplet nitrene to give the highly stabilized diradical (62) was proposed.

\begin{equation}
\begin{aligned}
\text{Ph} & \quad \text{S} \quad \text{PPh}_2 \\
(59) & \\
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
\text{[O} & \quad \text{O}^- \\
(60) & \\
\text{H} & \quad \text{OMe} \\
\text{OMe} & \\
\end{aligned}
\end{equation}

\begin{equation}
\begin{aligned}
\text{H} & \quad \text{N} \\
(61) & \\
\text{H} & \quad \text{N} \quad \text{O}_3 \\
(62) & \\
\end{aligned}
\end{equation}

Efficient nitrene generation and insertion into the CH bonds of the solvent (cyclohexane) was observed for a series of perfluoroarylazides linked to metal-ligating systems (63).70

Rearrangement

An ab initio study of the rearrangement of vinylidene (H\textsubscript{2}C═C:) to acetylene found a barrier of 1.5 kcal mol-1, in good agreement with experimental evidence.71 Density functional theory has been used to study the related rearrangement of difluorovinylidene to difluorocetylene.72 Ab initio calculations indicated that, for simple acyclic dialkylcarbenes (such as ethylmethylcarbene), 1,2-H migration is preferred over 1,2-C migration and has a barrier of about 5 kcal mol-1.73 Rearrangement to a secondary alkene is favoured over that to a primary. For cyclic carbenes, the situation is more complex. For cyclobutylidene and norbornylidene the similarity between the carbene geometry and the transition state lowers the barrier for C-migration and 1,3-H shift respectively.

The rearrangement of fulvene (64) to benzene has been studied by theoretical methods.74 The favoured pathway involved rearrangement to isofulvene (65) (barrier 41.6 kcal mol-1), ring opening to cyclohexadiene carbene (66) (barrier 74.3 kcal mol-1), and 1,2-H shift to form benzene (barrier 59 kcal mol-1). The discrepancy between the calculated activation energy and the value determined by very low-pressure pyrolysis is suggested to be due to surface effects.

UV photoelectron spectroscopy was used to study the vacuum pyrolysis of diazothiochromanone (67; X = S).75 Calculations suggest that, unlike the oxygen analogue (67; X = O), Wolff rearrangement to the ketene (68) may be concerted with
N_2 loss. The ketene (68) loses CO to form a carbene which undergoes ring opening to (69) before ring closing to a benzocyclobutenethione.

AM1 calculations on the gas-phase Wolff rearrangements of α-ketocarbenes indicate that there is a strong vicinal interaction between the lone pair (n) and carbonyl σ* orbital.76 In the bridged transition state, electronic charge is transferred from the migrating group toward the non-migrating group. No 1,2-F migration or C–F insertion was seen in a flash vacuum pyrolysis study of carbenes (70).77 The almost exclusive rearrangement to (71) by attack at the CF_3 bearing carbon is explained by a simple FMO analysis.

Product analysis of the products of photolysis or thermolysis of conformationally biased tosylhydrazone salts (72) showed that a bystander equatorial Me group promotes a geminal H-shift several times more effectively than does an axial Me.78 The observation that the primary isotope effect for axial deuterium migration was 1.5 times that for equatorial migration in (72; R^1 = R^2 = D, R^3 = Me) invalidates the common assumption that these isotope effects are equal.
Ab initio calculations on the structures of ethylchlorocarbene and chloromethylchlorocarbene show that the equilibrium between cis and trans conformers is shifted moderately to the trans isomer for the ethyl derivative and strongly to the cis for the chloromethyl (due to a stabilizing carbene n → σ* C–C1 interaction).79 The barriers to rotation around the C–C bond are lower than the barriers to 1,2-H shift which leads to the more stable (Z)-alkene in both cases. The rearrangement transition states are product-like and the Z-isomers are stabilized by a through-space interaction of the p\textsubscript{z} orbitals localized on the terminal atoms.

Kinetic analysis of the rearrangement of benzylfluorocarbene, generated by laser flash photolysis of the corresponding diazirine, gave a rate constant of \(9.2 \times 10^6\) s-1 at 26 °C with activation entropy \(-17.2\) eu and activation energy 3.25 ± 0.34 kcal mol-1, very similar to the values for the chlorocarbene.80 A product analysis study of the thermolysis and photolysis of the diazirine (73) in the presence of tetramethylethylene showed that the ring-expanded cyclobutene and the cyclopropanation products do not arise via a common intermediate.81 The ring expansion was proposed to occur by loss of N\textsubscript{2} from the diradical intermediate (74).

A laser flash photolysis study of phenylacetoxy carbene (75) allowed the measurement of the rate of 1,2-acyl shift of between \(10^5\) and \(10^6\) s-1 in pentane at room temperature.82 The activation parameters were in good agreement with calculations. High-level calculations supported a carbanion-like attack by the carbene lone pair on the carbonyl (76) whereas the effects of substituents on the rate suggested an acyl anion-like transition state (77). The electron-donating, stabilizing effect of OAc slows the 1,2-C and 1,2-H shifts in alkylacetoxy carbones (78),83 allowing 1,2-acetyl shifts to compete.

Photolysis of matrix isolated diazo(2-furyl)methane led to the aldehyde (79) by stereospecific rearrangement of the carbene (80).84 The corresponding 3-furyl compound gave the (s-Z)-methylenecyclopropene (81) by ring closure of the initially formed vinylcarbene to give cyclopropene (82) followed by ring opening of the furan.
In an exactly analogous process, photolysis of diazo(3-thienyl) methane gave rise to the thial (83). 85

Ab initio calculations predicted that the ring expansion of singlet phenylnitrene to the tetraene (84) proceeds by rearrangement to the bicyclic triene (85) with a barrier of 6 kcal mol⁻¹, followed by ring expansion with a barrier of 3 kcal mol⁻¹. 86 This is 19 kcal mol⁻¹ less exothermic than ring expansion of ¹A' phenylcarbene but has a barrier 9 kcal mol⁻¹ lower. The difference in free energy of reaction stems from the much lower energy of the nitrene compared with the carbene. The lowest singlet state of the planar carbene (86) lies 20 kcal mol⁻¹ above (84) and represents the transition state for enantiomerization of this species. The ring expansion of several fluorinated phenylnitrenes was calculated to occur in two steps via the azirine, just as in the parent nitrene. 87 For 2-fluorophenylnitrene, the barrier to cyclisation towards fluorine is 3 kcal mol⁻¹ higher than for away from fluorine (largely due to steric repulsion in the transition state).

Nitrenium ions

Density functional theory predicts that the hindered diarylnitrenium ion (87; X = N⁺) has a triplet ground state and that the corresponding silylene (ArSiAr) has degenerate singlet and triplet states. 88 The triplet states can more readily accommodate the large valence angle at the nitrogen or silicon. A study of transient absorption spectra using pump-probe spectroscopy of phenyl azide and 2,4,6-tribromophenyl azide showed that protonation to form the nitrenium ions (ArNH⁺) is competitive with intersystem crossing in aqueous solution. 89

Nucleophiles and Electrophiles

The cycloaddition of Cl₂C: to formaldehyde is calculated to be about 2.5 times faster than ylide formation at 298 K. 90 The ylide was calculated to have a lifetime of about
1 ms with respect to ring closure. Push–pull stabilization by the partially aromatic cyclopentadienide moiety and the positively charged CBr₂ group of the ylide-like transition state was proposed to explain the high yield of CO formed on reaction of the ketone (88) with :CBr₂. N1 The Rh-catalysed decomposition of α-diazo keto esters such as (89; X = O) led to products derived from the carbonyl ylide. N1 In the corresponding amides (89; X = NEt) ammonium ylide formation was found to compete with formation of the carbonyl ylide.

\[
\text{Ar} \quad \text{X} \quad \text{Ar} \\
(87)
\]
\[
\text{Ar} = 2,6-	ext{Bu}^2\text{C}_6\text{H}_3
\]

The barrier to 1,2-cycloaddition of Cl₂C: to imine H₂C=NH was calculated to be 16.5 kcal mol⁻¹. N3 Ylide formation has a barrier of only 5 kcal mol⁻¹ and the dipolar ylide rearranges to a more stable biradical (90) which can ring close with a barrier of 21.2 kcal mol⁻¹. Dichloro- (91; X = Y = Cl) and chlorofluoroylides (91; X = Cl, Y = F), derived from the addition of dihalocarbenes to the benzophenone Schiff bases of amino acid esters, cyclize to give aziridines. N4 The corresponding difluoroylides (91; X = Y = F) undergo isomerization by 1,3-H shift to form ylides (92) before proceeding to products.

\[
\begin{align*}
\text{N} & \quad \text{CCl}_2 \\
(90)
\text{H} & \quad \text{N} & \quad \text{CO}_2\text{Et} \\
\text{Ph} & \quad \text{Ph} & \quad \text{Ph} \\
\text{H} & \quad \text{R} & \quad \text{Y} \\
(91)
\text{R} & \quad \text{X} & \quad \text{Y} \\
(92)
\text{Ph} & \quad \text{Ph} & \quad \text{Ph} \\
\text{H} & \quad \text{F} & \quad \text{F}
\end{align*}
\]

The oxidation of phenylhydrazine and 1,2-disubstituted hydrazines and diazenes by Cl₂C: proceeds via formation of unstable azomethine imines. N5 The conversion of alcohols into alkyl halides is achieved by reaction with CCl₄ (or CBr₄) in DMF under electrochemical reduction. N6 The reaction of dihalocarbene X₂C: with DMF to form a Vilsmaier reagent (93) is proposed as the key process. The reaction of simple isocyanates (RNCO) with dimethoxycarbene normally gives hydantoin-type products. In the reaction with vinylisocyanates such as (94), however, hydroindoles (95) are formed in good yields. N7 Treatment of the amidinium salt (96) with LDA was found to produce the alkene (97) and the stable carbene (98). N8 The dimerization of the carbene was found to be very slow and so the initial formation of alkene (97) was explained by reaction of the carbene
(98) with the starting material to form the new salt (99) which can lose a proton to form the alkene.

A number of minima corresponding to oxonium ylides and H-bonded structures were found on the potential-energy surface for reaction of singlet carbones with water and alcohols. Laser flash photolysis revealed that the rates of reaction between cyclopentadienyldiene or fluorenyldiene and alcohols increased with alcohol acidity and had linear Bronsted plots with slopes of 0.061 and 0.082, respectively. These results point to protonation with a very early transition state or to concerted OH insertion. For tetrachlorocyclopentadienyldiene, the results showed that ylide formation (100) is predominant.

The enol form of mandelic acid (101) has been generated by flash photolysis of phenyldiazoacetic acid in aqueous solution. The enol forms by hydration of the intermediate carbene (102). The reaction of chloramine-T (TsNCINaH2O) with methyl p-tolyl sulfide to give the corresponding sulfimide (103) appears to proceed via a nitrene-transfer mechanism in the presence of copper(I) and a second nitrogen ligand (such as acetonitrile).
Silylenes and Germynes

A review covering the frontier orbital control of silylene addition to alkenes has appeared.103 The complexation energy for silylene (H\textsubscript{2}Si:) with methanol is calculated to be 19.9 kcal mol-1.104 The overall barrier to OH insertion was found to be 0.6 kcal mol-1 (much less than that to C–O insertion). Silylidene (H\textsubscript{2}C=Si) and germylidene (H\textsubscript{2}C=Ge) have been produced by electron discharge in Me\textsubscript{3}Si and Me\textsubscript{4}Ge.105 Both vinyl chloride and allyl chloride react with dichlorosilylene (Cl\textsubscript{2}Si:) by C–Cl insertion.106 Alkali metal reduction of bis(dialkylamino)dichlorosilanes (104) gave the corresponding silylenes which could be trapped by reaction with benzene, alkenes, acetylene, and hydrosilane.107 Simultaneous generation of two different silylenes in benzene led to scrambling of the amino groups on silicon, suggesting the existence of bridged dimers (105).

A complex between difluorostannylenel (F\textsubscript{2}Sn) and chloromethane has been studied by infrared spectroscopy in an argon matrix at 12 K.108 Calculations suggest that insertion into the C–Cl bond is energetically favourable but has a very high barrier. Products of the vacuum flow pyrolysis of (Me\textsubscript{3}Si\textsubscript{2})GeHMe in the presence of excess alkene suggest the generation of the \(\alpha\)-silylgermylene, Me\textsubscript{3}SiGeMe, which either inserts into a C–H bond to form a silagermirane (106) or dimerizes to the digermene.109

References

CHAPTER 7

Nucleophilic Aromatic Substitution

M. R. CRAMPTON

Department of Chemistry, University of Durham

General .. 241
The S_N Ar Mechanism ... 242
Heterocyclic Systems ... 250
Meisenheimer and Related Adducts 252
Benzyne and Related Intermediates 254
References .. 254

General

The host–guest complexation of crown ethers with arenediazonium ions is well known. A study of the complexation in dichloroethane of benzenediazonium ions with crown ethers containing 4–10 oxygen atoms has shown that 21-crown-7 is the strongest complexing agent. The rate constants for dediazonation, which may involve heterolytic or homolytic pathways, are reduced by complexation. However, 12-crown-4, where the ring size is too small for complexation, destabilises benzenediazonium ions resulting in an increased rate of homolysis.\(^1\) Evidence for transannular interaction in 5-substituted [2.2]metacyclopahnes carrying a diazonio group (1) comes from studies of their UV spectra and from values of stability constants for their complexation with 18-crown-6.\(^2\)

Brightly coloured 1:1 charge–transfer complexes have been observed on mixing electron-poor arenediazonium salts, such as 3,5-dinitrobenzenediazonium tetrafluoroborate, with aromatic hydrocarbons in acetonitrile. These complexes, which involve

\[
\begin{aligned}
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{N}_2^+ \text{BF}_4^- \\
\text{Me} & \quad \text{Me} \\
\end{aligned}
\]

(1)
$\pi-\pi$ interaction, may be precursors for electron-transfer activation of the diazonium ions leading to dedazionation.3

The use of iodoacetic acid as an aryl radical trapping agent has confirmed the intermediacy of aryl radicals in some hydrodediazoniation reactions, whether these are initiated or not.4 Spontaneous hydrodediazoniation of aryldiazonium fluoroborates occurs in warm dimethylformamide (DMF). Detailed study5 of the conversion of the 4-nitro derivative into nitrobenzene indicates a homolytic mechanism in which H-atom abstraction occurs from both sites in DMF with a formyl:methyl preference of 3.5:1.0. High yields of mixed perfluorinated biaryls may be obtained by the catalytic dedazionation of pentafluorobenzenediazonium ions in acetonitrile containing aromatic substrates and small amounts of iodide salts. The catalytic role of iodide and the isomeric product distributions indicate that arylation proceeds through the pentafluorophenyl radical in an efficient homolytic chain process.6

There is continued interest in the S_{RN1} radical chain mechanism. A comparison of the efficiencies of twenty two nucleophiles, Nu^-, in their S_{RN1} reactions with iodobenzene has been made using both Fe(II)- and photo-induction.7 The radical anion PhNu^- is a key intermediate in this reaction and information on the energy of the MO where the unpaired electron resides may be inferred from calculations of the LUMO of the reaction product, PhNu. Substituent effects on the rate constants for cleavage of radical anions derived from a series of aryl bromides and α-phenoxyacetophenones have been correlated with the Hammett equation.8 A variety of carbanion nucleophiles, generated using potassium amide in liquid ammonia, have been shown to react with 2-bromopyridine in a photo-stimulated S_{RN1} reaction.9 There have been reports of the electrochemically initiated reactions of aryl halides with the thiourea anion leading, after fragmentation, to the formation of aryl sulfides and diaryl sulfides,10 and of thephoto-stimulated reactions of iodobenzene and 1-iodonaphthalene with the anion of N-thioacetylmorpholine.11

The $S_{N}Ar$ Mechanism

There have been both experimental and theoretical studies to probe the degree of concertedness in gas-phase substitutions as shown in Scheme 1. Is (2) an intermediate with a finite lifetime, or are the addition and elimination steps concerted so that (2) is a transition state? Experimental molecular beam studies on the femtosecond time-scale have been reported for the reaction of chloride ions with the iodobenzene cation to yield chlorobenzene and iodine. The results show an 880 fs reaction time for the elimination process, indicating a highly non-concerted process, so that here the σ-complex is an intermediate rather than a transition state.12 The reactions of halobenzene cations with ammonia have been interpreted in terms of the formation of an addition complex which may eliminate either halogen, X^-, or hydrogen halide, HX, depending on the nature of the halogen.13

In contrast, an *ab initio* computational study of the symmetrical exchange process, $X = Y = Cl, Br, I$ in Scheme 1, concluded that reaction would occur in a single step without the formation of an intermediate. However when $X = Y = F$, a two-step
mechanism with a discrete intermediate was predicted. The $S_{N}Ar$ reaction of chloride ions with 1-chloro-4-nitrobenzene was calculated to involve a concerted mechanism, while the introduction of further nitro groups resulted in a change to a two-step mechanism.14 Ab initio MO theory in combination with a continuum solvent model has been used to examine the substitution reactions of 1-chloro-2,4-dinitrobenzene with thiomethoxide ions in the gas phase and in solution. Calculations, in agreement with experiment, indicate reaction via a discrete intermediate with nucleophilic attack the rate-limiting step. Here, thiomethoxide was used as a model for glutathione to probe the mode of action of glutathione-S-transferase. It was concluded that the main function of the transferase was to facilitate generation of the thiolate and to provide a non-aqueous environment for the reaction.15 In a related theoretical study, the mechanism of the enzyme-catalysed dehalogenation of 4-chlorobenzoyl-CoA has been modelled using the reaction of acetate ions with (3). Here the calculations indicate that the σ-adduct intermediate would have low stability corresponding to the low electron-withdrawing ability of the methylthiocarbonyl group.16

\[
\begin{align*}
\text{MeS} & \quad \text{C}=O \\
\text{Cl} & \quad (3)
\end{align*}
\]

There has been a review of the effects of high pressure on the substitution reactions of amines with haloaromatic compounds, including polyhalobenzenes.17 Nucleophilic substitutions by amines often proceed readily in dimethyl sulfoxide (DMSO). The pK$_a$ values, in DMSO, have been reported for some ammonium ions derived from amines widely used as nucleophiles in $S_{N}Ar$ reactions.18 Correlations have been established19 between the oxidation potentials and the basicities of some arylamine and diarylamine anions and the rate constants for their reactions with aryl halides in DMSO.

The kinetics of the reactions of 1-halo-2,4-dinitrobenzenes with aliphatic amines have been used to probe solvent effects in mixtures of chloroform or dichloromethane with polar hydrogen-bond acceptors, such as DMSO. In these reactions, nucleophilic attack is rate limiting. Attempts to correlate reactivity with the empirical solvent
polarity parameter $E_1(30)$ were unsuccessful. Solvent effects have also been examined in the reaction of morpholine with 2,3-(cyclopentene-3′,5′-diyl)-endo-N-(2″,4″-dinitrobenzoyl)succinimide. In non-polar solvents, association phenomena between reagents may be important and may contribute to catalytic effects. The third-order dependence in amine of the reaction between aniline and 1-chloro-2,4-dinitrobenzene in toluene has been interpreted in terms of reaction via dimers of the nucleophile.

There has been an investigation into the relative activating effects of carboxamido (CONH$_2$) and carbomethoxy (CO$_2$Me) substituents in reactions involving displacement of halide ions by benzenethiolate and piperidine nucleophiles in methanol. Generally, the carbomethoxy group is the more strongly activating. However, the high efficiency of the α-carboxamido group in combination with the benzenethiolate nucleophile was attributed to favourable interaction between the nucleophile and the hydrogen atoms of the CONH$_2$ group in the transition state (4) for nucleophilic attack. A kinetic study of the reactions of 1-N-crown ether-2,4-dinitrobenzenes with alkali metal hydroxides in DMSO–water has shown that cation complexation occurs rapidly and favours the formation of both 3-hydroxy σ-adducts and phenolate ions. Study of the reactions of 4-nitrohalobenzenes with alkali metal phenoxides in dimethylformamide indicates enhanced reactivity for “free” phenoxide ions compared with ion-paired phenoxides, and the effects of substituents in the phenoxides have been evaluated. There have been reports of the kinetics of the reaction of picryl bromide with 4-(4′,N,N-dimethylaminostyryl)pyridine in acetonitrile leading to the formation of an N-(trinitroaryl)pyridinium salt, and of the reactions of aryl dichlorides with alkaline sulfides resulting in polymerization.

![Diagram](4)

The reactions of oxygen, sulfur, and carbon nucleophiles with 1-fluoro-4-nitroanthraquinone have been shown to result in displacement of fluorine rather than the nitro group. However replacement of either fluoride or nitrite has been observed in the reactions of 1-fluoro-2,4-dinitrobenzene with substituted lithium phenoxides in liquid ammonia. The reaction of 1,3-dinitrobenzene with phenolate or benzenethiolate ions in DMSO or DMF may result in nitro group displacement; the mobility of the nitro group is 1.3–1.9 times higher than that of fluorine in 1-fluoro-3-nitrobenzene. It has been shown that S,S-diphenylsulfilimine (Ph$_2$S=NH) reacts by the S_NAr mechanism with activated aryl halides; its behaviour resembles that of an amine such as piperidine. Dimethoxycarbene, generated by thermolysis, may displace fluoride from aromatic compounds activated with electron-withdrawing groups; the products are unstable ‘acetals’ of aryl fluorides. 18F-labelled perfluoronitrobenzene
has been prepared by 18F for 19F fluoride exchange and has been used for labelling biochemically important molecules.35

There is current interest in the nucleophilic substitution of ring hydrogen which may involve oxidative or vicarious pathways. Some applications of vicarious substitutions in syntheses have been reviewed.36 A general synthesis of (4-nitroaryl)diarylmethanes involves vicarious substitution of hydrogen by diarylmethylbenzotriazoles in 2- or 3-substituted nitrobenzenes, as shown in Scheme 2, and makes use of the excellent leaving-group ability of the benzotriazole group. Here the diarylmethylbenzotriazole reagents are produced by condensation of benzotriazole and diaryl methanols with acid catalysis.37 Tele-substitutions yielding para-alkylated products have been observed in the reactions of α-(benzotriazol-1-yl)alkyl aryl ketones with alkyllithium or Grignard reagents.38

![Scheme 2](image)

Although nitrophenols are unreactive in vicarious substitutions, it has been shown that their toluenesulfonate derivatives will react with carbanion nucleophiles carrying leaving groups. The products obtained are readily hydrolysed to yield the corresponding phenols or hydroxynitrobenzaldehydes.39 It has been reported that the reaction of 3-chloronitrobenzene with the enolates of some chiral cyclohexylphenylsulfanyl acetates results in vicarious substitution at the 4-position and may be followed by stereoselective alkylation.40 The hydroxylation of 1-chloro-2,4-dinitrobenzene has been achieved by reaction with cumene hydroperoxide and has been used in an efficient synthesis of 4,6-diaminoresorcinol.41 1-Nitro- and 1,8-dinitro-naphthalenes are hydroxylated by reaction with potassium peroxyxide in liquid ammonia to give mono- and dinitronaphthols,42 it is thought that the reaction involves oxidation by molecular oxygen of σ-adducts such as (5).

![Image](image)
An unusual non-radical phenolic coupling has been observed in 4-substituted-2,6-diiodophenols. It is likely that the reaction which results in the liberation of iodine involves SN2 attack by an ambdent phenolate anion (5) on the α-iodo keto tautomer (6).

![Diagram of molecules (5) and (6)]

The reactions with base of 9-(N-4-R-benzenesulfonyl-N-methylamino)fluorenes (7) result in elimination to yield imines for most R substituents. However, when R = NO2, the product (8; R = NO2) is formed. There is a large isotope effect, kH/kD = 5.8, at the 9-position indicating that hydrogen transfer is rate limiting. Product formation involves intramolecular carbanion attack at the 1-position of the nitrobenzenesulfonyl ring with loss of sulfur dioxide. The reactions of pentafluorobenzaldehyde with anilines yield tetrafluoroacridines; the mechanism is thought to involve intramolecular ring-closure of 2-arylamino derivatives of Schiff bases. Evidence derived from 17O labelling studies has shown that a β-O-4 to α-O-4 rearrangement in a lignin model compound involves intramolecular nucleophilic substitution via the intermediate (9). Intramolecular cyclization of conjugated carbonyl ylides (10) may yield benzoepine derivatives. The rates of cyclization onto the unsubstituted phenyl group at the 2-position relative to attack on various 6-substituents have been examined by competition experiments. There have been reports of the use of intramolecular hydroxydefluorinations in the synthesis of the D–O–E segment of vancomycin and in the syntheses of model compounds for chloropeptins and kistamycin.

![Diagram of reactions (7) and (8)]

There has been a study of photo-induced intramolecular cyclization of some o-haloarylheterylamines which may lead to pyrido[1,2-α]benzimidazole derivatives. Several studies have been reported of photochemical nucleophile-olefin combination, aromatic substitution (photo-NOCAS) reactions with fluoride, cyanide, or acetonitrile acting as the nucleophile. In the example illustrated in Scheme 3,
cyanide in 1,4-dicyanobenzene is displaced, in a photo-induced reaction, by a combination of the alkene and nucleophile.

There has been a review55 of ester-mediated substitutions including the reactions of \(o\)-alkoxyarylcarboxylic esters with C-, N-, and O-nucleophiles. It has been shown that the reactions of aryllithium reagents with 2,3-dialkyldenedioxybenzoic esters such as (11), where \(R = 2,6\text{-di-}t\text{-butyl-}4\text{-methylphenyl, may yield 6-hydroxy-1,1'}\text{-biphenyl-2-carboxylates in good yield.}56 The activating ability of sulfonyl groups has been compared with that of ester groups in the substitutions of 2-sulfonyl-1-methoxy-naphthalenes with Grignard reagents; chelation, as in (12), assists reaction and both the electronic and steric effects of the 2-substituent are important.57
It has been reported that diphenyliodonium triflate reacts with the lithium enolates of some cyclic ketones in the presence of copper cyanide to yield the corresponding \(\alpha\)-phenylated or \(\alpha\)-diphenylated ketones.\(^{58}\) There has been a detailed analysis of the products of thermal decomposition of diphenyliodonium tetrafluoroborate and hexafluorophosphate salts.\(^{59}\)

The copper-catalysed, Ullman-type coupling of aryl, heteroaryl and alkenyl halides may be achieved at ambient temperature using copper(1) thiophene-2-carboxylate as catalyst.\(^{60}\) A new semiconducting poly(anthraquinone-1,5-diyl) with nitro groups at the 4- and 8-positions has been prepared by Ullman-type coupling using metallic copper or a zerovalent nickel complex as catalyst.\(^{61}\)

There is continued and increasing interest in palladium-catalysed substitutions, and a book has been published dealing with metal-catalysed cross-coupling reactions.\(^{62}\) There have been several reports of palladium-catalysed amination reactions. The conversion of aryl triflates into the corresponding aniline derivatives may be achieved using palladium catalysts with chelating bis(phosphine) ligands and sodium \(t\)-butoxide as base.\(^{63,64}\) There are advantages in using caesium carbonate as the base since this is compatible with a wide variety of functional groups.\(^{65}\) A side reaction involving cleavage of the triflate to give phenol must be avoided. Caesium carbonate has also been used effectively in the palladium-catalysed amination of aryl bromides.\(^{66}\) It has been shown that aryl chlorides will react with amines in the presence of palladium catalysts in the presence of potassium \(t\)-butoxide at raised temperatures.\(^{67,68}\) However, the room temperature amination of aryl iodides may be achieved using crown ethers to activate the butoxide base.\(^{69}\) The selective reaction with aryl halides of polyamines carrying primary amino groups has been described, again using \(t\)-butoxide as the base.\(^{70}\) Benzophenone imine may be used as a convenient ammonia equivalent in the palladium-catalysed aminations of aryl triflates and halides\(^{71}\) as shown in Scheme 4.

The reaction of aryl bromides with acyclic secondary amines may be achieved using palladium catalysts carrying phosphino ether ligands.\(^{72}\)

\[
\begin{align*}
\text{Ph} & \quad \text{NH} \\
\text{Ph} & \quad \text{Ph} \\
\text{R} & \quad \text{NH} \\
\text{X} & \quad \text{X}
\end{align*}
\]

Scheme 4

Palladium catalysts have been found which are effective in the Suzuki coupling reaction of arylboronic acids with aryl chlorides carrying electron-withdrawing groups.\(^{73}\) Biaryls may also be synthesized by cross-coupling of arylboronic acids with arenediazonium salts.\(^{74,75}\) There has been a report of the polymer-bound palladium-catalysed Suzuki coupling of aryl triflates with organoboron compounds.\(^{76}\) Arylobor- onates may themselves be synthesized by the palladium-catalysed reactions of
dialkxyboranes with aryl halides,77 or of tetra(alkxo)diborons with aryl triflates.78 Catalysis of Suzuki-type coupling reactions of chloroarenes with arylboronic acids by nickel complexes has been reported.79,80 Nickel catalysis may also be useful in the formation of alkyl or silyl aryl ethers from electron-deficient aryl halides.81 The relative efficiencies of nickel and palladium catalysts have been compared in the homo-coupling of aryl triflates to yield biaryls.82 Unsymmetrical biaryls may be prepared by the palladium-catalysed reaction of arylmanganese chlorides with aryl halides or triflates.83 Monoorganostannanes have been shown to be effective reagents in the palladium-catalysed Stille coupling reaction with aryl iodides.84 The palladium-catalysed coupling of arylstannanes with naphthoquinone derivatives may yield 2-aryl-85 or 2,3-diarylquinones.86 Reaction of the naphthoquinone triflate derivative (13) with methanol in dimethylformamide containing triethylamine yields the methyl ether (14); a pathway involving a radical anion is likely.85

\[
\begin{equation}
\text{OH} \quad \text{O} \quad \text{OTf} \quad \text{MeOH, Et_3N} \quad \text{DMF} \quad \text{O} \quad \text{OMe} \quad \text{OH}
\end{equation}
\]

(13) \hspace{1cm} (14)

It has been found that the use, as ligands, of electron-poor phosphines, such as 1,1’-bis(diphenylphosphino)ferrocene, enhances yields in the palladium-catalysed reaction of aryl bromides with sodium phenoxyides to yield diaryl ethers.87 Palladium-catalysed coupling of ethynylated derivatives of bipyridine or terpyridine with the corresponding bipyridine or terpyridine halides or triflates has been used in the synthesis of pre-organized polytopic ligands.88

It is reported that the palladium-catalysed intramolecular aromatization of 1,1’-dichloro-9H-fluoren-9-ylidene (15) may lead to the formation of fullerene fragments.89 The annulation reaction, under palladium catalysis, between iodoanilines and ketones may yield indole derivatives.90 There have also been studies of the palladium-catalysed carbonylation of o-iodophenols with allenes which may lead to 1-benzopyran-4-one derivatives,91 of the intramolecular coupling of phenols with aryl halides,92 and of the intramolecular Heck arylation of cyclic enamides.93

\[
\begin{equation}
\begin{array}{c}
\text{Cl} \\
\text{Cl}
\end{array}
\end{equation}
\]

(15)
Heterocyclic Systems

The reaction of 3-bromo-2-nitrobenzo[b]thiophene (16) with amines may lead to a rearranged product (18) in addition to the product of ipso-substitution. 13C labelling experiments94 have ruled out a rearrangement of the carbon skeleton. The likely mechanism involves double addition of the nucleophile and a nitro group shift through intermediate (17). Kinetic, spectroscopic, crystallographic, and ab initio theoretical studies have shown95 that secondary steric effects, between methyl and nitro groups, are considerably smaller in thiophene derivatives, such as (19), than in the corresponding benzene derivatives (20). The effects of ion association with cations, K$^+$, Na$^+$ and Li$^+$, have been investigated in the substitution reactions with ethanolic ethoxide of S-4-nitrophenol 2-thiofurate and 2-thiophenethiocarboxylate.96

![Chemical structures](image)

Kinetic studies of substitutions by the S_NAr mechanism have been reported for reactions of 2-chloro-3-nitro-, 2-chloro-5-nitro-,97 and 2-chloro-3,5-dinitro-pyridines98 with substituted arenethiolates in methanol. The reactivities of the nucleophiles are nicely correlated by their carbon basicities. An addition–elimination mechanism, with rate-limiting nucleophilic attack, is likely in the reaction of substituted pyridines, as nucleophiles, with 2,4-disubstituted-6-halo-1,3,5-triazines in acetonitrile.99 A comparison of the activating effects of aza and nitro groups has been made using some morpholino-dechlorination reactions of pyridine and benzene derivatives.100 It has been shown that the reaction with alkoxide ions of ring-halogenated 3-trifluoromethylpyridines may result in ring substitution or alcoholysis of the trifluoromethyl group.101 Nucleophilic substitution of hydrogen has been observed (Scheme 5) in the reaction of 1,2,4-triazin-5-ones with indoles (21; $R^1, R^2 = H, Me$) in the presence of sulfur.102
There have been reviews of nucleophilic substitution103 and of deoxidative nucleophilic substitution 104 in heterocyclic N-oxides. Stable carbon–carbon-bonded adducts, such as (22), have been reported from the reactions of 6-phenyl-1,2,4-triazine 4-oxides with phenols; oxidation of the adducts may be achieved by reaction with potassium permanganate in acetone105.

The special effects of a mesoionic system as a substituent have been noted106 in the reactions with nucleophiles of 3-N-(4-chloro-3-nitrophenyl)sydnone. A synthesis, using two amino-debromination reactions, has been used107 to prepare phenothiazines analogous to methylene blue (23). An unusual susceptibility to the nature of the counteranion has been observed108 in the kinetics of the reaction of N-(2,4-dinitrophenyl)-4-dimethylaminopyridinium salts (24) with piperidine in acetonitrile, and may indicate participation of the anion in stabilising the intermediate. An ANRORC mechanism is implicated in the reaction of N-(2,4-dinitrophenyl)-4-(4-pyridyl)pyridinium cations with arylamines.109 Ring-opening and ring-closure reactions
will also account for the formation of pyrimidine derivatives in the reaction of 4-acylaminoquinolinium salts with ammonia or primary amines.110 Ring opening has also been observed in the reactions of \(o \)-phenyldibenzofuranium and 10-phenylxanthonium cations with nucleophiles.111 A detailed kinetic study has been reported of the reversible ring opening of thiamine derivatives (Scheme 6). A major conclusion is that the amidoenethiolates (25) produced may exist as two rotamers, owing to slow rotation about the N–CO amide bond, so that two separate re-closure reactions are observed.112

![Scheme 6](image)

Meisenheimer and Related Adducts

Rate and equilibrium constants have been reported for the reactions of butylamine, pyrrolidine, and piperidine with trinitrobenzene, ethyl 2,4,6-trinitrophenyl ether, and phenyl 2,4,6-trinitrophenyl ether in acetonitrile. In these reactions, leading to \(\sigma \)-adduct formation and/or nucleophilic substitution, proton transfer may be rate limiting. Comparisons with data obtained in DMSO show that, while equilibrium constants for adduct formation are lower in acetonitrile, rate constants for proton transfer are higher. This probably reflects the stronger hydrogen bonding between DMSO and NH\(^+ \) protons in ammonium ions and in zwitterions.113 Reaction of 1,3,5-trinitrobenzene with indole-3-carboxylate ions in methanol has been shown to yield the \(\pi \)-complex (26), which is the likely precursor of nitrogen- and carbon-bonded \(\sigma \)-adducts expected from the reaction.114 There is evidence for the intermediacy of adducts similar to (27) from the reaction of methyl 3,5-dinitrobenzoate with 1,8-diazabicyclo[5.4.0]undec-8-ene (DBU); cyclization eventually yields 2-aminoindole derivatives.115

![Adducts](image)

NMR studies of the reactions of \(N,N \)-dimethylpicramide (DMP) with phenoxide and 2,6-di-\(\text{t} \)-butylphenoxide nucleophiles in DMSO show that attack occurs at the 3-position of the DMP to yield \(\text{para} \)-carbon-bonded \(\sigma \)-adducts.116 Surprisingly,
acidification led to ring protonation to give neutral adducts such as (28). The ready protonation (pKₐ = 6.2 in aqueous solution) is likely to derive from charge-transfer interaction between the NMe₂ group and the adjacent nitro group, and the attendant relief of steric strain upon conversion of the (C)₂ centre from sp² into sp³.

There have been several studies utilizing the ability of 4,6-dinitrobenzofuroxan (DNBF) to act as a ‘super-electrophile.’ It has been shown that the initial product of its reaction with phenoxide ions is the O-bonded adduct (29), although this rearranges to give the C-bonded adduct.¹¹⁷ The reaction of DNBF with ethyl vinyl ether yields a dihydroxazine N-oxide cycloadduct as a mixture of two diastereoisomers, and in the presence of excess ether a di-adduct (30) is formed.¹¹⁸ Rate constants have been reported for the reaction of DNBF with 3-methoxythiophene in DMSO–water mixtures. The reaction results in a σ-adduct which is the product of SₓAr substitution in the thiophene, and the results were used to probe the carbon basicity of the thiophene derivative.¹¹⁹

The reactions of picryl fluoride with (2,3-dihydroxypropyl)-ammonium or phosphonium compounds have been found¹²⁰ to yield zwitterionic spiro-σ-adducts such as (31). Aromatic diazonium cations have been shown to add to the 9-position of σ-adducts of 9-nitroanthracene to yield neutral derivatives.¹²¹ A study has been reported of the effects of ion pairing and change of solvent on the kinetics of decomposition of some anionic σ-adducts.¹²²
Benzyne and Related Intermediates

There has been a review of dihydroxydipyrindines, focusing on their formation from halopyridines and base. The reactions of tri-p-tolylsulfoxonium salts with hydroxide in water yield a mixture of p- and m-cresols via a benzyne intermediate, as shown in Scheme 7. A benzyne intermediate, generated by loss of lithium fluoride, is also implicated in the reaction of organolithium reagents with fluoro-N,N-diallylanilines leading to 3,4-disubstituted indolines. The reaction of benzyne with 1,8-diethynylphenanthrene has been shown to yield benzo[α]pyrene.

\[\text{Scheme 7} \]

References

7 Nucleophilic Aromatic Substitution

CHAPTER 8

Electrophilic Aromatic Substitution

R. G. COOMBES

Chemistry Unit, Institute of Physical and Environmental Sciences, Brunel University, Uxbridge

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>259</td>
</tr>
<tr>
<td>Halogenation</td>
<td>261</td>
</tr>
<tr>
<td>Nitration</td>
<td>262</td>
</tr>
<tr>
<td>Alkylation, Acylation, and Related Reactions</td>
<td>264</td>
</tr>
<tr>
<td>Other Reactions</td>
<td>267</td>
</tr>
<tr>
<td>References</td>
<td>269</td>
</tr>
</tbody>
</table>

General

A contribution has been made to discussions concerning the reactivity–selectivity principle. N-Nitrosoamides were used to generate essentially free substituted benzyl cations of varying reactivity for the benzylation of toluene–benzene mixtures and studies of the intermolecular selectivity of these cations accorded with the principle.¹ These observations led to a critical discussion of earlier discussions² but do not appear to question the fundamental point concerning the incompatibility of the Hammett equation and the Hammond postulate. Conclusive evidence for the operation of the proposed mechanism of electrophilic aromatic substitution occurring within the complex formed upon addition of gaseous arenium ions to a variety of electrophile precursors including alkyl halides, alcohols, epoxides, esters, and diazoalkanes is provided by FT-ICR mass spectrometry.³ A review covers advances in the understanding of gas-phase reactions of aromatic substrates with cationic electrophiles in thermally equilibrated systems with an emphasis on the elementary processes and the covalent and non-covalent ionic intermediates involved.⁴

A review entitled ‘Electrophilic species that can react with benzene are dicaticionic’ covers the reactions of benzene with several reactive electrophiles and developments in understanding of the mechanism of the Friedel–Crafts reaction.⁵

The quantum-chemical calculation of charge-transfer states as possible intermediates in electrophilic aromatic substitution reactions, making allowance for solvation effects, has been reviewed.⁶ It has been shown that a simple scaled Hartree–Fock ab initio model describes the ring proton affinity of some polysubstituted benzenes, naphthalenes, biphenylenes, and large alternant aromatics, in agreement with experimental values. The simple additivity rule observed previously in smaller
alternant systems applies to polyfluoropyrenes. The proton affinities of polycyclic aromatic hydrocarbons with a five-membered ring have been calculated using the AM1 Hamiltonian comparing with experimental values from a new chemical ionization mass spectrometric method. The method thus developed was applied to indene.

The benzenium, toluenium, and ethylbenzenium ions have been synthesized on aluminium bromide by co-adsorption of the arenes with either hydrogen bromide or an alkyl bromide. The p-toluenium ion was the main isomer at 77 K but was in observable equilibrium with the ortho isomer at 273 K. The 6,6-dimethyl-3-phenylbenzenium ion (1) has been generated in aqueous solution containing 20% acetonitrile. It has a half-life of ca 150 ns at 298 K when it forms 6,6-dimethyl-3-phenylcyclohexa-2,4-dien-1-ol with 2% 3,4-dimethylbiphenyl.

A review in Polish covers nitration, bromination, mercuration, nitrosation and diazocoupling of heterocyclic N-oxides. The reactivity to electrophilic substitution of azoles has been assessed by combining quantum-chemical calculations with a review of literature data. Both S_{e2}Ar and ylide mechanisms were considered. Bromination, nitration, Vilsmeier–Haack formylation and Mannich reactions of di- and tri-substituted imidazo[2,1-b]oxazoles (2) occur at the 5-position. Vilsmeier formylation and acetylation of 3,3′-dipyromethane gave the corresponding 3-acylpyrrole in a novel fragmentation reaction. Bromination, formylation, acetylation, and nitration of thieno[3,2-b]benzofuran (3) takes place at position 2. An electron-donating substituent in this position directs further substitution to positions 3 and 6, whereas an electron-withdrawing substituent at position 2 leads to exclusive 6-substitution. Heterocyclic analogues of benzocyclopropene (4) exhibit enhanced selectivity in electrophilic substitution reactions. Competition between two effects is responsible for the enhanced β-position activity, in concurrence with the Mills–Nixon hypothesis.
Halogenation

The role of polychlorinated gem-dichlorocyclohexadienones as reaction intermediates which can then produce desired meta-chlorinated products or undesired coupled products has been described. Chlorination of phenol and sometimes the ether complicates the hydrolysis of some primary alkyl phenyl ethers in concentrated aqueous perchloric acid solution. Unexpected chlorination has also been established in the reaction of 2-amino-5-chlorobenzophenone with HCl in aqueous methanol (1:1 v/v), 2-amino-3,5-dichlorobenzophenone being amongst the products.

Zinc bromide supported on mesoporous silica or acid-activated montmorillonite is an efficient, selective, and reusable catalyst for the para-bromination of activated and moderately deactivated aromatic substrates. Chlorobenzene, for example, is converted into bromochlorobenzenes (92.9% conversion, para:ortho ratio= 10) with the former system in n-hexane. Bromodimethylsulfonium bromide (5) can be generated in situ by treating dimethyl sulfoxide with aqueous hydrobromic acid. Studies with a range of activated aromatics have shown that it is a milder more selective brominating reagent than elemental bromine. If the bromination is carried out by adding 47% HBr to stirred dimethyl sulfoxide at room temperature containing the substrate, a range of monosubstituted benzene derivatives can be monobrominated. Some substrates with electron-withdrawing groups (NO₂, CHO) yield ortho-substituted products whereas some with electron-donating groups (NH₂, OH, CH₃) yield only para-bromo derivatives. It is suggested that initial electrophilic attack by the hydroxydimethylsulfonium ion (6) giving ortho-substitution via prior interaction with the substituent (for CHO, NO₂) or para-substitution (for NH₂, OH, CH₃) is followed by nucleophilic displacement by bromide ion. The use of benzytrimethylammonium tribromide as a brominating agent has been reviewed (in Chinese). 3,6-Di-t-butyl-2-methoxynaphthalene (7) is brominated most rapidly at the 1-position, as is 2-methoxynaphthalene. Unlike with the latter, however, there is a rapid acid-catalysed reversible reaction which gives eventually 8-bromo-
3,6-di-t-butyl-2-methoxynaphthalene by an intermolecular route. The difference is attributed to steric buttressing by the 3-t-butyl group facilitating 1-protonation and loss of the bromonium ion.

1,4-Benzothiazines and 1,4-benzoxathiones (8a) undergo regiospecific bromination when treated with bromine in dry chloroform. Calculations suggest that the regioselectivity is consistent with a charge-controlled electrophilic aromatic substitution where the Br⁺ species comes from a monobromosulphonium ion such as (8b), in contrast to the behaviour of the related benzodithiane systems. Phenothiazine (9) reacts with an excess of bromine in acetic acid to give 3,7-dibromophenothiazin-5-ium bromide, a reaction involving disubstitution followed by oxidation of the central ring by the excess of bromine.

The kinetics of iodination of a number of disubstituted phenols by iodine monochloride in aqueous methanol have been studied and interpreted in terms of a proposed mechanism.

Nitration

The reported improvement in yields and selectivities in both mono- and poly-nitration of aromatic compounds using Claycop with acetic anhydride (and if necessary nitric acid) in tetrachloromethane has been investigated. The reagent system is found to be modestly catalytic and regioselective in the mononitration of toluene but is neither catalytic nor regioselective in the nitration of 2-nitrotoluene.

Data have been presented on the kinetics of nitration of acetalanilide in mixtures of nitric and sulfuric acids. A review discusses the several mechanisms operative in the nitration of phenol including para-selective nitrosation–oxidation and mechanisms involving phenoxy radical–nitrogen dioxide reaction yielding a 55:45 ortho:para nitration ratio. The kinetics of mononitration of biphenyl-2-carboxylic acid have been investigated in several solvents. The maximum ortho:para product ratio of 8.4 is observed in tetrachloromethane. Nitration products were not formed in the presence of dioxane. Quantum-chemical AM1 calculations were performed and the predominant formation of the ortho-nitro product is accounted for by stabilization of the σ-complex by the carboxyl group.

Nitration of naphthalene by use of cerium(IV) ammonium nitrate suspended on silica gel, or in homogeneous solution, in the presence of alcohols, sodium or tetrabutyrammonium nitrite and acid gives mainly 1-alkoxy-4-nitronaphthalenes together with some of the 2-nitro isomers. The results are consistent with initial attack by NO₂⁻ alone or complexed with cerium(IV) ion at the 1- and 2-positions in a ratio of 5:1.

The reaction of 3-phenyloxetane (10) with nitric acid in dichloromethane and trichloromethane under anhydrous conditions has been investigated. Quantitative conversion into 2-(nitrophenyl)propane-1,3-diol dinitrates occurs. The substrate reacts through its majority hydrogen-bonded complexed form initially by a mixture of aromatic nitration and oxetane ring opening. The nitration, perhaps surprisingly, proceeds at a rate comparable to that of p-dichlorobenzene.
The ozone-mediated reaction of bicumene and some derivatives (11) with nitrogen
dioxide in dichloromethane (kyodai nitration) at low temperatures results in the
cleavage of the central C—C bond to yield the benzyl nitate and products therefrom, in
contrast to the behaviour of bibenzyl.36 This result is interpreted in terms of electron
transfer from the substrate to NO₃⁻ to give a radical cation species which fragments to
form tertiary benzylic species in the former cases.
Nitrilation of 1-arylpyrroles with acetyl nitate and 1-arylpyrroles and 1-(2-
ethoxycarbonylbzyl)pyrrole with trifluoroacetyl nitate gave 2- and 3-nitro products.
The latter were further nitrated with mixed nitric and sulfuric acids.37

\[
\begin{align*}
(10) & \quad R = H, Me, Br \\
(11) & \\
(12) & \\
(13) &
\end{align*}
\]

The mechanism of the formation of 3-nitropyridine from pyridine on reaction with
dinitrogen penta oxide in the presence of sulfur dioxide has been partially elucidated,
with two stages of the reaction being separated.38 The reaction involves the initial
formation of N-nitropyridinium nitate which then reacts to form transient species, one
of which may be N-nitro-1,2-dihydropyridine-2-sulfonic acid (12). 3-Nitropyridine is
formed from these intermediates either by extramolecular nitronium ion migration or
via appropriate sigmatropic shifts [e.g. (12)→(13)]. N-Nitropyridinium nitate can also
be generated in situ from the reaction of pyridine with nitrogen dioxide and ozone in an
inert organic solvent.39 3-Nitropyridine is then formed as above in good yield on
addition of sodium hydrogen sulfate.

Imidazo[1,2-a]pyrazines (14) with activating alkyl or alkylamino substituents at
the 8-position were mononitated regiospecifically at the 3-position by nitric acid in
sulfuric acid in accord with semiempirical (AM1) molecular orbital calculations.40

Nitrilation, suggested to involve nitrosation/oxidation, occurs during diazotization of
some substituted 2-amino-1,8-naphthyridine derivatives (15).41 The selectivity of this
process was contrasted with that of the nitronium ion reaction.

\[
\begin{align*}
(14) & \quad R = OR¹, NHR¹ \\
(15) &
\end{align*}
\]
Alkylation, Acylation, and Related Reactions

Spin coupled (SC) valence bond calculations42 for the formation of the Wheland intermediate, C\textsubscript{6}H\textsubscript{5}H\textsubscript{+}, from CH\textsubscript{3}+ and benzene suggest the crossing of two SC potential energy curves, which at large separations correspond to C\textsubscript{6}H\textsubscript{5} + CH\textsubscript{3}+ and C\textsubscript{6}H\textsubscript{5}H\textsubscript{+} + CH\textsubscript{3}, simultaneously with the rehybridization of the carbon atoms. A qualitatively correct description of complex formation is obtained by taking a linear combination of the SC solutions. Alkylation of benzene with 1,2-dibromo-3-chloro-2-methylpropane yields mainly the dissubstituted benzene (16) with AlCl\textsubscript{3}–CH\textsubscript{3}NO\textsubscript{2} or K10 montmorillonite, but mainly the 1-X-2-methyl-3,3-diphenylpropanes (17; X = Cl, Br) with AlCl\textsubscript{3}, the latter reactions involving the intermediate (18).43 Simple alkanes (e.g. propane) and cycloalkanes (e.g. cyclopentane) alkylate deactivated aromatic compounds (e.g. acetophenone) in the presence of the superacid, CBr\textsubscript{4}·2AlBr\textsubscript{3}, at low temperatures.44

\begin{center}
\begin{tikzpicture}
 \node [circle, draw, thick] (C) at (0,0) {Me};
 \node [circle, draw, thick] (H) at (0.5,0.8) {Me};
 \node [circle, draw, thick] (Br) at (1.5,0.8) {Br};
 \node [circle, draw, thick] (Br) at (0.5,-0.8) {Br};
 \node [circle, draw, thick] (Cl) at (0,0) {Cl};
 \node [circle, draw, thick] (H) at (0.5,0.8) {H};
 \node [circle, draw, thick] (H) at (1.5,0.8) {H};
 \node [circle, draw, thick] (H) at (0.5,-0.8) {H};
 \node [circle, draw, thick] (H) at (1.5,-0.8) {H};
 \node [circle, draw, thick] (C) at (0,0) {C};
 \node [circle, draw, thick] (C) at (0.5,0.8) {C};
 \node [circle, draw, thick] (C) at (1.5,0.8) {C};
 \node [circle, draw, thick] (C) at (0.5,-0.8) {C};
 \node [circle, draw, thick] (C) at (1.5,-0.8) {C};
\end{tikzpicture}
\end{center}

In contrast to the simple Friedel–Crafts reaction, scandium(III) triflate-catalysed benzylation of benzene using an aromatic aldehyde and propane-1,3-diol (or their acetal) gives selectively the diarylmethane in excellent yield.45 The alcohol acts as a hydride ion source for incorporation into the benzylic methylene group. A related study again forming diarylmethanes46 involves the reaction of 2-aryl-1,3-dioxane or the aromatic aldehyde and propane-1,3-diol with aromatic compounds in the presence of trifluoromethanesulfonic acid. A full competitive and non-competitive kinetic study47 of the chloromethylation of benzene and toluene with methoxycetyl chloride and chloromethyl methyl ether with AlCl\textsubscript{3}–CH\textsubscript{3}NO\textsubscript{2} or SnCl\textsubscript{4}–CH\textsubscript{2}Cl\textsubscript{2} suggests CH\textsubscript{3}OCH\textsubscript{2}+ or a related ion pair as a common remarkably selective electrophile. These studies permit the rationalization of the range of chloromethylation inter- and intra-molecular selectivities in the literature.

A study48 of the direct upper-rim alkylation of calix[n]arenes has shown that, with \(n = 8 \), reaction with isopropyl chloride in 1,2-dichloroethane with AlCl\textsubscript{3} gives isopropylation, whereas when \(n = 4 \) hydroxyisopropylation is observed. With \(n = 6 \) there is a mixture of products, indicating overall an increase in phenolic behaviour as \(n \) increases from 4 to 8.

A short review in Chinese covers Friedel–Crafts reactions of alkenyl halides with aromatic hydrocarbons.49 High yields of the allylated aromatic products have been

\[\text{MeCH} = \text{CHCH}_2\text{Br} \]
established from reactions of arenes with allylic alcohols in the presence of catalytic amounts of cationic thiolate-bridged diruthenium complexes. The product proportions, however, do not suggest an electrophilic reaction. A simple stereoselective reaction of some unsaturated alcohols [e.g. (19)] with benzene in the presence of concentrated sulfuric acid has been demonstrated [e.g. to give (20) from (19)].

\[
\text{OH} \quad \text{CN} \\
\text{Ph} \quad \text{CN} \quad \text{Ph}
\]

(19) (20)

Novel, sequential regioselective Friedel–Crafts reactions of gem-dihalocyclopropane-carbonyl chlorides [e.g. (21)] with benzenes in the presence of AlCl₃ led to the synthesis of 4-aryl-1-naphthol derivatives [e.g. (22) from (21) and benzene], by a pathway involving an intramolecular cyclization [of (21)] followed by intermolecular coupling with benzene. Errors in the structures of previously reported products from the transannular alkylation of benzene with \((Z,Z)\)-cycloocta-1,5-diene have been corrected and almost all products have the bicyclo[3.3.0]octane framework. Intramolecular alkylation of the aromatic ring in some aromatic cyclic ethers in the presence of TiCl₄ in CH₂Cl₂ gives a stereospecific route to substituted tetralins [e.g. (23)→(24)]. An efficient method for the synthesis of fused polycyclic aromatics involves a two-step sequence and the critical ring-forming step involves 4-alkoxyphenylethynyl groups and strong electrophiles such as trifluoroacetic acid and iodonium tetrafluoroborate [e.g. (25)→(26)].

\[
\text{OH} \quad \text{R} \\
\text{X} \quad \text{X} \quad \text{COCl}
\]

(21) X = Cl, Br

\[
\text{OH} \quad \text{R} \\
\text{X} \quad \text{X}
\]

(22) X = Cl, Br

\[
\text{O} \\
\text{Ph}
\]

(23)

\[
\text{OH} \\
\text{Ph}
\]

(24)
The reactions of nitrones with indoles have been applied to the formation of several N-hydroxylamines and symmetrical and unsymmetrical diindolylalkanes.56 Chiral auxiliaries, alcohols derived from (1S)-(−)-β-pinene (R*OH), lead to an enantioselective synthesis when R* acetoacetate reacts with 3-(2-hydroxyethyl)indole in the presence of, for example, BF$_3$.Et$_2$O, forming (27).57 Methyl migration follows Friedel–Crafts reaction of (CH$_3$)$_3$SiCl with benzene in the present of AlCl$_3$ and (28) is formed.58

\begin{center}
\begin{tikzpicture}
\node[draw, fill=white] (a) at (0,0) {OC$_{12}$H$_{25}$};
\node[draw, fill=white] (b) at (1,1) {C$_{12}$H$_{25}$O};
\node[draw, fill=white] (c) at (2,2) {C$_{12}$H$_{25}$O};
\end{tikzpicture}
\end{center}

\textit{(25)}

\begin{center}
\begin{tikzpicture}
\node[draw, fill=white] (a) at (0,0) {OC$_{12}$H$_{25}$};
\node[draw, fill=white] (b) at (1,1) {C$_{12}$H$_{25}$O};
\end{tikzpicture}
\end{center}

\textit{(26)}

The first unequivocal evidence for the effective electrophile in an acylation reaction has been presented.59 Reaction of aromatics with aryl triflates in organic solvents needs no catalyst and allows kinetic investigation in homogeneous solution. The rate-limiting step can be either dissociation of the triflate to the acylum ion or reaction of the latter with the substrate. Kinetic measurements in the presence of base establish firmly the intermediacy of acylum ions.

A review of formylation reactions involving methyl formate in a hydrogen fluoride–boron trifluoride medium has appeared.60 Regioselectivity and kinetic data have been reported for Gattermann–Koch formylation in superacids and provide evidence for an intra-complex reaction where the formylation electrophile HCO$^+$ is generated by protonation of CO by the arenium ion.61 The observed selectivity results from

\begin{center}
\begin{tikzpicture}
\node[draw, fill=white] (a) at (-1,0) {\text{Cl(CH$_3$)$_2$SiCPh$_2$Me}};
\node[draw, fill=white] (b) at (0,0) {\text{\textit{ee} can be >95\%}};
\node[draw, fill=white] (c) at (1,0) {CO$_2$H};
\end{tikzpicture}
\end{center}

\textit{(27)}

\begin{center}
\begin{tikzpicture}
\node[draw, fill=white] (a) at (0,0) {\text{\textit{ee} can be >95\%}};
\node[draw, fill=white] (b) at (1,0) {CO$_2$H};
\end{tikzpicture}
\end{center}

\textit{(28)}
competition between a \textit{para}-selective intra-complex reaction and conventional reaction. Friedel–Crafts formylation, with HCOF, also appears to have an intra-complex pathway.

A review covers factors involved in the selection of Lewis acid catalysts for acylation reactions.62 Bismuth(III) triflate has been shown to be a surprisingly good acylation catalyst especially for aroylation reactions,63 and the potential of using a range of bismuth(III) salts for acylations has been reviewed.64 A review65 surveys Friedel–Crafts acylations of aromatic compounds with some cyclic anhydrides giving information about the regioselectivity of the ring opening and pathways of acylation. Regioselective acylations of some activated aromatics have been observed on heating with PhCCl\textsubscript{3} or PhCOCl over hydrated zirconia.66 The use of zeolites in the acylation of anisole and veratrole by acetic anhydride under mild conditions has been reviewed,67 as has the trifluoroacetylation of aromatics using trifluoroacetic anhydride with cobalt(II) chloride catalyst at room temperature, which appears to require the presence of at least one methoxy substituent.68 A range of aromatic compounds are acylated by (S)-\textit{β}-trichloromethyl-\textit{β}-propiolactone (29) in the presence of a Lewis acid to give products retaining the stereochemical integrity of the lactone.69 A review of the influence of the cation on the condensation of glyoxylic acid with 2-alkoxyphenols indicates that the use of tetraalkylammonium hydroxide instead of sodium hydroxide increases the \textit{para}-selectivity of the condensation.70

\begin{center}
\includegraphics[width=\textwidth]{image.png}
\end{center}

The bromination of the tetracyclic compound (30) affords71 the novel compound (31) formed by capture of the Wheland intermediate by the neighbouring carboxylate ion. The intramolecular reaction of some activated pyridines with \textit{N}-acyliminium ions led to some novel heterocycles [e.g. (33) from (32) in the presence of \textit{p}-toluenesulfonic acid in benzene] by cyclization \textit{para} to an electron-donating substituent.72

\textbf{Other Reactions}

The details of protonation of several alkyl-substituted phenanthrenes by superacids have been reported.73 The observed mono- and di-cations are usually in agreement with those predicted by AM1 MO calculations. Molecular modelling studies have suggested a multi-step pathway for the sulfonation of toluene with sulfur trioxide.74 Intermediate \textit{π}-complex, Wheland intermediate and pyrosulfonate species (34) are suggested, the product (\textit{p}-toluenesulfonic acid) arising from an exothermic reaction between toluene and the acid (35) formed by a facile prototropic rearrangement of (34). The sulfur trioxide monosulfonation of isopyrene and some derivatives leads usually to sulfonated
products75 involving reaction at position 5. With 5,10-dimethylisopyrene (36), however, the sulfur trioxide may add as a bidentate electrophile to form the [14]annulene derivative (37). The amounts of sulfonic acids and sulfonic anhydrides formed in the sulfur trioxide sulfonation of some dialkylbenzenes and 1,\(\omega \)-diarylalkanes have been investigated.76 CNDO/2 MO theory has been applied to the prediction of the reactivity to chlorosulfonation of some phenoxyacetic acid derivatives.77 A 3\textit{H}-indole-3,3-bis-sulfide has been isolated from the sulphenylation of 3-phenylthioindole in the presence of triethylamine, lending support to the hypothesis that initial attack in the second sulphenylation of indole, which forms the 2,3-bis-sulfide, is initially at C(3).78

The nitrosation of phenol and cresols in buffer solutions involves a diffusion-controlled C-nitrosation followed by rate-limiting proton loss. \textit{p}-Cresol is much less reactive than the other substrates.79 Nitrosation in trifluoroacetic acid or in acetic–sulfuric acid mixtures is regioselective (e.g. 4-nitroso-\textit{m}-xylene is formed from \textit{m}-xylene) and possible non-selective nitrous acid-catalysed nitration can be eliminated by purging reaction solutions with nitric oxide.80
The kinetics of reaction of a number of aromatic compounds with substituted benzenediazonium ions have been studied and compared with those of other nucleophiles, kinetic isotope effect studies indicating rate-limiting attack of the diazonium ion. The comparative studies permit qualitative rate predictions for such reactions. Coloured crystalline 1:1 complexes between electron-poor arenediazonium salts (ArN₂⁺) and aromatic hydrocarbons have been successfully isolated and X-ray crystallographic studies indicate cofacial stacking of the aromatic donor on top of the aromatic ring of ArN₂⁺. The mechanistic implications of this have been discussed with relevance to electron-transfer arylation and electrophilic azo-coupling (see also reference 83). The reactivity of nitronaphthalenediazonium ions has been surveyed, 4-nitronaphthalenediazonium ion having the highest azo-coupling activity. Low-temperature solution reactions of silylenes with aromatic compounds are reported to involve silyl cation intermediates.

Evidence has been presented for initial electrophilic substitution by thiazy1 chloride (NSCl) in the reaction of trithiazy1 trichloride with 2,5-diarylfurans (38) which eventually yields 5-aryl-3-arylisothiazoles.

![Chemical structure](image)

References

8 Electrophilic Aromatic Substitution

CHAPTER 9

Carbocations

R. A. Cox

Department of Chemistry, University of Toronto, Canada

Introduction ... 273
Simple Carbocations ... 274
Benzyl Cations ... 275
Benzhydryl, Trityl, and Fluorenyl Cations 276
Acylum Ions ... 277
Oxonium Ions ... 278
Carbocations Containing Sulfur 279
Carbocations Containing Silicon 279
Fluorinated Carbocations 281
Other Destabilized Carbocations 283
Carbocations Containing Other Heteroatoms 284
Carbocations in Zeolites ... 285
Allylic Systems .. 285
Vinyl and Aryl Cations ... 285
Arenium and Nitrenium Ions 286
Aromatic Systems .. 288
Dications .. 289
Polycyclic Systems .. 291
Bridged Systems .. 292
References ... 293

Introduction

A book containing authoritative reviews of many aspects of carbocation chemistry has been published.¹ These reviews are up-to-date to the end of 1991, as the book is the result of a symposium held in honour of George Olah in 1992; it features many of the world’s leading carbocation chemists. At least one book review of it has also appeared.² Olah has an introductory chapter concerning his decades-long search for stable long-lived carbocations in superacid media,³ and other review chapters include ones on carbocations at surfaces and interfaces,⁴ on the X-ray structural analyses that have been performed on many carbocation salts and related compounds in recent years,⁵ and on natural product chemistry in superacids.⁶ Other review chapters will be referred to below, as appropriate.

Long-lived cyclopropylcarbinyl cation chemistry, including spiro cations and dications, has been reviewed,⁷ and some of the more interesting newer carbocations, such as (1), are the subject of a short survey.⁸ The use of secondary deuterium isotope effects in the study of carbocation-forming reactions has been revisited,⁹ and the
analysis of normal and special salt effects with respect to the formation of contact, space-separated and solvent-separated ion pairs is discussed.10

\begin{center}
\includegraphics[width=0.5\textwidth]{diagram.png}
\end{center}

The application of molecular mechanics calculations to organic reactions, including carbocation intermediates in addition to reactants and transition states, is the subject of a review.11 A large set of new cation parameters for MM3 calculations, based on heats of formation and molecular geometries, gives good agreement with experiment except for cations with strong hyperconjugative interactions.12 However, a reported new empirical force field method for localized and delocalized carbocations includes hyperconjugative effects, and gives very good agreement between calculated, experimental and \textit{ab initio} structures and heats of formation.13

\section*{Simple Carbocations}

Hypervalent carbocations have received some attention this year.14 The concept of three-centre, two-electron bonding in these entities is supported by a topological bifurcation analysis of the electronic structure of CH\textsubscript{3}+,15 this and the related species CH\textsubscript{6}2+ and CH\textsubscript{7}3+ are also the subject of a review.16 The CH\textsubscript{3}+ + H\textsubscript{2} reaction has been studied theoretically.17

An \textit{ab initio} study of protonated isobutane reveals that (2) has the lowest energy of the several possible structures studied,18 and it has been shown experimentally that fast reversible protonation of all of the C–H bonds occurs before ionization when isobutane is treated with DF–SbF\textsubscript{5} superacid at 0 °C.19 The branching rearrangement of linear C\textsubscript{4}H\textsubscript{5}+ involves a protonated methylcyclopropane, according to a theoretical study,20 and C\textsubscript{5}H\textsubscript{11}+ rearranges via a protonated 1,2-dimethylcyclopropane.20 The most stable structure for this is given as (3), a corner-protonated cyclopropane, according to a different analysis.21 An unusual out-in hydrogen transfer process undergone by perhydro[2.2]paracyclophane in CF\textsubscript{3}SO\textsubscript{3}H–CH\textsubscript{2}Cl\textsubscript{2} appears to require proton migration from one hypervalent species to another.22

Estimates of the kinetics of methyl loss from energy-selected C\textsubscript{4}H\textsubscript{6}+ species have been made by calculation.23 The hydride transfer from alkanes to carbenium ions in the gas phase is calculated to involve a species with a symmetric potential well, which is different from the situation in superacid or zeolite media.24 A correlation between the charge on a carbon and the in-plane tensor component of its 13C chemical shift has been observed for a number of simple cationic and anionic species.25 High-level calculations
have been used to investigate the relevant factors at work in the reaction between 2-methyl-2-propyl cation and 2-methylpropene, as a model for some of the carbenium ion reactions important in sterol biosynthesis.26

The solvolysis mechanisms of 2,2-dimethyl-3-pentyl- and 1-(1-adamantyl)-propyl sulfonates appear to involve partial reversible ionization to the intimate ion pair followed by competing elimination and solvent separation, substitution products being formed from the separated ions.27 The lifetimes of simple tertiary carbocations may be some 100 times shorter than previously thought; several 3-((4-methoxyphenyl)-1,1-dimethyl/propyl species hydrolyse in 50% aqueous TFE with rate constants estimated at some 3.5×10^{12} s-1.28 Much elimination was also observed.28 Two studies concerning proposed carbocation intermediates in enzymatic processes are reported.29,30

Benzyl Cations

\[
\begin{array}{c}
\text{Me} \\
\text{Me}
\end{array}
\]

(4)

\[
\begin{array}{c}
\text{Me} \\
\text{Me}
\end{array}
\]

(5)

\[
\begin{array}{c}
\text{Me} \\
\text{Me}
\end{array}
\]

(6)

The cumyl cation (4) has been the subject of an X-ray crystallographic study, as its hexafluoroantimonate salt at −124 °C.31 It is nearly planar (8° twist), with a short bond between the C^+ and the ring (1.41 Å), consistent with benzylic delocalization. The Me–C^+ bonds are also shortened, indicative of hyperconjugative interaction.31 However, calculations are taken to show that hyperconjugation is not important in isolated benzyl cations; e.g., structures such as (6) are not important contributors to the overall structure of (5).32 The stabilization provided by alkyl groups would thus be because of their polarizability, and the Baker–Nathan effect would be due to steric hindrance to solvation.32 The heats of formation of some α-methylbenzyl cations indicate that the primary stabilization in these species comes from the α-substituents, and that the stabilization provided by the aromatic ring is secondary.33

\[
\begin{array}{c}
\text{Me} \\
\text{Me}
\end{array}
\]

(7)

\[
\begin{array}{c}
\text{Me}_3\text{C} \\
\text{CH}_2
\end{array}
\]

(8)

\[
\begin{array}{c}
\text{R} \\
\text{R}
\end{array}
\]

(9)

$R = \text{H, Me}_3\text{C, Br, CN}$

$R = \text{Me, Ph, CF}_3$
Solvolysis studies involving crowded benzyl cations, with neopentyl, t-butyl and isopropyl groups in both z-positions, give Yukawa–Tsuno r values of <1, indicative of reduced coplanarity in the benzyl cation and the transition state leading to it.34 Calculation gave twist angles in agreement with the values obtained experimentally, using \(r/r_{\text{max}} = \cos^2 \theta. 34 \) \(^{13}\)C NMR studies on the crowded adamantyl-substituted cation (7) indicate the presence of some resonance stabilization, with the dihedral angle being about 60°.35 Solvolytic studies on the corresponding bromides in 83% aqueous dioxane have been used to investigate through-space electronic interactions in the cyclophane benzyl cation species (8).36 Various pyrenylmethylcarbenium ions (9) have been generated from the corresponding alcohols, in order to study their charge delocalization.37 If one of the R groups is CF\(_3\), increased electron demand at the carbocation centre greatly increases the areonium ion character of the system.38

Benzhydryl, Trityl, and Fluorenyl Cations

A new \(Y \) solvolysis scale has been developed for benzylic species with extensive charge delocalization, based upon the solvolyses of some benzhydryl bromides and \(t \)-butyl(2-naphthyl)methyl bromides.39 Chlorides have negative salt effects on the ionization of benzhydryl bromide in \(\gamma \)-butyrolactone.40 The X-ray structure of the dimerization product of 1,8-bis(dimethylammonio)-4-naphthyl(phenyl)methyl carbocation has been determined; it appears to be formed via a \(4\pi + 2\pi \)-cycloaddition mechanism.41

\[
\begin{align*}
\text{Ph} & \quad \text{Ar} \\
\text{OH} & \quad \text{Ph}
\end{align*}
\]

\(\text{Ph} = 2,6-(\text{MeO})_2\text{C}_6\text{H}_3; \text{Ar} = \text{Ph, 4-MeC}_6\text{H}_4, 4-\text{MeOC}_6\text{H}_4 \)

Compound (10) undergoes an interesting aryl group migration, giving a cyclohexadienyl species.42 The thermodynamic stabilities of eleven \(para \)-substituted trityl cations and seven 9-phenylxanthenyl cations in sulfolane are reported.43 These are compared with and correlated with many other species properties, e.g. \(pK_{R^+} \) values in aqueous \(\text{H}_2\text{SO}_4 \), \(^{13}\)C NMR chemical shift values, and free energies of methoxy group exchange.43 The very stable cation species (11) and (12) have \(pK_{R^+} \) values of around 13;44 base treatment of cation (13) gives the stable neutral quinone methide (14).45 This is stabilized because the charge-separated resonance forms with a phenoxide plus tropylium cation structure are important contributors.45

The transient zwitterion (15), obtained from the \(\beta \)-hydroxy acid precursor by laser flash photolysis, has been characterized;46 it reacts with nucleophiles more slowly than does the 9-fluorenyl cation itself. The parent acid was also characterized.46 Evidence has been presented that (16) undergoes substantial \(E1 \) elimination via a primary carbocation.47 An analysis of solvolysis results for (17) is indicative of extensive charge delocalization throughout the fluorenyl ring at the transition state; apparently
Anti-aromaticity is insignificant. A similar conclusion was reached for the 9-phenylfluorenyl system (18); calculations suggested that the phenyl and fluorenyl rings are not coplanar, and that the 9-fluorenyl and 9-phenyl-9-fluorenyl cations are equivalent to the diphenylmethyl and triphenylmethyl cations, respectively.

Acylium Ions

The formylium cation, $\text{H}^+\text{C}==\text{O}$, has been observed and characterized spectroscopically for the first time; it is stable in HF–SbF$_5$ at room temperature if 200 atm pressure of CO is maintained over it. A commentary on this work appeared in the same journal issue.
A calculational study of the formyl cation to isoformyl cation (H–O=\(^{+} \)) rearrangement reveals that the latter is much the less stable of the two.\(^{52}\)

The acid-catalysed acylation of carbonyl compounds by acylum ions is the subject of a review.\(^{53}\) It has been pointed out that the acylating agent in many reactions is actually R−C=O−H, particularly for the reactions of benzene and deactivated aromatic systems.\(^{54}\) A detailed study of a number of acylum ions, making use of solid-state NMR and \textit{ab initio} calculations, is reported.\(^{55}\) Some hyperconjugative stabilization of aliphatic acylum ions is suggested, although not much, and quantitative estimates of the amount of positive charge delocalized into the ring are reported for some aromatic ones.\(^{55}\) Some novel gas-phase ketalization reactions of diols and related species by acylum ions have been observed,\(^{56}\) as have some reactions of acylum and thioacylum ions with 1,3-dioxane.\(^{57}\)

Oxonium Ions

Quantum mechanical calculations show that the silyl cation (19) has a twisted structure, and that the \(\alpha \)-CO\(_2\) group provides substantial electrostatic stabilization.\(^{58}\) Isotope effects for its formation reaction are also reported.\(^{58}\) Evidence is provided for the stabilization of incipient oxocarbenium ions by axial electronegative substituents, as in (20); the presence of the most electronegative substituent results in the fastest reaction.\(^{59}\) Lewis acid-promoted cleavage of spirocyclic dioxanes such as (21) involves oxonium ions, and high axial vs equatorial product selectivities are possible with the correct choice of Lewis acid and nucleophile.\(^{60}\) Reactions which lead to 1,3-dioxenium salts have been reviewed.\(^{61}\)

The facile synthesis of (24) from (22) has the oxonium cation (23) as an intermediate.\(^{62}\) Vinyl oxocarbenium ions are reported to take part in intermolecular
9 Carbocations

4 + 3-cycloaddition reactions.63 The reduction of several xanthylum and triphenylmethyl cations by some NAD(P)H analogues has been studied.64 The methoxy- methyl cation is reported to be able to cleave peptide bonds in the gas phase.65 The pinacol rearrangement, (25)→(26), can be achieved using trimethyl orthoformate and a Lewis acid catalyst as shown.66

![Chemical structure](image)

Carbocations Containing Sulfur

The \(^+\text{C(SH)}_3\) cation and the radical dication derived from it have been the subject of high-level calculations.67 The ability of two adjacent sulfur atoms to stabilize cations, anions, and radicals makes these species useful for relating bond-breaking and electron-transfer energies.68,69 Electrophilicity parameters for the dithiocarbenium ions (27) have been worked out,70 and the stabilities of the cations (28), (29) and (30) have been estimated using PM3 calculations.71 Cation (31) can be captured by solvent or azide ion, or it may ring close to (32), which subsequently alkylates another (31) cation as shown.72

Carbocations Containing Silicon

The first X-ray structure of an \(\alpha\)-silyl-substituted carbocation (33) is reported; its pK\textsubscript{R+} value is predicted to be 4.73 The trimesitylsilylium cation is proposed to be a nearly free, tricoordinate species.74 The dimethylsilylium cation undergoes isomer interconversion via (34), according to high-level calculations; the most stable structure is
Me$_2$SiH$^+$, followed by C$_2$H$_5$SiH$_2$,7_5 The C$_6$SiH$_7^+$ species formed from PhSiH$_3$ in the gas phase abstracts hydride ion readily.7_6 It does not have a silacycloheptatrienyl cation structure, but is apparently a C$_6$H$_6$: SiH$^+$ bridged species.7_6 In chloroform β, γ-epoxysilanes give (35).7_7 Capture by p-nitrobenzoic acid results in products which have an equatorial p-nitrobenzoate group and a hydroxy group, with the axial to equatorial ratio for the latter being 4:1. In acetone, however, attack at silicon leading to ring-opened products is preferred.7_7

Me$_3$CCH$_2$SiHMe$_2$ $\xrightarrow{\text{Ph$_3C^+$-B(C$_6F_5$)$_4$}}$ toluene $\xrightarrow{\text{toluene}}$ (36)
Fluorinated Carbocations

\[\text{F}_3\text{C} = \text{C} \quad \text{OH} \quad + \text{H}^+ \quad \rightarrow \quad \text{F}_3\text{C} = \text{C}^+ \quad \text{OH} \]

\[\text{F}_3\text{C} = \text{C}^+ \quad \text{OH} \quad + \text{H}^+ \quad \rightarrow \quad \text{F}_3\text{C} = \text{C}^+ \quad \text{OH}_2 \quad \rightarrow \quad \text{F}_3\text{C} = \text{C}^+ \quad \text{OH} \quad \rightarrow \quad \text{C}^+ \text{OH} + \text{CF}_3 \quad + \text{SbF}_6^- \quad \rightarrow \quad \text{CF}_4 \]

The chemistry of highly fluorinated carbocations, preparations, and reactions is the subject of an extensive review. Also available is a discussion on the use of intrinsic 19F NMR isotope shifts for the determination of carbocation structures.

A large number of simple fluorinated carbocations have been the subject of theoretical calculation, and the resulting calculated 19F and 13C chemical shifts correlate
well with the experimental ones. In 1:1 FSO₃H–SbF₅ (but not in more weakly acidic media) trifluoroacetic acid diprotonates to the gitanic dication (40), which then decomposes as shown; this process is another possible source of H–C=O (or H–O=O=C). In FSO₃H–SbF₅ at −78 °C, t-butyli fluoroformate protonates and decomposes to Me₃C⁺ and FC(OH)₂; some evidence for the presence of F–C=O was also obtained.

The stabilities of the trifluoro-substituted cations (41) and (42) in the gas phase have been determined by examining the exchange reaction between the parent cation (Y = H) and the appropriate precursor molecules, styrenes for (41) and α-chloro compounds for (42). For (41) the Yukawa–Tsuno \(r^+ \) value was 1.41, and for (42) it was 1.53, indicating a very high demand for resonance stabilization in these highly destabilized cations, compared with a normal value of 1.14 for the −CH₃ species. For both the \(\rho \) value was about −10, much the same as for −CH₃. Cation (43) is a postulated intermediate in the reaction of azide ion with the triflate precursor.
Solvolysis of (44) gives the doubly destabilized cation (45), which shows a preference for internal return.89 Compound (44) is 10^9 times less reactive than is (46), of which 10^6 is attributed to the antiaromaticity of (45) and 10^3 to the presence of the electron-withdrawing CF\textsubscript{3}.89 The similarity of the destabilized cation (47) and the doubly protonated species (48) is demonstrated by the similar electrophilic cyclizations that these species undergo.90 Double-bond protonation was not observed.90 Compound (49) undergoes aniline-catalysed ring closure as shown to give (50), rather than the expected isomer (51).91

Other Destabilized Carbocations

![Diagram of carbocations](image)

Destabilized carbocations are those with electron-withdrawing groups α to the C^+ centre, such as the α-CF\textsubscript{3} species discussed above. Carbocations in the β-lactam and β-thiolactam series (52), formed during solvolysis of the mesylate precursors, show only minimal or non-existent stabilization by the $C=O$ and $C=S$ groups.92 Good nucleophiles such as N_3^- react directly with the mesylates in an S_N2 displacement.92 Also, it has been shown that 2-oxo bridgehead carbocations solvolyse 10^8–10^{10} times more slowly than do the equivalent methylene compounds, showing that any π-conjugative stabilization provided by the $C=O$ must be negligibly small.93 For (53; R = H) the solvolysis rates are decreased with respect to the parent, 80-fold for X = O.
and 30 000-fold for X = S.94 Ions (53; R = Me) also undergo deprotonation by solvent, but the differences in the elimination rates are much smaller.94 Nitration of \(\alpha, \beta \)-unsaturated esters with nitronium tetrafluoroborate involves species such as (54), according to trapping experiments.95

Carbocations Containing Other Heteroatoms

![Image](https://via.placeholder.com/150)

The \(\pi \)-donor ability of halogens in the species \(^{+}AX_{3} \) and \(^{+}AH_{2}X \) (A = C, Si, Ge, Sn and Pb) increases in the order F < Cl < Br < I for all cations, according to a new theoretical study,96 contradicting an earlier one.97 The IR spectrum of (55) in a cryogenic SbF\(_{5}\) matrix shows no evidence for any stabilizing effect of the chlorine lone pairs, in contrast to that observed in \(^{+}CCl_{3} \) and \(^{+}C_{3}Cl_{3} \).98 Treatment of buta-1,3-diene with \(I^{+} \) gives (56), but calculations indicate that (57) is the global minimum of the C\(_{4}\)H\(_{6}\)I\(^{+}\) surface, so it may also be capable of existence.99 Highly reactive alkenes such as methoxystilbene may form bromocarbenium bromide ion pairs such as (58) when treated with tribromide ion in chlorinated aprotic solvents.100 The gas-phase reactions of cysteine with the dimethylchloronium ion and the methoxymethyl cation have been investigated.101

![Image](https://via.placeholder.com/150)

Imidinium ions such as (59), formed from formamidine precursors by C–X bond cleavage, are more reactive than carbocations, being trapped by solvent or nucleophile at not quite diffusion-controlled rates, in general.102 The reaction rates are not
correlated by the N_+ scale. Species such as (60) have been studied by calculation, and (61) can be prepared as a stable salt. Allylic cations (62) and the dications (63) formed from them have been studied spectroscopically.

Carbocations in Zeolites

Several types of carbocation have proved to be stable when entrapped in a zeolite cage. For instance, (64) and related dimeric cations can be prepared from indene, and (65) and several other cations can be prepared from 4-vinylanisole, some of the latter being stable for several weeks. Absolute lifetimes of cumyl cations (66) have been measured in non-acidic zeolites, and their reactivities with co-absorbed alcohols have been studied. Triarylmethyl cations can be prepared by ‘ship-in-a-bottle’ syntheses in large-pore zeolites.

Allylic Systems

The intramolecular $4 + 3$-, $3 + 3$-, $4 + 2$-, and $3 + 2$-cycloaddition reactions of cyclic and acyclic allylic cations have been reviewed, together with methods for their generation by thermal and photochemical routes. The synthetic uses of cycloaddition reactions of oxyallyl cations, generated from polybromo and some other substrates, have also been summarized; seven-membered rings result from $4 + 3$-cycloadditions of these with dienes. The use of heteroatom-stabilized allylic cations in $4 + 3$-cycloaddition reactions is also the subject of a new experimental study. The one-bond nucleophilicities (N values) of some monomethyl- and dimethyl-substituted buta-1,3-dienes have been estimated from the kinetics of their reactions with benzhydryl cations to form allylic species. Calculations on allyl cations have been used in a comparison of empirical force field and *ab initio* calculational methods.

Vinyl and Aryl Cations

Long-lived vinyl cations have been reviewed. Vinyl cations (67) can be prepared by the fragmentation of alkenyl(aryl)iodonium triflates, giving triflate capture products, some of which may be rearranged. Otherwise vinyl cation research has been quiet this year.

The phenyl cation has been the subject of high-level *ab initio* calculations. The ground state was shown to be a singlet, and the singlet–triplet gap was estimated. The gas-phase transfers of H^+, H^-, and H_2O to Ph^+ have been studied. Arenium
ions and (R)-(−)-2-chlorobutane form complexes in the gas phase, and the complete racemization observed in the alkylated aromatic products which result is taken to mean that the components of the complex have undergone mutual charge transfer, and that the product-forming reaction is one between the 2-butyl cation and the neutral arene. Intramolecular fluoride ion abstractions have been observed, such as (68)→(69); similar intermolecular fluoride abstractions by arenium ions from suitable highly fluorinated substrates are also possible.

Arenium and Nitrenium ions

On the surface of the solid metal halide superacid HBr–AlBr₃, benzene gives the benzenonium cation (70), which was characterized in situ by ¹³C MAS NMR. All the methyl derivatives and one ethyl derivative were also studied. The aromatic substitution reactions occurring in the complexes between gaseous arenium ions and
proelectrophiles such as RX, ROH, epoxides, esters, and diazoalkanes in the gas phase represent an alternative electrophilic aromatic substitution mechanism, according to a new review.121 The process (71)\rightarrow(72) has been studied in a flowing afterglow experiment, as part of an investigation into the chemical constraints existing on organic cations in the interstellar medium.122 Protonation of (73) by hexafluoropropan-2-ol gives (74), which then loses diphenylmethyl cation in a photochemical retro-Friedel-Crafts reaction.123 The resulting diphenylmethyl cation can be captured as its hexafluoroisopropyl ether, or it may alkylate the ring in a different position, giving rearranged (73). Rearrangement of the cyclohexadienyl cation (74) may also occur without prior separation of the diphenylmethyl cation.123

In aqueous solution, the benzenium ion (75) gives the hydrated products (76) (90%) and (77) (8%) almost exclusively, with only 2% of the methyl-migrated aromatic product being observed;124 (76) is both the kinetically and the thermodynamically preferred product. The lifetime of (75) is 150 ns, similar to the 300 ns observed for (78), but (78) gives the unconjugated para product equivalent to (77) preferentially, perhaps

indicating the presence of a larger amount of positive charge at the para position in the latter case.124 NMR and calculational studies of some stable protonated ions of the chrysene skeleton, (79) and (80), have been made; (79; X = Ac) protonates on the C=O group.125 Some diarylnitrenium ions have been studied by examining the products formed by trapping them with electron-rich alkenes.126 Calculations predict
that (81) has a triplet ground state, the steric bulk of the substituent groups destabilizing the singlet state.127

\[
\begin{align*}
&\text{(79)} \\
&\text{(80)} \\
&\text{(81)} \quad X = \text{H, F, Cl, Br}
\end{align*}
\]

Aromatic Systems

High-level calculations on the ‘remarkably’ stabilized trilithiocyclopropenium cation C\(_3\)Li\(_3^+\), and the related species C\(_3\)HLi\(_3^+\), C\(_3\)H\(_2\)Li\(_+\), and C\(_3\)H\(_3^+\), are reported.128 The cyclopentadienyl cation (82) and the indenyl cation (83) are reported to be ‘as antiaromatic as cyclobutadiene and benzocyclobutadiene’, according to magnetic evidence, but the fluorenyl cation (84) is non-aromatic, owing to the presence of compensating diamagnetic and paramagnetic character;129 (82) has a triplet ground state, but the ground states of (83) and (84) are singlets.129 The antiaromatic species (86) can be generated from (85) solvolytically, the end-products being those of solvent capture, with some elimination and rearrangement.130 A strong dependence of reaction rate upon solvent ionizing power was observed. In TFE at 25 \(^\circ\)C, (85) is less reactive than the indenyl and fluorenyl derivatives by factors of 500 and 30 000, respectively, and its antiaromaticity causes it to react a huge 10\(^{14}\) times more slowly than does

\[
\begin{align*}
&\text{(82)} \\
&\text{(83)} \\
&\text{(84)} \\
&\text{(85)} \xrightarrow{\text{TFE}} \text{(86)} \quad \text{(87)}
\end{align*}
\]
Protonation of the diatropic Hückel [14]annulenes (88) gives the first examples of persistent dimethyldihydropyrenium cations (89), which are paratropic $4n\pi$[12]annulene ions. The ring currents are reversed; the chemical shift of the methyl groups in (88, $R = H$) is -4.23, whereas in (89, $R = H$) values of 1.70 and 1.32 are found. A fullerene carboxation, C$_{76}^+$, has been synthesized using the ‘electron hole’ oxidant [Ar$_3$N$^{+}$][CB$_{11}$H$_8$Br$_6$]$^-$, and fullerene dications and trications have been used in the gas phase to initiate the ‘ball-and-chain’ polymerizations of allene and propyne.

Dications

The structures of many interesting dications have been reviewed. The hydrogen isotope exchange processes taking place in the crotonyl cation (90) in superacid media involve two dications; rate constants and isotope effects for all the reactions shown could be obtained by computer modelling. 1,2-Bis(trialkylsilyl)ethanes are possible vicinyl dication synthons, giving products that can be thought of as deriving from ArCHCHAr. Superacid treatment of (91) gives the unique dienyllallyl dication (92), but the parent bisallylic benzene dication, i.e. (92) with all Hs, could not be prepared.

\[
\begin{align*}
\text{MeCH}=\text{CH}\overset{+}\text{C}=\overset{+}\text{O} & \quad (90) \\
\text{MeCH}=\text{CH}\overset{+}\text{C}=\overset{-}\text{O} & \quad (91) \\
\text{MeCH}=\text{CH}\overset{+}\text{C}=\overset{+}\text{O} & \quad (92)
\end{align*}
\]
Superacid dehydrative cyclization of pinacols such as (93) gives condensed aromatic compounds as shown, presumably via dicationic species like (94).\(^{137}\)

Dications such as (95) can be prepared electrochemically as shown, and can be isolated as their di-BF\(_4\) salts following treatment with HBF\(_4\).\(^{138}\) Reaction of species such as (96) with 1,4-diaminobenzene leads to new bis(pentadienylium) dications with a phenylene-1,4-diamine spacer, which are dyes with interesting optical properties.\(^{139}\)

Diprotonation of (97) with H\(_2\)SO\(_4\) gives a species which is protonated at both carbonyl groups, not the delocalized annulene dication, presumably for steric reasons.\(^{140}\)

Oxidation dications of perylenes, e.g. (98), are \([4n + 2]\) species with diamagnetic ring currents, whereas the dibenzo[cd, im] derivative [two more benzene rings at the top and
the bottom of (98)] is a 4n paramagnetic species.141 Several persistent mono- and dications of various phenanthrenes, e.g. (99), have also been described.142

Polycyclic Systems

\[
\begin{array}{c}
\text{OH} \\
\text{(100)}
\end{array}
\xrightarrow{+\text{H}^+}
\begin{array}{c}
\text{H}_2\text{O}^+ \\
\text{(101)}
\end{array}
\xrightarrow{-\text{H}^+}
\begin{array}{c}
\text{OH} \\
\text{(102)}
\end{array}
\]

\[
\begin{array}{c}
\text{TsO} \\
\text{(103)}
\end{array}
\xrightarrow{\text{EtOH–H}_2\text{O}}
\begin{array}{c}
\text{H}^+ \\
\text{(104)}
\end{array}
\]

\[
\begin{array}{c}
\text{R} \\
\text{(105)}
\end{array}
\]

\[
\begin{array}{c}
\text{N} \\
\text{(106)}
\end{array}
\]

\[
\begin{array}{c}
\text{OBb} \\
\text{(107)}
\end{array}
\]

\(R = \text{Me, OMe}\)

Several carbocation rearrangements, including some that take place in cyclic and polycyclic systems, have been reviewed.143 A semiempirical study has been made of the effect of the geometry, and of the presence or absence of methyl substituents, on the stabilities of protonated cyclopropylcarbonyl ketones, in an attempt to resolve the 7-nortricyclane anomaly.144 The cubylcarbonyl cation is highly unlikely to exist, according to calculations based on the protonation of (100).145 This undergoes a ring enlargement via a transition state that looks like (101), drawn for the equivalent process in the 1-propyl cation, giving (102) without losing the oxygen first.145 The unstrained homoallylic system (103) undergoes ethanalysis concerted with \(\sigma\)-bond migration, giving products resulting from the rearranged allylic cation (104) to the extent of at least 95%.146

Rearrangements which take place in carbocation sulfinate ion pairs, \(\text{C}^+\cdot\text{ArSO}_2^-\), may involve re-bonding to the same sulfinate oxygen or bonding to the other one, according to labelling studies.147 The processes studied included the norbornyl\(\rightarrow\)norbornyl and
protoadamantyl→adamantyl rearrangements; the more stable carbocations were the more selective.147 The stereoselectivity observed in 5-substituted adamant-2-yl cations (105) was found to depend on the electron demand of the substituent X.148 Addition of benzenesulfonyl chloride to 1-phenyltricyclo[4.1.0.02,7]heptane opens one of the cyclopropane rings with high endo, anti stereoselectivity.149 A γ-cyano substituent can participate in allylic bridgehead solvolyses via species such as (106), mesomeric stabilization partially counteracting the inductive destabilization; the allylic system solvolyses 2 × 105 times faster than the non-allylic system, and adding the CN group does not change this.150 The assistance to solvolysis provided by benzene rings and double bonds in laticyclic systems such as (107) has been studied (Bb = p-bromobenzoate).151

Bridged Systems

Not surprisingly, many of the review chapters in reference 1 are concerned with bridged, or rapidly equilibrating, systems. These include verification of computed structures by NMR and IR spectroscopy,152 and by X-ray structure determination,5,152 and the use of isotope effects83 and the isotopic perturbation method153 for determining structural details. Also reviewed are the use of IR spectroscopy154 and CP/MAS NMR spectroscopy155 for determining carbocation structures in cryogenic matrices. More specific reviews of transannular participation in bridged carbocations in superacids,156 carbocation rearrangements,143 and the C\textsubscript{9}H\textsubscript{5}+ system157 are also available. The gas-phase stabilities of bridgehead carbocations correlate with their solvolytic reactivities over 23 log units, and also correlate well with the stabilities as given by ab initio calculations.158

The problem of norbornyl cation stabilities vs. solvolysis rate discrepancies in the norbornyl system has been addressed in an important paper.159 The classical and non-classical norbornyl cations do not resemble the 2-endo- and 2-exo -norbornyl solvolysis transition states very closely. The authors conclude that Brown was wrong, but that Winston was not entirely right either.159 A substituent in the benzene ring has little effect upon the kinetics of the acid-catalysed hydrolysis of 2-exo-norbornyl phenyl ether.160 The FTIR spectra of matrix-isolated 2-methylbenzonorbornen-2-yl cations have been examined; at −196 °C the structure can best be represented as (108), rather like a phenonium cation, but at higher temperatures a transition takes place to a structure that is more nearly represented as (109), with some π-bridging.161 The stereoselectivities of some 7-methyl-7-norborn(en)yl cations have been investigated; (110) has a classical structure and reacts in a stereo-random manner, whereas (111) is

![Diagram of carbocations and rearrangements](image-url)
fairly stereoselective.162 The presence or absence of the methyl group in (111) makes no difference to its stereoselectivity.162 There is only an 8 kcal mol-1 difference in enthalpy between the two isomeric C\textsubscript{7}H+ cations (112) and (113), as determined from solvolysis studies of the mesylate precursors.163 A theoretical study of the three-dimensionally homoaromatic species (114) has been performed.164

References

9 Carbocations

9 Carbocations

CHAPTER 10

Nucleophilic Aliphatic Substitution

J. SHORTER

Department of Chemistry, University of Hull, Hull HU6 7RX

Vinylic Systems .. 299
Allylic and Other Unsaturated Systems 301
Norbornyl System ... 302
Miscellaneous Polycyclic Systems 302
Epoxide Reactions .. 305
Other Small Rings .. 307
Substitution at Elements Other than Carbon 308
Intramolecular Substitution .. 310
Anchimeric Assistance .. 311
Ambident Nucleophiles .. 311
Isotope Effects .. 311
Gas-phase Reactions ... 312
Radical Processes .. 315
Medium Effects .. 316
Phase-transfer Catalysis and Other Intermolecular Effects 318
Structural Effects ... 319
Correlation Analysis by the Hammett Equation and other LFERs . 319
Nucleophilicity and Leaving-group Effects 321
Miscellaneous Studies (Mainly Kinetic) 322
Acknowledgement ... 322
References .. 323

Vinylic Systems

Rapoport and colleagues’ work has continued.1,2 In an attempt to develop the
\(k_{OTF}/k_{OMS} \) ratio as a mechanistic tool for the addition–elimination route in nucleophilic
vinylic substitution, the reactions of several pairs of vinyl triflates (1a) and mesylates
(1b) were examined.1 When Ar = \(p\)-O\(_2\)NC\(_6\)H\(_4\) or Ph and Y = Y’ = CO\(_2\)Et, reactions
with piperidine or morpholine in MeCN or THF gave the normal substitution product,
with \(k_{OTF}/k_{OMS} \) ratios of 3.7–10.6. However, reactions of these substrates (1b) (and of
others involving Y, Y’ variously as CN and/or Me) with thiolate nucleophiles led to
ketonic products via S–O bond cleavage. These findings indicate that \(k_{OTF}/k_{OMS} \) ratios
cannot be used as a general mechanistic tool. Attempts to delineate the scope of the
addition–elimination route have continued in a study of the reaction of methyl \(\beta \)-chloro-
(3-bromo-2,4,6-trimethyl)cinnamate (2) with MeS\(^-\) in MeCN.2 The main products are
the isomers (3) and (4), in the ratio of 2.3:1, with a small amount of the arylacetylene (5). The formation of both isomers suggests an elimination-addition mechanism via (6) and this was confirmed by deuterium incorporation experiments.

\[
\begin{align*}
\text{Ar} & \quad \text{C} = \text{C} \quad \text{Y} \\
& \quad \text{LG} \\
\text{Y} & \quad \text{(1)}
\end{align*}
\]

\(\text{a}; \text{LG} = \text{OTf}\)

\(\text{b}; \text{LG} = \text{OMs}\)

\[
\begin{align*}
\text{Cl} & \quad \text{C} = \text{C} \quad \text{H} \\
& \quad \text{MeS}^- \\
\text{MeCN} & \quad \text{MeS} \quad \text{C} = \text{C} \quad \text{H} \\
& \quad \text{MeS}^- \\
\text{Ar} & \quad \text{C} = \text{C} \quad \text{H} \\
& \quad \text{Ar} \quad \text{C} = \text{C} \quad \text{H} \\
\text{CO}_2\text{Me} & \quad \text{CO}_2\text{Me} \\
\text{Cl} & \quad \text{Cl} \\
\text{E} & \quad \text{E} \\
\text{Ar} & \quad \text{Ar} \\
\text{CO}_2\text{Me} & \quad \text{CO}_2\text{Me}
\end{align*}
\]

(2)

(3)

(4)

(5)

(6)

In (2) to (6): Ar = 3-Br-2,4,6-Me₃C₆H

The styril iodonium salt (7a) reacts slowly with acetic acid to give the \(E\) and \(Z\) isomeric products (8a) and (9a) in the ratio 85:15.³ The decenyl system (7b) is much more reactive and gives only the inversion product, the \(Z\) isomer (9b). It was suggested that the styril system reacts in a two-step mechanism via the vinylene phenonium ion (10), whereas the decenyl system follows a one-step vinylic \(S_N2\) mechanism. In contrast, 2-bromo-1-decenyliodonium salt reacts with bromide ion in MeCN with complete retention.⁴ The observed rate constants show an unexpected dependence on [Br⁻], in accordance with a mechanism involving ligand coupling within a bromoiodane intermediate.

\[
\begin{align*}
\text{R} & \quad \text{C} = \text{C} \quad \text{H} \\
& \quad \text{H} \\
\text{E} & \quad \text{E} \\
\text{IPh}^+ & \quad \text{IPh}^+ \\
\text{BF}_4^- & \quad \text{BF}_4^- \\
\text{AcOH} & \quad \text{AcOH} \\
\text{(7)} & \quad \text{(7)} \\
\text{a}; \text{R} = \text{C}_6\text{H}_5 & \quad \text{b}; \text{R} = \text{n-C}_8\text{H}_{17}
\end{align*}
\]

(7)

(8)

(9)

(10)

Reactions of \(z, \beta, \beta\)-trifluorostyrene and (Z)-\(\beta\)-chlooro-\(x, \beta\)-difluorostyrene with 9-methylfluoren-9-yl anion (potassium salt) are accelerated by ion-pair solvating agents (18-crown-6, [2.2.2]-cryptand) and retarded by KBPH₄ as a common-ion reagent.⁵ This was interpreted as indicating that solvent-separated ion pairs are more reactive than contact ion pairs in these reactions.
The kinetics and mechanism of the reactions of trialkyl phosphites with mucochloric acid (dichloroaldehydehydroacrylic acid) have been studied. Cine-substitution products are formed in reactions of 2,5- and 2,6-dichloro-1,4-benzoquinone with pyrrolidine. The reaction of vinyl fluoride with CN⁻ has been studied by the DFT B3LYP/6-31+G(d) method. This nucleophilic substitution is mainly a π attack with a barrier height of 14.8 kcal mol⁻¹, which is 17.91 kcal mol⁻¹ more favourable than the σ attack.

Allylic and Other Unsaturated Systems

γ-Trifluoromethylated allylic acetates give SₐN₂⁺-type reactions with various Grignard reagents in the presence of catalytic amounts of copper(I) cyanide and trimethylsilyl chloride, without any trace of the corresponding SₐN₂ products. This high selectivity was ascribed to the strong electron-attracting effect of CF₃. In related work a new route for the asymmetric construction of quaternary carbon centres containing a CF₃ group has been devised by using highly regio- and stereo-selective SₐN₂⁺ reactions of organocopper and organocuprate reagents with certain allylic mesyles.

Copper-mediated SₐN₂⁺ displacement of enantiomerically pure allylic mesoxy vinyl sulfoxides occurs with high yields and stereoselectivities. The SₐN₂⁺ reactions of structurally related mesoxy sulfides and sulfones with organocuprates have also been examined.

The Bu'OK-promoted reaction of 4-chlorobut-2-yn-1-ol (11) with nitroalkenes (12) gives 3-vinylidenetetrahydrofurans (14) in good yields with complete dia-stereoselectivity. It is supposed that oxa-Michael addition to form the intermediate (13) is followed by intramolecular SₐN₂⁺ substitution.

SₐN₂⁺ ring-opening reactions of various 11-oxatricyclo[6.2.1.0¹⁴]undec-9-en-5-ones by organometallic reagents have been reported. Primary, secondary, and tertiary organolithium reagents were effective, but organocuprates and Grignard reagents were generally ineffective. There was competitive attack on the carbonyl group.

\[
\text{ClCH₂C=CCCH₂OH}
\]

\[
\text{(11)}
\]

\[
\begin{align*}
\text{R} & \quad \text{Bu'OK, THF} \\
\text{(12)} & \quad (11)
\end{align*}
\]

\[
\begin{align*}
n = 1, & \quad R = H \\
n = 2, & \quad R = H \\
n = 3, & \quad RR = \text{O(CH₂)₂O}
\end{align*}
\]

Nucleophilic reaction of Et₃N with diallyl disulfide has been found to differ from that with diallyl sulfide in being very much more exothermic and also autocatalytic. Possible mechanisms were discussed. EHMO calculations have been performed for
1-halo-3-phenylpropa-1,2-dienes and kinetics of hydrolysis have been studied.\(^\text{15}\) At pH<8 the hydrolysis appears to proceed by a solvent-assisted \(S_N1\) mechanism involving the intermediate formation of \([\text{PhCHCCH}]^+\), but at pH > 9.5 an \(S_N2'\) mechanism, with concerted bond breaking and making, is involved.

Norbornyl System

In order to analyse the solvolysis behaviour of epimeric norbornyl derivatives, the dissociation mechanisms of protonated 2-exo-norbornanol (15) and 2-endo-norbornanol (16) have been studied by \textit{ab initio} calculations at the B3LYP/6–311+G*/B3LYP/6–31G* level.\(^\text{16}\) In agreement with experimental solvolysis data, the activation energy (including the 1.2 kcal mol\(^{-1}\) ground state energy difference) for dissociation of \textit{exo}-(15) is 3.7 kcal mol\(^{-1}\) lower than that of \textit{endo}-(16). This is much smaller than the 14 kcal mol\(^{-1}\) energy difference favouring the isolated non-classical norbornyl cation (17) over the classical ion (18). Changes in geometry and charge distribution reduce the energy difference between the classical and non-classical cation moieties in the \textit{endo} and \textit{exo} solvolysis transition structures to 7.5 kcal mol\(^{-1}\). This is reduced further by the stronger leaving-group interaction in the 2-\textit{endo} transition structure compared with the 2-\textit{exo} structure.

\[
\begin{align*}
\text{F}\quad\text{H} & \quad\text{X} & \quad\text{H} \\
\text{X} & = \text{H}_2\text{O}^+ \\
\text{15} & \quad\text{16} & \quad\text{17} & \quad\text{18}
\end{align*}
\]

Rate constants for the hydrolysis of 2-exo-norbornyl phenyl ether and several \textit{meta}- or \textit{para}-substituted derivatives have been measured in concentrated perchloric acid solutions.\(^\text{17}\) The effect of substituents on the rate constant and activation parameters is small. The mechanism appears to be of the \(A\)-1 type.

Miscellaneous Polycyclic Systems

The reactions of 1,3-dihaloadamantanes with various carbanions in DMSO have been studied.\(^\text{18}\) For example, potassium enolates of acetophenone and pinacolone and the anion of nitromethane react with 1,3-diodoadamantane (19) under photo-stimulation; a free-radical chain process forms a 1-iodo monosubstitution product (20) as an intermediate, which undergoes concerted fragmentation to yield derivatives of 7-methyldienebicyclo[3.3.1]nonene (21). These and other results were interpreted in terms of the \(S_{RN1}\) mechanism. The work has been extended to the reactions of 1- and 2-halo- and 1,2-dichloro-adamantanes, examples of the \(S_{RN1}\) mechanism again being found.\(^\text{19}\)
Rate constants for the aqueous ethanolysis of 4-adamantylidene-2αR-adamantyl tosylate (22) give an m value of 0.86 in correlation with Y_{OTs}.\(^{20}\) This substrate is about five times more reactive than 2-adamantyl tosylate, and the products arise from the rearrangement of the substituted adamantyl ring into a protoadamantyl ring (23). These and other results are consistent with a transition state involving concerted σ-bond participation and departure of the tosylate leaving group.

A remarkable regioselective and stereoselective double nucleophilic substitution of the acetal group of tetraacetal tetraoxa-cages (24a) with silicon-containing nucleophiles

\[
\text{Et}_3\text{SiH/TiCl}_4 \quad \text{CH}_2\text{Cl}_2 \quad -78 \degree \text{C}
\]
mediated by Lewis acids has been found.21 A critical role was attributed to the C—O—C bond angle strain of the unusually large bond angle C(3)—O(4)—C(5) of (24a).

Nucleophilic alkylation with Grignard reagents (mediated by Et\textsubscript{2}AlCl) on chiral perhydropyrido(2.1-b)pyrrolo[1,2-d][1,3,4]oxadiazine (25) proceeds via an $S\textsubscript{N}2$ mechanism below -80 °C, forming the inversion product (26) with high stereoselectivity.22 At higher temperatures the stereoselectivity shifts in favour of retention.

The reactions of the [6]- and [7]-metacyclophanols (27) with MeSO\textsubscript{2}Cl in the presence of Et\textsubscript{3}N in CH\textsubscript{2}Cl\textsubscript{2} proceed rapidly to give the corresponding strained tricyclic ethers (28).23 A mesylate is formed first by attack of RSO\textsubscript{2}Cl on OH, and the mesylate group is then expelled by attack of the neighbouring OMe, an intramolecular version of the $S\textsubscript{N}2$ mechanism.

Alkylthio- or arylthio-substituted 1,2-dioxetanes derived from an adamantylidene vinyl system (29) undergo attack by appropriate oxygen nucleophiles in the presence of Lewis acid to form alkoxy-, aryloxy-, or acyloxy-substituted 1,2-dioxetanes (32).24 A novel $S\textsubscript{N}1$ reaction mechanism was suggested, involving species (30) and (31).

\[
\text{MeO} \quad \overset{(\text{CH}_2)_n}{\text{MeO}} \quad \overset{\ldots\text{OH}}{\text{H}} \quad \overset{\text{MeSO}_2\text{Cl}}{\text{Et}_3\text{N}} \quad \text{MeO} \\
(27) \quad n = 1,2 \\
\]

\[
\overset{\text{SR}^1}{\text{O}} \quad \overset{\text{OX}}{\text{SR}^1} \quad \overset{\text{E-Y}}{\text{Lewis acid}} \quad \overset{\text{Y}^-}{\text{O}} \quad \overset{\text{SR}^1}{\text{O}} \quad \overset{\text{OX}}{\text{SR}^1} \\
(29) \\
R^1 = \text{CH}_2\text{CH}_3 \quad X = \text{H}, \text{Piv} \\
\text{CH}_2\text{CF}_3 \\
\text{C}_6\text{H}_4\text{F} \\
(30) \\
(31) \\
R^2 = \text{alkyl, aryl, acyl} \\
\text{R}^2\text{OH} \quad \text{Lewis acid} \\
(32)
The kinetics of the reaction of 3-azabicyclo[3.3.0]octane with chloramine have been studied in the pH range 8–13. Two competitive bimolecular reactions lead to the formation of N-amino and N-chloro derivatives, by reaction between neutral species in the former case and by reaction between chloramine and protonated aza compound in the latter case.

Epoxide Reactions

The chemoselectivity, regioselectivity, diastereoselectivity, and enantioselectivity of heteroatom oxidations, epoxidations and CH insertions by dioxiranes have been reviewed. The selective ring-opening reactions of epoxides at high pressures have been reviewed (in Japanese).

The base-catalysed hydrolysis of ethylene oxide has been studied by the MNDO method. The structures of the reactant, product, and transition state were optimized and a reaction mechanism was proposed.

The kinetics of the reaction between acetic acid and epichlorohydrin in the presence of chromium acetate and chromic anhydride have been studied. Rate constants for the reaction of epichlorohydrin with p-cresol in the presence of basic catalysts have been measured in the temperature range 71–100 °C. Several simultaneous reactions occur, depending on the catalyst, and an appropriate kinetic model was developed.

The aromatic substituent effect on the stereoselectivity has been studied for the condensed-phase and gas-phase acid-induced methanolysis of 2-aryloxiranes derived from 3,4-dihydronaphthalene and trans-1,2,3,4,4a,10a-hexahydrophenanthrene bearing a tertiary benzylic oxirane centre. Linear free energy relationships were applied successfully.

The ring opening of several oxiranes by various thiosilanes (promoted by tetrabutylammonium fluoride as catalyst) occurs regioselectively under mild conditions. With the amphiphilic reagents isothiocyanatotrimethylsilane and O-trimethylsilyl thioacetate the sulfur centre exclusively attacks the oxiranes. A plausible reaction mechanism was suggested to explain the role of F^- as promoter.

The ring opening of the β, γ-epoxysilane (33) with p-nitrobenzoic acid in chloroform is regiospecific and gives the two esters (35) and (36). The mechanism involves the β-silicon-stabilized carbenium ion (34), which is captured by the p-nitrobenzoate counter-ion.

The reactions of monoepoxy derivatives, (37) and (38), of cis-1,2-dihydrocatechols with various O-, N-, C-, and Hal-centred nucleophiles have been studied. In both direct and acid-catalysed processes, these epoxides undergo exclusively nucleophilic attack at C(5a).

Chiral epoxyoxazolidines (39) undergo regioselective ring opening by sodium azide to products (40). Further appropriate manipulations of functional groups lead to chiral β-amino alcohols, which are intermediates for the enantioselective synthesis of bioactive products related to taxol.

The stereochemistry of the cobalt(II) chloride-catalysed opening of cinnamoyl epoxides with N-substituted anilines is controlled by the para substituent of the aromatic ring. Thus p-OMe promotes cleavage giving the anti amino alcohol as the
Ar = p-nitrophenyl

major product, whereas amines containing p-Cl, p-Br, or p-Me and also the parent unsubstituted amine afford the \textit{syn} amino alcohols as major product.

A ring-expansion reaction based on epoxide ring opening and control of stereochemistry by \(\sigma\)-participation of a silyl group has been devised.37 An example
is shown in (41)–(43). The ring-expansion product (42) was obtained in diastereomerically pure form. A mechanism for the ring-expansion reaction was proposed.

The Lewis acid trimethylsilyl triflate brings about the rearrangement of 2,3-epoxyamines to the corresponding 2-trimethylsilyloxyethylaziridinium ions. Such intermediates react regiospecifically with nitrogen nucleophiles to form 1-substituted 2,3-amino alcohols with full stereochemical control.

The kinetics of the alkylation of tertiary amines with 1,3-dichloropropan-2-ol have been studied. The mechanism is thought to involve a chlorohydrin–epoxide equilibrium.

Other Small Rings

The three-electron $S_{\text{N}}2$ reactions of arylecyclopropane cation radicals have been studied in detail. Stereoochemical experiments with methanol, water, or cyanide as nucleophile showed that the reactions occur stereospecifically with complete inversion of configuration at the carbon atom undergoing substitution. Various kinetic studies were carried out. The reaction of phenylecyclopropane cation radical with a series of alcohols as nucleophiles showed small steric effects. In further studies, steric and electronic effects of substituents in the cyclopropyl or phenyl ring were investigated. Substitution takes place at the most highly substituted carbon atom with a high degree of regioselectivity, but steric effects measured for alkyl groups attached to the carbon atom undergoing substitution are very small. The electronic effects on the rate constants for the reactions of para-substituted phenylecyclopropane cation radicals with methanol or pyridine in 1,2-dichloroethane at 23 °C are, however, substantial. Hammett-type treatments are reasonably successful, ρ values being about 2.

When gem-dibromocyclopropanes are heated with alcoholic potash, cyclopropanone acetals and propargylic ethers are obtained. The mechanism was discussed.

A theoretical and an experimental study of the acid-catalysed isomerization of 1-acylaziridines to the oxazolines has been carried out. Such isomerization may conceivably proceed by various paths, but the $S_{\text{N}}1$ mechanism, as in (44) and (45), has often been assumed to operate. The re-examination in this paper finds experimental and theoretical support for this in certain cases.

The diesters of N-phosphorylated aziridine are unreactive towards alkylating agents, but after conversion into the ionic monoesters they undergo ready N-methylation with MeI, followed by fast opening of the aziridinium ion by the iodide ion. A novel ring-opening reaction of various 2-alkyl- and 2,2-dimethyl-N-(diethoxyphosphoryl)aziridines with copper-modified Grignard reagents proceeds regiospecifically at the least hindered carbon.

Aziridines substituted at the N by nosyl (4-nitrobenzenesulfonyl) are highly reactive electrophiles towards various nucleophiles, e.g. amines, thiols, alkoxydes, cyanide. The corresponding $S_{\text{N}}2$ adducts are formed without competing attack on the nosyl functionality, (46) and (47). The nosyl group can then be split off under mild conditions to give primary amines.

A new method has been developed for the preparation of enantiomerically pure monosubstituted aziridines via the reaction of an N-tosyl-O-tosylaziridine (48) with a primary organocuprate reagent. Attack occurs at the least substituted carbon atom of
the aziridine ring, resulting in ring-opened intermediates, which then undergo ring closure to the desired product (49) by displacement of O-Ts.

An anomalous reaction of 2-benzenesulfonyl-3-aryloxaziridines (Davis reagents) with indoles has been reported. In this it appears that a π-bond in the indole acts nucleophilically to attack the O of the oxaziridine ring and thereby cleave the O−N bond.

3-Phenyloxetane reacts with nitric acid in dichloromethane under anhydrous conditions by a mixture of ortho and para aromatic nitration and oxetane ring opening. The latter affords 1,3-diol dinitrates. Kinetic studies of these reactions, and analogous reactions of related substrates, were carried out, the results being rather complex. The ring opening involves S_N2 reaction of nitrate ion with an oxetane–nitric acid complex.

5-Azidoisothiazoles may be thermolysed in p-xylene solution to yield bicyclic products. In the case of several 4-substituted derivatives, unimolecular loss of N$_2$ from the azide moiety is followed by ring closure involving the 4-substituent and the remaining N atom of the azide. Stereoisomeric cyclic sulfites of 1,1,2-triphenylethane-1,2-diol undergo an unexpected S_N1-type ring cleavage when treated with alcohols, thereby yielding enantiomerically pure ethers.

Substitution at Elements Other than Carbon

1-Bromo-2-t-butyldimethylsilyloxyindenes (50) react with caesium fluoride to form inden-2-ones (51), which may then be efficiently trapped in both intra- and inter-molecular additions.
Ab initio MO calculations have been carried out for the base-catalysed methanolation of a substituted 1,3,2-oxathiaphospholane.53 The results suggest that ring opening with retention of configuration at phosphorus is energetically the most favourable. This provides a rational interpretation for the chemo- and stereo-selectivity ascertained experimentally. The stereochemistry of nucleophilic substitution reactions of sterically rigid phosphoranes has been investigated.54 The stereochemistry of reaction at pentacoordinate phosphorus was found to depend on the leaving group, stereochemistry of phosphorane, and solvent; see (52)–(54). Thus, for example, SMe compounds with alkyl lithium reagents led to inversion, whereas OMe compounds gave various ratios of inversion and retention depending on the other factors mentioned above.

\textbf{50}

\textbf{51}

\textbf{52}
\begin{align*}
\text{F}_3\text{C} & \quad \text{CH}_3 \\
\text{F}_3\text{C} & \quad \text{O} \\
\text{F}_3\text{C} & \quad \text{CF}_3
\end{align*}

X = SMe, OMe, OCH$_2$CH$_2$NMe$_2$

\begin{align*}
\text{retention} \\
\text{inversion}
\end{align*}

\textbf{53}

\textbf{54}

Scrambling of ethoxy groups between sulfur atoms in close proximity has been observed for 1-(d_3-methyleneoxysulfonio)-9-(methylthio)dibenzothiophene (55) and some analogous compounds.55
Intramolecular Substitution

The substrate (56) undergoes acid hydrolysis to give (57) and (58) in parallel first-order reactions. The hydrolytic cleavage of the ether linkage [giving (58)] is about three times faster than the intramolecular cyclization [giving (57)].

2,4,6-Trimethoxydiazooacetophenone undergoes acid-catalysed cyclization to give 4,6-dimethoxy-3(2H)-benzofuranone. Under the same conditions diazooacetophenone gives the intermolecular product 2-hydroxyacetophenone. The difference in reaction mechanism was attributed to the interaction of o-OMe with the diazomethyl group.

Alkynyl zinicates (59), derived from 5-hexynyl tosylates, undergo a π-type endo cyclization to form cyclohexynes (60). This reaction takes place in competition with exo cyclization, leading to the formation of 1-(cyclopentylidene)alkylzincs (61).

A ‘facilitated transition’ hypothesis has been suggested to replace the ‘reactive rotamer’ hypothesis as an explanation for the gem-dialkyl effect in intramolecular cyclization reactions.
10 Nucleophilic Aliphatic Substitution

Anchimeric Assistance

Rate measurements for thermolysis of 4-azidothiazoles in p-xylene solution have found neighbouring-group effects from nitro (19-fold rate increase), phenyliminomethyl (16-fold), formyl (4.5-fold) and acetyl (2.2-fold) substituents in the 5-position.60 See also under Other Small Rings above.50 Secondary deuterium isotope effects are important in the study of neighbouring-group participation in solvolytic reactions.61 This subject has now been reviewed at considerable length. Other evidence bearing on participation is also discussed.

Further relevant studies have been made regarding the possible intervention of a neighbouring methoxy group effect in the solvolysis reactions of trans-2-methoxy-cyclopentyl and trans-2-methoxycyclohexyl tosylate.62 Three probes were used: effect on rate of varying solvent ionizing power, effect of added azide ion, and identity of solvolysis products in 97% aqueous 2,2,2-trifluoroethanol. The results appear to confirm the occurrence of neighbouring-group participation in the solvolysis of the above substrates, but strong electrophilic solvation exerts a dominant effect on the reactivity.

Ambident Nucleophiles

The methylation of N-phenylhydroxylamine with methyl arenesulfonates in DMSO occurs on the O atom, in contrast to methylation in methanol, where N-alkylation occurs.63 Rate data were obtained for various systems pertinent to the problem of alternative sites of alklyation and Hammett treatments were applied.

Further work by the same research group is on the kinetics of the reactions of substituted N-methylbenzohydroxamates with substituted phenyldimethylsulfonium salts.64 As the substituents in the hydroxamate nucleophile are changed from electron-releasing to electron-attracting, the α-effect is diminished. The reactivity of the hydroxamates correlates with their oxidation potentials, indicating the inclusion of some single electron transfer (SET) character in the transition state for these reactions. The matter is further pursued in a later paper.65

The regioselectivities of myo-inositol derivatives towards electrophiles have been studied by using various levels of quantum mechanical calculation.66 The calculations appear to favour the O(6) position, but experimentally the O(3) position is the major site for electrophilic attack. Such experiments usually involve rather polar solvents and repetition of some of the calculations for molecules embedded in a medium of dielectric constant of 40 found O(3) to be preferred as reaction site.

Isotope Effects

The 14N/15N and secondary α-1H/2H kinetic isotope effects (KIEs) for the SN2 reaction between PhS− and benzyldimethylphenylammonium ion at different ionic strengths in DMF at 0 °C indicate that the structure of the transition state changes markedly with the ionic strength of the medium.67 A more reactant-like, more ionic, transition state is found at the higher ionic strength. A further contribution from the same research group
employs secondary $\alpha^{-1}H/2H$ and heavy atom KIEs to determine the symmetry of S_{N2} transition states. The results for two different S_{N2} reactions suggest that the magnitude of secondary $\alpha^{-1}H/2H$ KIEs ‘can be determined by the length of only the shorter (stronger) reacting bond in an unsymmetrical S_{N2} transition state rather than by the usual nucleophile-leaving group distance’.

The relationship between secondary $\alpha^{-1}H/2H$ KIEs and transition state looseness has been investigated by MP2/6–31 + +G(d,p) calculations on three identity $X^- + CH_3X$ S_{N2} reactions. The secondary KIE increases with increasing transition structure looseness. It was shown that looseness is best defined as a Δ-elongation of the C–X bond lengths, where the reference state can be either the isolated reactants or the ion–dipole complex.

Solvent KIEs for MeCl + Cl$^-$ in the presence of 1–4 molecules of water were examined by ab initio calculations. The ratio k_H/k_D was <1 for the monohydrated system and >1 for the dihydrated system; it increased with the number of microsolvating water molecules, owing to breakage of hydrogen bonds in attaining the transition state.

Gas-phase Reactions

Guided beam tandem mass spectrometry techniques have been used to examine the promotion of the S_{N2} reaction

$$^{37}\text{Cl}^- + CH_3^{35}\text{Cl} \rightarrow ^{35}\text{Cl}^- + CH_3^{37}\text{Cl}$$

by translational energy. The translational energy threshold is 45 ± 15 kJ mol$^{-1}$, well above the previously reported potential energy barrier height of 10–13 kJ mol$^{-1}$ for the S_{N2} transition state. Much further experimental and theoretical information is provided in this paper.

Rate constants have been measured for the reaction of Cl$^-$ with CH$_3$Br over buffer gas pressures from 300–1100 Torr at 125 °C by ion mobility spectrometry (IMS). The experiments indicate that this reaction is not moved onto its high-pressure limit of kinetic behaviour by the use of buffer gas pressures near 1 atm. The same authors have carried out a similar study of the reaction of Cl$^-$ with isopropyl bromide at 640 Torr and 20–175 °C. It was concluded that under these conditions the reaction occurs primarily by a distinctly two-step mechanism:

$$\text{Cl}^- + i-\text{PrBr} \xrightleftharpoons{K_1} \text{Cl}^-(i-\text{PrBr}) \xrightarrow{k_1} \text{Br}^- + i-\text{PrCl}$$

in which a thermal energy ion complex, Cl$^-(i$-PrBr), is maintained in a state of chemical equilibrium with the reactants. Values of K_1 and k_1 were obtained. The S_{N2} transition state is 1.6 kcal mol$^{-1}$ above the energy of the reactants.

Translational energy dependence has been studied for a series of chloride exchange reactions in the gas phase. This varies with the changes in the potential-energy surfaces across the series of reactions in a manner that is consistent with the predictions
of statistical reaction rate theory. The same authors have also studied the role of translational energy in the system75

\[^{35}\text{Cl}^- + ^{37}\text{ClCH}_2\text{CN} \rightleftharpoons ^{37}\text{Cl}^- + ^{35}\text{ClCH}_2\text{CN} \]

The observed energy dependence is indistinguishable from that predicted by RRKM theory, suggesting that increased translational energy is redistributed statistically in the collision complex.

Rate constants and products for the reactions of Cl−(D\textsubscript{2}O\textsubscript{n} + CH\textsubscript{3}Br (n = 1–3) have been measured over various temperature ranges.76 For example, the n = 1 reaction was studied from 238 to 478 K and the rate constant is well described by the equation \(k = (6.0 \times 10^{-10}) \exp(-1270/T) \text{ cm}^3 \text{ s}^{-1} \). The reaction mechanism was determined as ligand switching to produce Cl−(CH\textsubscript{3}Br), followed by thermal decomposition of the complex. RRKM theory was used to model the decomposition of Cl−(CH\textsubscript{3}Br). The same research group has also studied the effects of solvation, isotopic substitution, and temperature on the reactions of F−(H\textsubscript{2}O\textsubscript{n} with CH\textsubscript{3}Br (n = 0–5).77 The characteristics of the reactions vary greatly with the value of n.

A quantum dynamical study of the Cl− + CH\textsubscript{3}Br \(S_{N2} \) reaction has been made.78 The calculations are described in detail and the resulting value of the rate constant is in much better agreement with experiment than is that derived from statistical theory. In related work on the same reaction, a reaction path Hamiltonian analysis of the dynamics is presented.79 The same research group has used statistical theory to calculate the rate constant for the \(S_{N2} \) reaction

\[\text{F}^- + \text{CH}_3\text{Cl} \rightarrow \text{FCH}_3 + \text{Cl}^- \]

in its dependence on relative translational energy \(E_{rel} \) and CH\textsubscript{3}Cl temperature \(T \).80 At best, statistical theory only qualitatively reproduces the dependence of the experimental rate constant on translational energy and temperature.

The integrated MO + MO (IMOMO) method, recently proposed for geometry optimization, has been tested for accurate single-point calculations.81 Test examples included the activation barrier of the \(S_{N2} \) reaction of Cl− + alkyl chloride. The conclusion was that IMOMO single-point calculation provides a method for obtaining reliable local energetics such as bond energies and activation barriers for a large molecular system.

The performance of the B3-LYP variant of density functional theory, when used in conjunction with the 6–31G(d) and 6–311 + G(3df,2p) basis sets in describing the \(S_{N2} \) reactions of Cl− + CH\textsubscript{3}Cl and Cl− + CH\textsubscript{3}Br, has been examined in detail.82 The results appear to be patchy. The same research group has carried out high-level \textit{ab initio} molecular orbital calculations at the G2(+) level of theory on the identity front-side nucleophilic substitution reactions with retention of configuration, X− + CH\textsubscript{3}X for X = F, Cl, Br, and I, and has compared the findings with those for back-side attack.83 For chloride exchange in CH\textsubscript{3}Cl, which has been found in gas-phase experiments at high energies, the results suggest that this may be the first example of a front-side \(S_{N2} \) reaction with retention of configuration at saturated carbon.
Stationary points of the potential surface for the S_N2 reaction

$$\text{F}^- + \text{CH}_3\text{Cl} \rightarrow \text{FCH}_3 + \text{Cl}^-$$

have been investigated by large-scale coupled cluster [CCSD(T)] calculations.84 The ion–dipole complexes in the reactant and product channels have well depths of 15.8 and 9.6 kcal mol$^{-1}$, respectively, and are separated by a small barrier of 3.3 ± 0.3 kcal mol$^{-1}$.

Quantum scattering calculations have been reported for the S_N2 reaction of Cl$^-$ with CH$_3$Cl.85 In the method used, the rotating bond approximation (RBA) has been adapted so that three degrees of freedom, including the C–Cl stretching vibrations and the CH$_3$ umbrella mode, are treated explicitly. Initial excitation of the C–Cl vibration was found to have a large effect on the reaction probabilities, while excitation of the CH$_3$ umbrella vibration is less significant. In related work, the temperature dependence of the rate constant for the Cl$^-$ + CH$_3$Br reaction has been studied down to 23 K.86 The rate constant is increased by over two orders of magnitude when the temperature is reduced from 300 to 23 K.

Identity S_N2 reactions of MeF + F$^-$ and MeCl + Cl$^-$ have been compared computationally with the reactions of MeF + LiF or NaF and of MeCl + LiCl.87 Calculations by new methods essentially confirm results obtained previously by other methods. Extension of the calculations to the corresponding ethyl systems gave lower barriers than for methyl systems in the reactions involving ion pairs as nucleophiles.

Theoretical studies have been carried out for the gas-phase nucleophilic ring-opening of 3,4-epimino-, 3,4-epoxy-, and 3,4-epithio-but-1-ene.88 Attack by HO$^-$ on α-C, γ-C, and δ-C was examined by using MP2/6–31+G*//MP2/6–31+G* $ab\ initio$ molecular orbital methods.

The question, ‘Does nucleophilic substitution reaction occur in electron-excited condition?’ has been addressed in a short review article in Japanese.89

The reaction between ammonia and methyl halides has been studied by using $ab\ initio$ quantum-chemical methods.90 An examination of the stationary points in the reaction potential surface leads to a possible new interpretation of the detailed mechanism of this reaction in different media. In the gas phase, the product is predicted to be a strongly hydrogen-bonded complex of alklyammonium and halide ions, in contrast to the observed formation of the free ions from reaction in a polar solvent. Another research group has also studied the reaction between ammonia and methyl chloride.91 A quantitative analysis was made of the changes induced on the potential-energy surface by solvation and static uniform electric fields, with the help of different indexes. The indexes reveal that external perturbations yield transition states which are both electronically and structurally advanced as compared to the transition state in the gas phase.

S_N2 displacements of Cl$^-$ ion from MeCl, EtCl, and ClCH$_2$CH$_2$Cl by AcO$^-$ and by HO$^-$ have been studied in $ab\ initio$ molecular orbital calculations at the HF/6–31+G(d), MP2/6–31+G(d), and MP4/6–31+G(d) levels.92 The gas-phase reactions of HO$^-$ have no overall barrier, but there is a small overall barrier for the reactions with AcO$^-$. A self-consistent reaction-field solvation model was used to examine the S_N2 reactions between MeCl and HO$^-$ and between ClCH$_2$CH$_2$Cl and AcO$^-$ in solution. A
PM3 and SM3–PM3 semiempirical MO study of the conventional $S_{N}2$ hydrolysis and neighbouring-group hydrolysis reaction mechanisms in the gas phase and in aqueous solution for 2,2′-dichlorodiethyl sulfide has been described.93 The calculations predict substantially faster reactions in aqueous solution, with the neighbouring-group mechanism always being preferred. Various other details of the mechanisms were elucidated.

A series of molecular dynamics experiments has been presented for the reaction of Cl^- with CH_3Cl taking place in liquid simple point-charge water nanoclusters containing 6, 16, or 32 solvent molecules at temperatures close to 200 K.94 It was found that solvation effects lead to significant enhancement of the computed free-energy barriers, even in aggregates containing only six water molecules. Numerous other interesting findings are presented. The semiempirical MO AM1 method has been employed to investigate the mechanism of the alkaline $S_{N}2$ hydrolysis of methyl nitrate and the influence of the solvent thereon.95 The activation energy for hydrolysis in the gas phase was calculated as 50.61 kJ mol$^{-1}$, but this is increased to 89.65 kJ mol$^{-1}$ by the solvent effect. The latter value was considered to be in essential agreement with the experimental value of 82.42 kJ mol$^{-1}$. A microscopic description of non-adiabatic, non-equilibrium, and equilibrium solvations has been presented for the solvated cluster $S_{N}2$ reactions

$$(\text{H}_2\text{O})_n\text{Cl}^- + \text{CH}_3\text{Cl} \rightarrow \text{ClCH}_3 + \text{Cl}^- (\text{H}_2\text{O})_n$$

with $n = 0–4$.96 The treatment involved \textit{ab initio} MO calculations, and the ratio of non-adiabatic solvation to equilibrium solvation rate constants was evaluated.

As part of a theoretical examination of the factors controlling the catalytic efficiency of a transmethylating enzyme (catechol O-methyltransferase), the reaction mechanism of the non-enzymatic transmethylation of catechol by S-adenosylmethionine (AdoMet, as modelled by sulfonium ion) has been elucidated by using \textit{ab initio} and semiempirical quantum mechanical methods.97 The gas-phase reaction between catecholate and sulfonium is extremely fast, involving no overall barrier, and the reaction profile to some extent resembles that of a typical gas-phase $S_{N}2$ reaction. However, in aqueous solution, this reaction is very slow, with a predicted barrier of 37.3 kcal mol$^{-1}$. Good agreement between calculated KIEs for the model reaction and measured KIEs for the enzyme reaction suggests that the transition states are similar.

Radical Processes

The evidence for single-electron transfer (SET) in the reactions of lithium aluminium hydride (LAH) with \textit{hindered} primary alkyl iodides is overwhelming. A study has now shown for the first time that SET may also be involved in reactions of LAH with \textit{unhindered}, unsubstituted primary alkyl iodides, the particular substrate studied being 1-iodoctane.98 A theory of the rates of $S_{N}2$ reactions and their relation to those of outer-sphere bond-rupture electron transfers has been presented in detail.99 A unified approach is introduced in which there can be a flux density for crossing the transition state, which is either bimodal, one part leading to $S_{N}2$ and the other to ET products, or
unimodal with a less marked energy-dependent separation of the rates of formation of these products.

9-Mesitylfluoranyl anion (9MsF) is unreactive towards Mel at temperatures below −78 °C. Above −60 °C the absorption spectrum of 9MsF is replaced by that of the corresponding 9-mesitylfluoranyl radical (9MsF·), and 9-methyl-9-mesitylfluorene is formed in low yield. In a study of the electron-transfer photochemistry of chrysanthemol, an intramolecular S_N2 reaction of a vinlycyclopropane radical cation has been observed. Further evidence for an X-philic substitution/SET tandem mechanism has been obtained.

Stereochemical results for the alkylation of two anions by optically active α-chloro-p-nitrophenylethane have been interpreted in terms of competition between S_{RN1} and S_N2 mechanisms. The ambident anion of 2-nitropropane gives C-alkylation with complete racemization by S_{RN1} and O-alkylation by S_{N2}. The other anion studied was diethylthiocarbamate.

The kinetics and mechanism of the reactions of p-nitrocumyl bromide with azide ions in DMSO have been studied. In contrast to the reactions of the corresponding chloride in dipolar aprotic solvents, no evidence for an S_{RN1} mechanism was found. A similar situation obtained in a related study of the reactions of nitrite ions with p-nitrocumyl bromide.

Medium Effects

It is widely held that protic (‘acidic’) solvents favour monoalkylation of diethyl malonate carbanion, whereas aprotic (‘inert’) solvents favour dialkylation. Exactly opposite results have now been obtained in the reactions of the alkali metal salts of diethyl malonate with 1,2-bis-, 1,2,4,5-tetrakis-, and 1,2,3,4,5,6-hexakis-(bromo-methyl)benzenes in ethanol and in DMSO, the former solvent preferring dialkylation (cyclization) and the latter monoalkylation. Other interesting related observations were made.

The kinetics of the reaction between bromopropionate and thiosulfate ions have been studied at 10–40 °C in various ethanol–water mixtures. Activation parameters were evaluated as a function of ionic strength and dielectric constant of the medium. The medium effect of mixed solvents on the rate constants of the Menshutkin reaction of triethylamine with ethyl iodide has been studied for binary mixtures of cyclohexane with benzene or ethyl acetate, and with chlorobenzene or dimethoxyethane. Rates were measured over the temperature range 293.1–353.1 K, and activation parameters were determined.

The application of correlation analysis of solvent effects to mechanistic studies of solvolysis has been reviewed by Takeuchi in Japanese. The article mainly covers the behaviour of tertiary chloro compounds. This author’s research group has continued experimental studies in this area. Rates of solvolysis of 2-chloro-2,4-trimethylpentane have been measured in 17 solvents and analysed through the extended Grunwald–Winstein equation, which includes a term for nucleophilic participation.
10 Nucleophilic Aliphatic Substitution

The contribution of this term in the correlation is, however, very small, indicating that the neopentyl group in the substrate shields the rear side of the reaction centre very effectively. The application of the Grunwald–Winstein equation in the solvolysis of highly congested, simple secondary and tertiary alkyl systems has also been examined.112 The solvolyses of 4-chloro-2,2,4,6,6-pentamethylheptane and 3,3-dimethyl-1-neopentyl-butyl mesylate show upward dispersion of points for fluorinated solvents in Grunwald–Winstein plots using the Y_{OTs} or Y_{Cl} scales. It is suggested that this indicates stronger Brønsted base-type solvation (solvation by hydrogen bonding) towards the cationic moiety of the standard adamantane systems than in the highly congested substrates mentioned above. Structural effects in Grunwald–Winstein correlations (both original and extended types) have been examined for the solvolysis of five tertiary alkyl chlorides.113

Solvent effects have been studied for the solvolyses of 1-(4-methoxyphenyl)-1-phenyl-2,2,2-trifluoroethyl chloride and 1-(4-methoxyphenyl)-1-phenylethyl chloride in a wide range of binary solvent systems, in order to elucidate the influence of an electron-withdrawing α-substituent.114 The former substrate failed to give a single linear correlation by using the ordinary Y or Y_{Cl} scale, but better behaviour was found in correlation with Y_{BrnCl} and in extended dual-parameter treatment. These results suggest that the incipient cationic charge in the solvolysis of the trifluoro-substituted substrate is delocalized strongly into the aryl rings in the transition state. Rate constants for solvolysis of cyclopentyl para-substituted benzenesulfonates in aqueous binary mixtures with acetone, ethanol, or methanol have been reported.115 The results have been interpreted by applying the original and the extended Grunwald–Winstein relationship, the Hammett equation, potential energy surface model, and quantum mechanical model. The Grunwald–Winstein plots involving Y_{OTs} show dispersion, but the extended treatment gives good correlations. Various inferences are drawn regarding transition-state structures.

The aromatic ring parameter I, proposed by Kevill, has been applied by him to solvolyses of β-aryalkyl toluene-p-sulfonates.116 These reactions proceed with anchimeric assistance (k_A pathway) and are very well correlated by a Grunwald–Winstein treatment involving Y_{OTs} and I. Alternative treatments, and their inter-relationship, are discussed. Liu continues to contest the necessity for introducing an aromatic ring parameter I.117,118 His research group has studied the solvolysis of t-butyl(2-naphthyl)methyl bromide in a range of solvents and a (new) Y_{xBnBr} scale was based on these results117 (xBnBr signifies benzylic bromides with extended charge delocalization). The utility of the new scale was demonstrated by applying it to the solvolytic reactivities of benzhydryl bromide and 4-nitrobenzhydryl bromide. Rates of solvolysis of 9-fluorenyl bromide and tosylate have been measured.118 In the case of the bromide, significant nucleophilic solvent intervention was detected. The much lower reactivity of 9-fluorenyl bromide than benzhydryl bromide (factor 10^4) is said to be due to the larger amount of energy needed in the ionization step of the former and not to its antiaromaticity.

Rate constants for the alkaline hydrolysis of methyl iodide have been measured in dilute aqueous solutions of 1,4-dioxane, containing 0–10 mol\% of organic solvent, the temperature range being 283–323 K.119 The kinetics were discussed in
relation to solvent structure and it was shown that the destabilization of HO\(^-\) was the major kinetic factor. The S\(_N\)2 reaction of CH\(_3\)Cl with Cl\(^-\) in supercritical water has been treated in an ab initio study involving the polarizable continuum model (PCM).\(^{120}\) Literature data concerning the solvent effect on the alkylation kinetics of amines with N-[(methylthio)chloromethylenearanesulfonamides have been interpreted with a multiparameter LFER of the Koppel–Palm type.\(^{121}\) A long series on the kinetics and mechanism of the unimolecular heterolysis of commercial haloorganic compounds has continued in a study of the effect of bromide salts and lithium perchlorate on the ionization rate of benzhydryl bromide in \(\gamma\)-butyrolactone and acetone.\(^{122}\) The verdazyl indicator method was applied. The nature of special and normal salt effects has also been discussed.\(^{123}\)

Phase-transfer Catalysis and Other Intermolecular Effects

The effects of small amounts of anionic \(\alpha\)-amino acids and several small peptides on the kinetics of S\(_N\)1 hydrolysis of 2-(4-nitrophenoxyl)tetrahydropyran have been investigated at pH of 11 and 40 °C.\(^{124}\) The retarding effect of 1 molal co-solute was plotted as \(\ln(k_{m=1}/k_{m=0})\) versus the number of CH groups in the amino acid side-chain. Various linear correlations were observed and the results were interpreted in terms of the hydrophobicity of CH. The effects of alcohols as co-solute were also studied.

The kinetics of alkylation by benzyl bromide of the Schiff base esters of amino acids (Ph\(_2\)C=NC\(_2\)H\(_2\)CO\(_2\)CMe\(_3\)) in the presence of cinchona salts show features similar to those of enzyme-promoted reactions: variable orders, substrate saturation, catalyst inhibition, and non-linear Arrhenius-type plots.\(^{125}\) A tight coordination of the Schiff base substrate by electrostatic interaction with the quaternary N of the cinchona salt provides a favourable chiral environment for asymmetric alkylation.

Water-soluble calix[n]arenes (62; \(n = 4, 6,\) and 8) containing trimethylammonio-methyl groups act as efficient inverse phase-transfer catalysts in the nucleophilic substitution reactions of alkyl and arylalkyl halides with nucleophiles in water.\(^{126}\) (Inverse phase-transfer catalysts facilitate reactions between two immiscible reactants via the transport of an organic substrate into an aqueous solution of a second substrate, in which reactions take place.)

![Diagram](image_url)
Structural Effects

The effect of Ba$^{2+}$ or Sr$^{2+}$ on the substitution of the crown ether derivatives 2′, 5′, 8′, 11′, 14′-pentaoxycyclopentadecyl-3,6-dioxoheptyl tosylate or 2,5,8,11,14-pentaoxycyclopentadecylmethyl tosylate with MeO$^-$, in the form of Me$_4$NOMe, showed that Ba$^{2+}$ was the better catalyst. The kinetics, formation constant, and the interaction of the lariat with the metal cation are discussed.

The effects of α-Me$_2$NC(O) and α-Me$_2$NC(S) on the rate constants for partitioning of α-substituted 1-(4-methoxyphenyl)ethyl carbocations between nucleophilic addition of 50:50 (v/v) MeOH–H$_2$O (k_s, s$^{-1}$) and deprotonation by this solvent (k_c, s$^{-1}$) have been examined. These substituents lead to 80-fold and ≥ 30 000-fold decreases, respectively, in k_s, but to much smaller changes in k_c. Ab initio calculations suggest that the partitioning is strongly controlled by the relative thermodynamic stabilities of the neutral products of the reactions.

The kinetics of the reactions of six amines with phenacyl bromide in acetonitrile have been studied conductimetrically at several temperatures and activation parameters were calculated. The relative reactivities of the amines were explained in terms of inductive and steric effects. Relative reactivities have been determined conductimetrically for the 2-propanalysis of a series of chlorides and they lie in the order PhSCl > PhCOC\equivCl > PhSO$_2$Cl > PhCH$_2$Cl \gg PhCl, with rate coefficient ratios $9.5 \times 10^4 : 1 : 7.14 \times 10^{-2} : 4.7 \times 10^{-3} : \sim 10^{-26}$. (The value for chlorobenzene was estimated.)

The solvolysis of 1,3-di-t-butyl-5-methyl-5-cyclopenta-1,3-dienyl trifluoroacetate shows a strong dependence on solvent ionizing power ($m = 0.97$ in Grunwald–Winstein correlation) and gives products of substitution, allylic and skeletal rearrangement with substitution, and elimination. These results provide the first measurements of the kinetics of formation of a cyclopentadienyl cation, the prototype of a 4π-electron carbocation, destabilized by antiaromaticity. The reactivity of the above substrate in TFE at 25 °C is calculated to be lower than that of analogous fluorenyl and indenyl derivatives by factors of 3×10^4 and 4×10^2, respectively, and is exceeded by that calculated for 1,3-dimethyl-3-cyclopentenyl trifluoroacetate by a factor of 10^{14}, showing the large carbocation destabilizing effects of antiaromaticity.

The reaction of sodium borohydride with benzhydryl halides under solvolytic conditions has been reinvestigated. Contrary to the literature, NaBH$_4$ was not found to be a convenient trap for benzhydryl carbocations.

Correlation Analysis by the Hammett Equation and Other LFERS

In a review article entitled ‘How to get wrong results from good experimental data: a survey of incorrect applications of regression’, Exner offered some trenchant warnings which should be heeded by all those who engage in correlation analysis. Numerous examples are given from the literature, in which experimental data were processed in an incorrect way from the point of view of statistics. The results were more or less biased and sometimes completely wrong.

Systematization and analysis of literature data bearing on the quantitative estimation of inductive interaction of functional groups in organic and organometallic compounds
have been presented in an extensive review.134 The authors’ own work devoted to elaborating a new model of the inductive effect, which permits theoretical calculation of the inductive constants of various substituents at any reaction centre, is generalized. Important theoretical matters, such as the inductive effects of alkyl groups, are also discussed.

The Yukawa–Tsunoh equation continues to find considerable application.135–138 1-Arylethyl bromides react with pyridine in acetonitrile by unimolecular and bimolecular processes.135 These processes are distinct; there is no intermediate mechanism. The S_N1 rate constants, k_1, for meta or para-substituted 1-arylethyl bromides conform well to the Yukawa–Tsunoh equation, with $\rho = -5.0$ and $r = 1.15$, but the correlation analysis of the S_N2 rate constants k_2 is more complicated. This is attributed to a change in the balance between bond formation and cleavage in the S_N2 transition state as the substituent is varied. The rate constants of solvolysis in 1 : 1 (v/v) aqueous ethanol of α-α-butyl-α-neopentylbenzyl and α-α-butyl-α-isopropylbenzyl p-nitrobenzoates at 75 °C follow the Yukawa–Tsunoh equation well, with $\rho = -3.37$, $r = 0.78$ and $\rho = -3.09$, $r = 0.68$, respectively.136 The considerable reduction in r from the value of 1.00 in the defining system for the σ^+ scale is ascribed to steric inhibition of coplanarity in the transition state. Rates of solvolysis (80% aqueous ethanol, 25 °C) have been measured for 1-(substituted phenyl)-1-phenyl-2,2,2-trifluoroethyl and 1,1-bis(substituted phenyl)-2,2,2-trifluoroethyl tosylates.137 The former substrate shows a bilinear Yukawa–Tsunoh plot; the latter shows excellent conformity to the Yukawa–Tsunoh equation over the whole range of substituents, with $\rho = -8.3/2$ and $r = 1.19$. Substituent effects on solvolysis of 2-aryl-2-(trifluoromethyl)ethyl m-nitrobenzenesulfonates in acetic acid or in 80% aqueous TFE have been analyzed by the Yukawa–Tsunoh equation to give $\rho = -3.12$, $r = 0.77$ (130 °C) and $\rho = -4.22$, $r = 0.63$ (100 °C), respectively.138 The r values are considered to indicate an enhanced resonance effect, compared with the standard aryl-assisted solvolysis, and this is attributed to the destabilization of the transition state by the electron-withdrawing CF$_3$ group.

Nucleophilic substitution reactions of 1-phenylethyl chlorides YC$_6$H$_4$CH(CH$_3$)Cl with phenoxides XC$_6$H$_4$O$^-$ and thiophenoxides XC$_6$H$_4$S$^-$ have been investigated theoretically by using the PM3 method.139 The Brønsted α and β values are greater for the phenoxides, indicating more advanced character in the transition state than for the thiophenoxides. This is supported by a greater magnitude of ρ_X and ρ_{XY} for the phenoxides than for the thiophenoxides. Other details of the reactions, both in the gas phase and in water, were investigated.

Nucleophilic substitutions of cycloalkylmethyl aranesulfonates C$_n$H$_{2n-1}$CH$_2$OSO$_2$C$_6$H$_4$Z with anilines XC$_6$H$_4$NH$_2$ in methanol at 65 °C have been studied.140 The reactivity order (given Z and X) $n = 4 > 6 > 7 > 5$ largely reflects the influence on steric effects of ring size, but the behaviour for $n = 5$ is anomalous. Application of the Taft equation in a form involving both polar and steric terms suggests that the retardation for $n = 5$ may be due to an enhanced polar ($\rho^*\sigma^*$) term.
Nucleophilicity and Leaving-group Effects

Second-order rate constants for the reactions of phenacyl bromide with a number of anionic or neutral nucleophiles in 3 : 2 (v/v) acetone–water have been measured at several temperatures.141 Correlation analysis with the Brønsted equation or Swain–Scott equation is not satisfactory. Better results were obtained with the two-parameter Edwards equation.

Solvolyis of the \(R,R \) and \(R,S \) isomers of 2-bromo-9-(1-X-ethyl)fluorenes, \(X = \text{Cl, Br, I, or OBs} \), in 25% (v/v) acetonitrile in water has been studied with respect to rates of formation of elimination products and of substitution products (\(X = \text{OH or NHCOMe} \)).142 The parent 9-(1-X-ethyl)fluorenes and the 2,2'-dibromo-9-(1-X-ethyl)-fluorenes were also studied. Various effects of leaving group and of the presence of nucleophiles on the competition between the reactions were observed and the Brønsted equation was applied to the results for the elimination reactions. A related study of solvolysis of 9-(X-methyl)fluorenes, \(X = \text{I, Br, or Bs} \), was also carried out, in which the Swain–Scott equation was applied to nucleophilic selectivities in the \(S_N2 \) reactions.143

Correlation of nucleophilic rate data for phenyl(dimethyl)sulfonium ions with common nucleophiles, with \(pK_{\text{Me}}^{\text{Mc}} \) values shows that the slopes of the lines, \(p_{\text{Mc}}^{\text{Me}} \), correlate qualitatively with the Edwards hardness parameter for the nucleophile and not with the Swain–Scott \(n \) parameter.144 \(\text{cis,cis}-2,4,6\)-Trimethyl-1,3,5-triaminocyclohexane is weakly basic in aqueous solution, because of steric inhibition to solvation of the conjugate acid.145 The three \(\text{NH}_2 \) groups are axial and the steric effect also results in reduced reactivity as a nucleophile in \(S_N2 \) reactions. Highly stereoselective syntheses of \(\beta\)-C-, \(N\)-, and \(O\)-glycosides have been carried out by addition of anionic nucleophiles to glycosyl iodides.146 \(S_N2 \) reactions are involved, but some substrates are susceptible to \(E2 \) elimination when treated with highly basic anions.

Enthalpies of reaction for nucleophilic substitution of ethyl iodide by a series of 27 nucleophiles in acetonitrile have been determined.147 Various empirical correlations were developed. Partial desolvation accompanying activation has been identified as the major contributor to activation thermodynamic parameters, while the ‘propensity’ of the reacting central atom in the nucleophilic anion plays a crucial role in determining reaction thermodynamic parameters.

The decomposition of aliphatic \(N\)-nitroamines in aqueous sulfuric acid involves an acid-catalysed \(S_N2 \) displacement from the protonated \(aci\)-nitro tautomer, the nucleophile being a water molecule at acidities below 82–85% \(\text{H}_2\text{SO}_4 \) and a bisulfate ion at higher acidities.148 Bisulfate is the poorer nucleophile by a factor of about 1000. For a series of substrates, \(\text{RNHNO}_2 \), correlation analysis of the rate constants through Taft’s \(\sigma^* \) is effective, the \(\rho^* \) values being negative, with a more negative value for the bisulfate reaction.

An unusually large kinetic \(\text{Br}/\text{Cl} \) leaving-group effect has been observed for solvolysis of 1-halospiro(adamantane-2,2'-adamantane) in slightly ethanolic or aqueous acetone.149 This is consistent with the occurrence of F-strain.

In a series of studies of the reactions of charged substrates, the nucleophilic substitution reactions of (4-methoxybenzyl)dimethylsulfonium chloride have been
examined.150 Such reactions occur only for nucleophiles of intermediate hardness and display a range of mechanisms, as revealed by kinetic and product studies. Pyridine-\textit{d}_5 reacts by a mixed \textit{S}_N1/\textit{S}_N2 mechanism. In non-ionic superbase-catalysed silylation of alcohols, there is an augmented nucleophilicity of P in the catalyst P(\textit{MeNCH}_2\textit{CH}_2)_3\textit{N}.151

\textbf{Miscellaneous Studies (Mainly Kinetic)}

The excess acidity method has been applied to the acid-catalysed hydrolysis of isopropyl phenyl ether at different temperatures.152 Rate constants and products of the nucleophilic substitution and elimination reactions of 1-(4-methoxyphenyl)-3-methyl-3-butyl derivatives 4-\textit{MeOC}_6\textit{H}_4\textit{CH}_2\textit{CMe}_2\textit{X} (\textit{X} = \textit{Cl}, \textit{OH}, \textit{O}_2\textit{CC}_6\textit{F}_5) have been determined in ‘mostly aqueous’ solvents.153 The absolute rate constant for reaction of the corresponding tertiary carbocation in 50:50 (v/v) TFE–water was estimated as 3.5×10^{12} s-1.

The kinetics of the hydrolysis of \textit{N}-(2,4-dinitrophenyl)benzhydrazonyl bromide and its derivatives have been studied over a wide range of pH.154 Roles for both \textit{S}_N1 and \textit{S}_N2 mechanisms were inferred.

The kinetics of the basic hydrolysis of 2-chloroethanol have been studied by using a chloride ion-selective electrode.155 The reaction attains equilibrium at about 92\% conversion.

Product studies of the stereoselective cycloaddition and epoxidation of enol ethers by \textit{z}-peroxylactone were interpreted in terms of \textit{S}_N2 processes.156 Steric and stereoelectronic effects are important.

New experimental data on the hydrolysis of dilute solutions of carbon tetrachloride indicate clearly that the reaction is first order in \textit{CCl}_4.157 This is contrary to the classical work of Fells and Moelwyn-Hughes, whose data have been reanalysed and shown to be consistent with first-order kinetics. The same research group has carried out extensive work on the kinetics of hydrolysis (neutral or alkaline) of many halogenated hydrocarbons in relation to studies in environmental and toxicological chemistry.158

Kinetics of the transformations of the N–F class of fluorinating agents in water, acetonitrile, alcohols, and aqueous solutions of alkali metal hydroxides have been studied.159 Other kinetic studies include the reactions of triphenylphosphine with 3-methoxy- or 3-acetoxy-4,4,5,5-tetrasubstituted-1,2-dioxolanes,160 the reactions of 2-amino-5-chlorobenzophenone with HCl in MeOH–H\textsubscript{2}O (the aspect of nucleophilic aliphatic substitution lies in certain products arising from attack of NH\textsubscript{2} on CH\textsubscript{3}OH; there are six products in all, and rate constants are evaluated for the formation of each of them),161 and the hydrolysis of derivatives of diazidophenylmethane.162

\textbf{Acknowledgement}

The hospitality of the Department of Chemistry, University of York, UK, during the writing of this chapter is gratefully acknowledged.

CHAPTER 11

Carbanions and Electrophilic Aliphatic Substitution

A. C. KNIFE

School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine

Carbanion Structure and Stability .. 327
Carbanion Reactions ... 330
 Enolates and Related Species ... 330
 Heteroatom-stabilized Species ... 339
 Organometallic Species ... 341
Proton-transfer Reactions ... 344
Miscellaneous ... 351
Electrophilic Aliphatic Substitution ... 355
References .. 356

Carbanion Structure and Stability

The ion (C₂CHC₂⁻) has been formed in the gas phase, by the process
⁻C≡C–CH(OCOR)–C≡CD → (C₂CHC₂⁻) + (‘RDCO₂⁻’) (R = H, Me or Et); ab
initio calculations have established that the ground-state triplet is much less stable
than the singlet which approximates to trigonal planar with C(2)—C(3)—C(4) angle
close to 130° and significant triple and double bond character between C(1)—C(2) and
C(2)—C(3), respectively.¹

Advantage has been taken of the ready accessibility of eleven para-substituted trityl
and 9-phenylxanthyl cations, radicals, and carbanions in a study of the quantitative
relationship between their stabilities under similar conditions.² Hammett-type
correlations have also been demonstrated for each series. Heats and free energies of
deprotonation and the first and second oxidation potentials of the resulting carbanions
were compared. The first and second reduction potentials and the pKₐ⁺ values of the
cations in aqueous sulfuric acid were compared, as were calorimetric heats of hydride
transfer from cyanoborohydride ion. For radicals, consistent results were obtained for
bond dissociation energies derived, alternatively, from the carbocation and its reduction
potential or from the carbanion and its oxidation potential.

Electron photodetachment spectra for indenyl and fluorenyl anions have been measured
and the electron affinities of the corresponding radical and bond dissociation
energies of the corresponding neutrals determined. Comparison has been made with
solution-phase data in an attempt to determine the dependence of gas and solution
properties on ionic size and extent of charge distribution.³ Benzocyclopropenyl anion
(1) has been generated in the gas phase and found to be surprisingly stable.\(^4\)
Consequently, benzocyclopropene is 34.5 kcal mol\(^{-1}\) more acidic than the allylic position of cyclopropene and only 4 ± 3 kcal mol\(^{-1}\) less acidic than toluene. \textit{Ab initio} calculations have reproduced the measured acidity of benzocyclopropene, \(\Delta H^{\text{acid}}_\text{ac} = 386 \pm 3\) kcal mol\(^{-1}\), and the electron affinity of benzocyclopropenylic radical (0.51 eV < \(E_A\) < 1.11 eV). The unusual stability of the anion has been attributed to the propensity of the aromatic ring to alleviate an unfavourable 4\(\pi\)-electron interaction within the three-membered ring, combined with pyramidalization of the anionic centre, which minimizes interaction of the lone pair with the aromatic sextet.

\[
\text{H} \quad \text{H} \\
\text{H} \\
\text{X} \\
\text{H} \\
\text{H} \\
\text{H}
\]

\(1\)

\[
\text{H} \quad \text{H} \\
\text{H} \\
\text{H} \\
\text{X} \\
\text{H} \\
\text{H} \\
\text{H}
\]

\(2\)

\[
\text{H} \quad \text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{X} \\
\text{H}
\]

\(3\)

The second equilibrium ion-pair acidity constant (p\(K^2\)) of 9,10-dihydrodibenz[a,h]-anthracene (DBDHA) (2) in THF at 298 K has been found to be considerably lower than for other 9,10-dihydroanthracene (DHA) derivatives and the dependence on the counter ions sodium (p\(K^2\) 28.5) and potassium (p\(K^2\) 30.4) is less marked as a consequence of extended \(p,\pi\)-conjugation of the dianion (3) with the outer benzene rings.\(^5\) The disodium, dipotassium, and dirubidium salts exist as contact ion triplets and the dilithium salt as a solvent-separated triplet.

\[
\text{H} \quad \text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{X} \\
\text{H}
\]

\(4\)

\[
\text{H} \quad \text{H} \\
\text{H} \\
\text{H} \\
\text{X} \\
\text{H} \\
\text{H} \\
\text{H}
\]

\(5\)

\[
\text{H} \quad \text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{X} \\
\text{H}
\]

\(6\)

An \textit{ab initio} MO study at the Hartree–Fock SCF level using the 6–31G(d) basis set has defined structural parameters and charge distributions for DHA (4a), xanthene (4b), N-methylacridene (4c), and thioxanthene (4d) and their monoanions (5a–d).\(^6\) The charge distributions of the significantly flattened anions correlate well with the observed \(^{13}\)C NMR chemical shifts. The heteroanthracenide anions (5b–d) are rare examples of extensively delocalized 16\(\pi\)-electron systems, for which the extent of overall delocalization of benzylic negative charge increases in the order O < N < S, but the extent of delocalization into the benzenoid rings increases in the order S < N < O.

The tendency for the planar pentalene dianion (6) to become folded as a complex ligand has been highlighted in a discussion of the chemistry of non-alternant highly unsaturated hydrocarbons.\(^7\)
The structure and energy of a series of ions generated from pentacyclo[3.3.1.1^{3,7}.0^{1,3}.0^{5,7}]decane (7) has been explored by using HF, MP2 and DFT methods to estimate enthalpy changes of isodesmic disproportionation reactions and by considering the reorganization of frontier orbitals as a consequence of addition or removal of electrons from the neutral molecule. The dication (7^{2+}), which is considered to be ‘three-dimensionally homoaromatic’, is stable relative to a localized structure with similar features but is highly unstable compared to the radical cation (7^+). In contrast, the dianion (7^{2-}) is unstable relative to the radical anion (7^-) and shows no evidence of electron delocalization.

\[(7^-) \xrightarrow{\text{7-}} (7) + (7^{2-}) \]

A tetraanion salt (8^{4-})/4M^+ has been formed by stepwise four-electron transfer from 4,7,12,15-tetraystryl[2.2]paracyclophane (8) to lithium, sodium, and potassium metals in [^2H_8]THF at 220 K; a strong effect of the cyclophane hub on the charge distribution has been demonstrated and the influence of o^1, o^2, o^3, o^4-tetramethyl and p^1, p^2, p^3, p^4-tetramethoxy substituents on the ease of reduction has been tested.

\[\text{UV–visible and NMR spectra have revealed that the charge on the disilanylene 1,2-dianion derived from dimetallation of 1,2-chloro-1,2-disilaacenaphthene is much less delocalized than the corresponding carbon dianion, but more delocalized than for phenylsilyl anions. Persilylated dimethylenecyclobutene has been reduced by lithium metal in 1,2-dimethoxyethene to give the first reported 6C–8\pi allyl anion system, persilylated dimethylenecyclobutene dianion dilithium; the six carbon atoms of the \pi-} \]
skeleton are nearly coplanar and the C—Si bond lengths are considerably shortened by $p\pi–\sigma^*$ conjugation.

A rare species of salts consisting of a heteroatom-stabilized carbocation and a heteroatom-stabilized carbanion has been formed by deprotonating methyl (Z)- or (E)-3-hydroxy-2,3-dimesitylpropenolate with tetrakis(dimethylamino)methane; the resonance stabilization of the cation $[(\text{CH}_3)_2\text{N}]_2\text{C}^+$ and enolate anion, which is of E-configuration exclusively, since the guanidinium ion is incapable of forming a chelate, prevents a spontaneous O- or C-alkylation.\(^\text{12}\)

A hybrid HF–DFT approach has been used to determine gas-phase acidities (ΔH values) for a range of aliphatic, cyclic, and polycyclic carbon acids and reference compounds. The results obtained have been discussed in terms of strain in three- and four-membered rings, carbon hybridization aromaticity and topological analysis of electron density.\(^\text{13}\)

Calculations using GIAO and IGAIM methods have enabled the chemical shifts of methyl cation and anion to be determined by gauging the shielding of the nucleus by neighbouring electrons; the experimental data for cyclopentadienide ion, benzene, tropylium ion, and cyclooctatetraene dianion have also been reproduced and the data have been correlated by a simple model that also accounts for the large downfield shifts found for carbenes.\(^\text{14}\)

An unsuccessful attempt has been made to determine the separate electronic and steric effects of alkyl groups on the acidities of hydrocarbons, acetophenone derivatives, and acetone derivatives $\text{CH}_3\text{COCHR}^1\text{R}^2$ (at either site) by multivariational analyses of experimental and theoretical acidities for each set.\(^\text{15}\) A thermodynamic cycle has been used to estimate the aqueous phase $pK_a = 22.7 \pm 1.0$ for the methyl group of acetic acid and $pK_a = 3.3 \pm 1.0$ for the corresponding enol.\(^\text{16}\) Equilibrium acidities have been determined for several nitroaryl substituted nitroalkanes and cyanomethanes, 2,4,6-TNT, and 9-cyanofluorene\(^\text{17}\) in acetonitrile; the influence of common cation BH^+ on the electronic spectra of the anions obtained in the presence of strong guanidine bases (B) has been attributed to formation of two types of ion pair.\(^\text{18}\)

Equilibrium contact ion-pair acidities have been reported for monomeric lithium and caesium salts of several sulfones and a sulfoxide in THF.\(^\text{19}\)

A study of biomimetic oxygenations of phenol and indol derivatives has featured theoretical investigation of the charge-transfer complexes formed between carbanions and molecular oxygen (organodioxide anions).\(^\text{20}\)

Carbanion Reactions

Enolates and Related Species

A study of the mono- vs di-alkylation reactions of dibromide (9) with carbanions (10e–g), covering a range of ≥ 15 pK units in DMSO, has revealed that the carbanions (10d–g) derived from the less acidic carbon acids give exclusively the bis(monoalkylated) product (11); however, carbanions (10a–c) give the cyclic product (12) of dialkylation.\(^\text{21}\) This dichotomy is apparently a consequence of the relative rates of formation (by proton transfer, k_d) and cyclization (k_c) of the conjugate base of the monoalkylated intermediate.
A new method of kinetically controlled generation of the more substituted enolate from an unsymmetrical ketone involves precomplexation of the ketone with aluminium tris(2,6-diphenylphenoxide) (ATPH) at -78°C in toluene, followed by deprotonation with dissopropylamidine (LDA); highly regioselective alkylations can then be performed.22 ATPH has also been used, through complexation, as a carbonyl protector of α,β-unsaturated carbonyl substrates during regioselective Michael addition of lithium enolates (including diazoniums of β-dicarbonyl compounds).23

It has been shown that selective α-vinylation of enolate anions derived from 1,3-dicarbonyl compounds can be achieved by reaction with 4-tert-butyl-1-cyclohexenyl-(aryl)iodonium and 1-cyclopentenyl(aryl)iodonium tetrafluoroborates without competing α-arylation, provided that the alkenyliodonium salt used bears a p-methoxyphenyl, rather than phenyl, group.24

Photostimulated S_{RN1} reactions of carbanion nucleophiles in DMSO have been used to advantage in C–C bond formation (Scheme 1).25–27 Thus, good yields of substitution products have been obtained from neopentyl iodide on reaction with enolates of acetophenone and anthrone, but not with the conjugate base of acetone or nitromethane (unless used in conjunction, whereby the former acts as an entrainment agent).25 1,3-Diiodoadamantane forms an intermediate 1-iodo monosubstitution product on reaction with potassium enolates of acetophenone and pinacolone and with the anion of nitromethane; subsequent fragmentation of the intermediate gives derivatives of 7-methylidenecyclo[3.3.1]nonene. Reactions of 1,3-dibromo- and 1-bromo-3-chloro-adamantane are less effective.26

\begin{equation}
RX + \text{Nu}^- \xrightarrow{\text{ET}} R' + X^- + \text{Nu}'
\end{equation}

\begin{equation}
R' + \text{Nu}^- \longrightarrow (\text{RNu})^-
\end{equation}

\begin{equation}
(R\text{Nu})^- + RX \longrightarrow \text{RNu} + R' + X^-
\end{equation}

SCHEME 1
Photoassisted heteroaromatic nucleophilic substitution reactions of various carbanion nucleophiles with 2-bromopyridine, iodobenzene, bromobenzene, bromomesitylene, and 2-chloroquinoline in KNH₂–liquid NH₃ have also been compared.²⁷

Aldol reactions have continued to attract attention.²⁸–³⁹ In order to determine the mechanism of addition of lithium pinacolone enolate [CH₂=C(OLi)C(Me)₃] to benzaldehyde the carbonyl-carbon KIE (¹²k/¹³k = 1.019) and the substituent effects (ρ = 1.16 ± 0.31) have been compared with those for other lithium reagents.²⁸,²⁹ The small positive KIE, which is larger than the equilibrium IE (¹²K/¹³K = 1.006) determined by ab initio MO calculations (HF/6–31 + G*), is in contrast with ¹²k/¹⁴k = 1.000 for MeLi addition which proceeds by the rate-determining ET mechanism, characterized by a much smaller ρ value. Since probe experiments showed no evidence of single electron transfer, it has been concluded that the significant isotope effect for reaction of lithium pinacolone enolate is indicative of rate-determining polar attack (PL) rather than radical coupling (RC) (Scheme 2).

Methyl ketone enolates bearing a β-heteroatom substituent have been designed to effect highly 1,5-diastereoselective additions to aldehyde electrophiles and used to achieve double-stereodifferentiating aldol reactions.³⁰

Detailed analysis of the rate and equilibrium constants determined for both phases of intramolecular aldol condensation reactions (13 → 15, 16 → 18, and 19 → 21) in terms of Marcus theory, has established that the intrinsic barriers for the intramolecular reactions are the same as those determined previously for the intermolecular counterparts.³¹ Consequently, rate constants for intramolecular aldol reactions are predictable from the energetics of the reactions and the effective molarity can be calculated. An associated discussion of Baldwin's rules suggests that they are a consequence of the need to achieve a conformation from which reaction can take place
by a simple rotation and bond reorganization, rather than a consequence of strain implicit in following an obligatory Dunitz–Burgi trajectory.

Studies of relative rates, activation parameters, kinetic isotope, and solvent isotope effects, and correlation of rates with an acidity function, have elucidated the mechanisms of cyclization of diacetyl aromatics (23–26) promoted by tetramethyl-ammonium hydroxide in DMSO. Rate-determining base-catalysed enolate anion formation from (24–26) is followed by relatively rigid intramolecular nucleophilic attack and dehydration whereas the cyclization step is rate determining for (23).

By systematic screening of the effects of Lewis acids on the competitive reactions of benzaldehyde and N-benzylideneaniline with propiophenone enolate in CH₂Cl₂ or CH₃CN, it has been found that addition of a small amount of the lanthanide salt
Yb(OTf)₃ (0.2 mole equiv.) can promote an unprecedented preferential reaction (>99%) of the aldimine over the aldehyde if the trimethylsilyl enolate is used.³³

Boron enolates bearing menthol-derived chiral ligands have been found to exhibit excellent diastereo- and enantio-control on reaction with aldehydes³⁴ and imines.³⁵ Highly diastereo- and enantio-selective aldol additions of geometrically defined trichlorosilyl ketone enolates (31) and (32) have been achieved by promoting the reactions with chiral Lewis bases, of which (S,S)-(33) proved to be the most effective.³⁶ Moderate enantiomeric excesses have been achieved by using chiral amino alcohols as catalysts for the Baylis–Hillman condensation of aldehydes with methyl vinyl ketone; the unexpected pressure effect on the reaction has been rationalized.³⁷
Results of semiempirical calculations and deuterium exchange experiments indicate that the succinyl transfer from aryl enol succinates to the enolates of aryl ketones occurs by an addition–elimination mechanism and does not involve a retro-ene process.38

Further evidence for the intermediacy of 4-hydroxycyclopent-2-en-1-ones (1 : 1 adducts) in the Weiss reaction of 1,2-dicarbonyl compounds R1COCOR2 with dimethyl 3-oxoglutarate (MeO\textsubscript{2}C\textsubscript{2}H\textsubscript{2})\textsubscript{2}CO, to give \textit{cis}-bicyclo[3.3.0]octane tetraesters, has been reported and steric effects on the condensation have been explored.39

The high diastereoselectivity found on base-promoted cyclization of ethyl 7-bromo-2-methylheptenoates (bearing 3-, 4- or 6-methyl substituents) has been attributed to folding strain control of incipient cyclohexane formation.40 The selectivity is only moderate for the 5-methyl substrate but increases with the bulk of the substituent: Ph < Me ∼ Et < i-Pr < t-Bu.

The alkylation of (±)-spirolactones (34a) and (34b) with higher diastereoface selectivity has been modelled by geometry-optimized \textit{ab initio} 4–31G calculations which suggest that approach of the electrophile occurs at an angle of ca 80° to the plane of the enolate and with some displacement away from the oxygen linked to the metal ion.41 Asymmetric \textgreek{z}-methylation of phenylalanine derivatives has been achieved with 82% ee and retention of configuration in the absence of any external chiral source.42

Highly stereoselective aldol reactions of lithium ester enolates (LiCR1R2CO\textsubscript{2}R3) with (R\textsubscript{c})-2-(\textit{p}-tolylsulfanyl)cyclohexanone have been attributed to intermediacy of tricoordinate lithium species which involve the enolate and the sulfanyl and carbonyl oxygens of the substrates.43 The \textit{O}-metallated \textit{\beta}-hydroxyalkanoates formed by aldol-type reaction of carboxyl compounds with enolates derived from esters of alkanolic acids undergo spontaneous intramolecular cyclization to \textit{\beta}-lactones if phenyl rather than alkyl esters are used; the reaction has also been found to occur with other activated derivatives of carboxylic acids.44
Asymmetric formation of β-lactams (38) in high ee has been achieved by reaction of achiral imines (36) with a ternary complex of achiral lithium ester enolate (35), achiral lithium amide, and a chiral ether ligand (37) (in either stoichiometric or catalytic amount); the size and nature of the lithium amide have a considerable effect on the enantioselectivity of the ternary complex.

The nitrogen lone pair has been shown by both experiment and theoretical calculation to bias facially the alkylation reactions of nitrogen-containing pseudo-planar enolates (40) derived from pyrrolidinone (39). The preferred approach anti to the lone pair has been attributed to a heretofore unappreciated electronic effect.

On alkylation of 2-(aminomethyl)oxazolines (42) and (43), stereochemical induction is evident for the tertiary carbamates (43), but not the tertiary amines (42); this is apparently a consequence of prior complexation of the carbamate carbonyl group to the base and kinetic preference for (E)-enolate formation on deprotonation.

4-Alkenylamides (44) having a β-chiral centre have been found to undergo syn-selective α-iodination with iodine to give syn-α-iodoalkenamides, via an intermediate
ketene N,O-acetal (45) which undergoes α-iodination from the opposite side to the β-substituent to give (47).48

Several alternative transition structures for the [2,3]-Wittig rearrangements (Z)-(48) → threo-(49), and (E)-(50) → erythro-(51), have been explored by \textit{ab initio} molecular orbital calculations at the 6–31G* level in an attempt to explain why the observed stereoselection is opposite to that for alkenes which do not bear a 1-carboxylic group.49 It has been concluded that coordination of lithium cation to two oxygen atoms and the C(4) carbon plays a significant role in reactions of (48) and (50), thereby making it easier to break the O(2)—C(3) bond.

Reactions of arylazosulfonylones (52) with conjugate bases (53) and (54) of active-methylene isonitriles in DMSO give 1-arylimidazoles (55) and (56), respectively.50
Distinctly different mechanisms are believed to apply following initial addition of the nucleophile.

\[
\text{ArN=\text{N}-Tos} \quad (52) \\
\text{N=\text{C}} \\
\text{CO}_2\text{Bu'} \\
(53) \\
\text{ArN=\text{N}-Tos} \quad (52) \\
\text{N=\text{C}} \\
\text{CO}_2\text{Bu'} \\
(55) \\
\text{Tos} \quad (54) \\
\text{N=\text{C}} \\
\text{Tos} \\
(56)
\]

The AM1 MO method has been applied in a theoretical study of the addition of malononitrile anion to carbonyl compounds; substituent effects on the energetics of the reaction and the nucleophilic attack reactivity were investigated and the influence of hydrogen bonding a single water molecule to formaldehyde oxygen and/or the carbanion was estimated. The endothermic addition of R\text{CHCN} (R = \text{CN, CSNH}_2) to MeCHO has been shown by AM1 calculations to proceed via a late product-like transition state; the same applies to the competing 1,2- and 1,4-additions to \(\alpha,\beta\)-unsaturated nitriles. Structural limitations of the nitrile aldol reaction have been probed; lithiated phenylacetonitrile has been found to exhibit higher diastereoselectivity (in favour of anti-aldol) than for other metallated phenylacetonitriles towards benzaldehyde, but the diastereoselectivity is markedly reduced by increase in electron-withdrawing power of \(p\text{ra-}\)substituents on the aldehyde. Diastereoselectivities exhibited by aliphatic nitriles are lower and not uniformly \textit{anti}-selective. Reaction of the zwitterion \(i-\text{Pr}_3\text{P}^+\text{CH}_2\text{C}(\text{CN})\text{CO}_2\text{Et} \) with \text{ArN=C}=\text{O} proceeds via the adduct \(i-\text{Pr}_3\text{P}^+\text{CH}_2\text{C}(\text{CN})(\text{CO}_2\text{Et})\text{C}()\text{NAr} \) to the rearranged zwitterion \(i-\text{Pr}_3\text{P}^+\text{CH}_2\text{C}(\text{CN})\text{C}(\text{O})\text{NAr}\text{CO}_2\text{Et} \); thio analogues are obtained from \(\text{PhN=C}=\text{S} \).

\[
\text{Ar}^1\text{C} \rightleftharpoons \text{Ar}^2\text{C} \rightleftharpoons \text{CN} \rightleftharpoons \text{Ar}^1\text{C} \rightleftharpoons \text{O}\text{COAr}^2 \quad (57) \\
\text{CN} \rightleftharpoons \text{H}_2\text{C}+\text{CHCN} \rightarrow \text{Ar}^1\text{C} \rightleftharpoons \text{CH}_2\text{CH}_2\text{CH} \rightleftharpoons \text{Ar}^2 \cdot \text{O} \text{O} \quad (58) \\
(59)
\]

Scheme 3

Alkene insertion between the carbonyls of benzils (57) has been achieved by Michael addition catalysed by cyanide ion, as depicted in Scheme 3. \(\alpha\)-Cyanocarbanions, from \(R^1R^2\text{CHCN}–\text{BuLi} \) in THF, have also been used to effect regiospecific ring opening of 3,3,3-trifluoropropene oxide to form \(\text{CF}_3\text{CHOHCH}_2\text{CCNR}^1\text{R}^2 \) diastereoisomers.
carbanions from diethyl malonate and nitromethane fail to react under these conditions. The dimer (Ph₂CCN)₂ is formed by a SET pathway on reaction of α-cyanodiphenylmethide carbanion with polyhalomethanes CHBr₃, CCl₄, or CHCl₃.⁵⁷

Long-range asymmetric induction controlled by supramolecular interaction of intermediate dilithio species (60) has been shown to account for the selective formation of two (out of four) β-hydroxy sulfone diastereoisomers on reaction of α-sulfonyl carbanions with benzaldehyde in THF at −100°C.⁵⁸

![Image of (60)](image)

Reactions of trans-β-styryl sulfone carbanion (E)-ClH₂SO₂CH=CHPh, with PhCHO, CH₃CN, and ArNO₂ under phase-transfer conditions have been explored.⁵⁹

The anionic Michael adducts of highly diastereoselective kinetically controlled reactions between lithiated sulfoximines and acyclic enones undergo SN₁ displacement of the sulfinimidoyl group to give cyclopropanes (in high enantiomeric purity if sulfoximine enantiomers are used).⁶⁰ The t-butylsulfinyl group has been shown to be the most effective choice of chiral auxiliary for asymmetric aziridination of N-sulfinylamines with sulfur ylides.⁶¹ The induction depends on the nature of the methylene transfer agent and on the chirality of the t-butylsulfinyl sulfur. α-Sulfonyl carbanion intermediates have been implicated in substitution and ring-opening reactions of episulfones.⁶²

Chiral crown ether phosphate–palladium complexes have been used to catalyse the alkylation of carbanions derived from α-nitro ketones and α-nitro esters,⁶³ and proline rubidium salts have been used to catalyse asymmetric Michael addition of nitroalkanes to prochiral acceptors;⁶⁴ 80% enantioselectivity can be achieved in each case.

pH and secondary deuterium kinetic isotope effects on the reaction of D-amino acid oxidase with nitroalkane anions have provided evidence for direct carbanion attack on the flavin.⁶⁵

Heteroatom-stabilized Species

Reviews have featured epoxidation, cyclopropanation, aziridination, olefination, and rearrangement reactions of asymmetric ylides;⁶⁶ non-phosphorus stabilized carbanions in alkene synthesis,⁶⁷ phosphorus ylides and related compounds;⁶⁸ the Wittig reaction,⁶⁹,⁷⁰ and [2,3]-Wittig rearrangement of α-phosphorylated sulfonium and ammonium ylides.⁷¹ Reactions of carbanions with electrophilic reagents, including alkylation and Wittig–Horner olefination reactions, have been discussed with reference to Hammett ρσ correlations.⁷²

Mechanisms of competing reactions of Wittig reagents with substituted 2-amino-1,4-naphthoquinones have been discussed⁷³ and a study of the stereoselectivity of the indirect Wittig reaction of a 1,2-hydroxyphosphonium salt has led to the conclusion
that, for reaction of an aliphatic aldehyde with an unstable ylide, Wittig reaction stereochemistry is controlled at an initial 2 + 2-cycloaddition step.74 Mechanisms of reaction of Wittig–Horner reagents with 1,3-dioxo-Δ2,2-indanmalononitrile75 and with aromatic and α,β-unsaturated aldehydes,76 to give (Z)-1-chlorovinyl sulfides with high stereoselectivity (>98%), have been discussed. Highly functionalized 2-cyclohexene-1,3-dicarboxylates have been synthesized by novel Michael–Wittig condensation reactions of methyl 3-oxo-4-(triphenylarsoranylidene)butenonate and substituted 2,2-dimethyl-1,3,2-diazaphosphorinane and 1,3,2-diazaphosphosolidine anions has established that in each case the lowest energy six-membered ring structure features a near planar carbanion with its substituent parallel to the P=X axis (X = O, S).78

The scope and limitations of the metal anions of 2-halo-1,3-dithiane trans-1,3-dioxide as diastereoselective carbonyl anion equivalents has been explored with regard to reaction with aldehydes.79 Reactions of metallated trans-1,3-dithiolane 1,3-dioxide (five-membered ring) with aldehydes under kinetic and thermodynamic control have also been studied and contrasted with those of the metallated monoxide, parent sulfide, and 1,3-dithiane 1,3-dioxide (six-membered ring).80

Stereoselective intramolecular conjugate addition reactions (Scheme 4) of dithiane anions tethered to an α,β-unsaturated nitrile have been developed to advantage for the synthesis of axially substituted indolizidines and quinolizidines.81 The control of axial nitrile orientation by a ‘peg-in-a-pocket’ template effect has been discussed.

![Scheme 4](image)

It has now been shown that anti-betaines derived from RCHO and ArCHO form exclusively trans-epoxides without evidence of crossover in the presence of a more reactive aldehyde;82 in contrast, the trans-epoxide formed exclusively by syn-betaines derived from ArCHO are found to incorporate only a more reactive aldehyde if present. syn-Betaines from RCHO form mixtures of cis- and trans-epoxides, with and without incorporation of a more reactive aldehyde if present. It has therefore been concluded that the high trans selectivity observed in epoxidation with aromatic aldehydes is a result of irreversible formation of anti-betaines and reversible formation of syn-betaine. The lower selectivity in the case of aliphatic aldehydes is a consequence of only partial reversibility in the formation of syn-betaine.

Diastereoselectivity in the addition of electrophiles to the carbanions of 2-(alkylthio)thiolane-1-oxides has been explored and a six-membered cyclic transition
state involving the sulfoxide moiety and metal cation has been proposed for reaction with carbonyl compounds.83

Stereoselective cyclopropanation reactions of cyclic and acyclic enones have been performed using dimethylsulfoxonium acetate bromide in the presence of DBU.84 Highly selective synthesis of two alternative geometric isomers, (64) and (65), of vinyl-substituted cyclopropane derivatives has been achieved by stereocontrolled cyclopropanation reactions of α,β-unsaturated ketones (63) with semistabilized tellurium and arsonium ylides, respectively.85 Thus tellurium ylides (67a–e) react with (63) to give cis-2-vinyl-trans-3-substituted cyclopropyl ketones (65a–i) whereas arsonium ylides (62a–e) give trans counterparts (64a–i). It has been argued that tellurium displacement is rate determining following a reversible addition of (67a–e) but that the addition of (62a–e) is irreversible.

New aspects of acylation reactions of aza-allyl carbanions derived from ethyl \textit{N-}[bis(methylthio)methylene]glycinate and \textit{N}-[bis(methylthio)methylene]benzylamine have been reported.86

Gas-phase reactions of anions derived from CH$_3$SCD$_2$CN have been studied by Fourier transform ion cyclotron resonance techniques.87

3-(4-Halophenyl)pyridazinium ylides have been found to act as strong carbon nucleophiles towards diazoaromatic compounds to yield stable carbanion disubstituted ylides for which the intense colour has been attributed to intramolecular charge transfers.88

Indium-mediated coupling of aldehydes with 3-bromo-3,3-difluoropropene occurs selectively at the \textit{gem}-difluorocarbon which exhibits α,α-difluoroallyl carbanion behaviour.89

\textit{Organometallic Species}

Review articles have featured new organometallic reagents using highly reactive metals90 and the synthetic potential of remarkably stable chiral, non-racemic 2-lithiopiperidines and 2-lithiopyrrolidines.91
A concerted electron transfer mechanism, with formation of an alkyl radical and quinone radical anion, has been proposed to account for the products of reaction of benzophenone with alkyllithium or Grignard reagents;92 the ratio of addition to reduction products is dependent on the alkyl group and not on the metal.

The regioselectivity of the diisopropyl squarate ester–octa-1,3,5,7-tetraene–polyquinane cascade has been controlled by positioning a nucleofuge within one of the alkenyllithium reactants and thereby promoting exclusive formation of either linear or angular products.93 Chirality transfer has also been advanced during such reaction cascades by using strategically placed substituents on the cycloalkenyl anion nucleophile to establish a favoured position of equilibration of helical diastereoisomers prior to cyclooctatriene formation by conrotatory ring closure.94

Solvent and temperature effects on the diastereoselective addition of \textit{n}-BuLi to 2-phenylpropanal have been reassessed95 and the stereochemistry of addition of organolithium reagents to carbohydrate enones has been studied.96 No compelling evidence has been found to support the suggestion that addition of \textit{n}-BuLi to benzoic acid might compete with formation of the lithium salt and thereby provide an alternative to the sequential route to PhCOBu\textprime.97

Organolithiums have been shown to add to a variety of thiodicarbonate oxides exclusively in a thiophilic manner, as a consequence of the electrophilic character of the sulfine sulfur, to give an intermediate carbanion stabilized by three sulfur atoms; the soft carbanion, which forms trithioorthoester oxide on quenching with water, acts as the equivalent of the (alkylthio)carbonyl anion in Michael addition.98

Chiral disubstituted cyclopropanes have been formed by enantioselective carbolithiation of cinnamyl acetals.99

Perfluoro-1,2-dichlorocyclobutene undergoes replacement of one chlorine by lithium on reaction with Bu\textprime Li in ether;100 an intermediate perfluorocyclobutyne may be formed from 1-chloro-2,2,3,3-tetrafluorocyclobutene with PhLi.

Carbocyclization of \textit{o}-alkenyl-\textit{x}-methoxybenzyllithiums to form five- or six-membered rings has been studied;101 the five-membered ring is formed with a cis-stereochemical relationship between the methoxy substituent and the adjacent methyl group. Intramolecular carbolithiation of vinyl sulfides at -105°C in THF has been found to occur non-stereospecifically with regard to the newly formed C—Li centre.102 The stereochemistry of selective tandem Michael addition alkylation reactions of vinylphosphonates has been explored.103

\textit{Ab initio} calculations on the competing metallo-dehydrogenation and nucleophilic addition reactions of organomethides with crotonaldehyde dimethylacetal reveal that addition to the double bond predominates in the case of lithium whereas this is only slightly preferred in the case of potassium methide; the effect of R’OK on deaggregation of RLi oligomers and on weakening C$^-\text{–Li}^+$ interaction has been discussed.104

Asymmetric synthesis of primary amines by nucleophilic 1,2-addition of alkylolithiums to aldehyde SAMP/RAMP hydrazones has been reported in detail.105 On reaction with a range of lithium alkyls, 1,3,5-triazine has been found to form 1,4-adducts which yield 1,4-dihydrotriazines on hydrolysis;106 in contrast LiNR\textsubscript{2} or LiCR\textsubscript{3}(thf)\textsubscript{2} promote 1,3,5-triazine ring-opening reactions.
Regio- and stereo-selective ring-opening reactions of unsymmetrical oxatricyclo-
undecenones have been promoted by \(S_N2' \) reactions with primary, secondary, and
tertiary organolithium reagents whereas hydride reagents, organocuprates, and Grignard
reagents were ineffective.\(^\text{107}\)

\((E)-2\)-ethoxyvinylolithium, formed from \((E)-1\)-bromo-2-ethoxyethylene by halogen-
metal exchange at \(-75^\circ C\), has been found to decompose rapidly at \(-50^\circ C\), apparently
by antiperiplanar elimination of LiOEt, which is impossible for the more stable Z-
isomer;\(^\text{108}\) 2,2-diethoxyvinylolithium and \((Z)-1,2\)-diethoxyvinylolithium are stable at \(0^\circ C\)
and \((E)-1,2\)-diethoxyvinylolithium will tolerate reflux conditions at \(75^\circ C\). Half-lives of
organolithium reagents in common ethereal solvents have been compiled for the benefit
of synthetic organic chemists.\(^\text{109}\)

Although an \(\alpha\)-CF\(_3\) group is known to retard \(S_N2 \) reactions of carbon nucleophiles
with alkyl sulfonates, it has now been found that \(\gamma\)-trifluoromethylated allylic acetals
undergo \(S_N2'\)-type reactions with Grignard reagents in presence of catalytic amounts of
CuCN and TMS-Cl without formation of \(S_N2 \) products.\(^\text{110}\) This provides an alternative
means of introducing a carbon nucleophile adjacent to a CF\(_3\) group.

Lewis acid-mediated \(S_N2\)-type displacement reactions of RMgX have been used for
asymmetric synthesis of 2-substituted piperidines,\(^\text{111}\) and BeCl\(_2\) has been found to
promote addition of RLi and RMgX to cyclohex-2-enone.\(^\text{112}\)

The diastereoselectivity of addition of PhMgBr to \(N\)-benzylimines derived from \((R)\-
glyceraldehyde can be reversed by changing the \(O\)-protection from 2,3-di-\(O\)-benzyl to
2,3-di-\(O\)-isopropylidene.\(^\text{113}\) The high diastereoselectivity and sense of asymmetric
induction achieved on addition of alkylmagnesium halides to chiral \(\alpha\)-ketoacetals (68)
is consistent with a hypothesis that the magnesium ion forms a chelate (69) through
complexation with the carbonyl oxygen and one of the oxygens of the acetal; the
nucleophile adds preferentially to the \(exo \) face, since the trajectory for approach to the
\(endo \) face of the bicyclic system is sterically hindered.\(^\text{114}\)

\[
\begin{align*}
\text{R}^1 & = \text{Me or C}_5\text{H}_11; \quad \text{R}^4 = \text{phenyl, allyl, vinyl, Pr}^i, \text{Et}
\end{align*}
\]

\[
\begin{align*}
\text{(68)}
\end{align*}
\]

\[
\begin{align*}
\text{(69)}
\end{align*}
\]
Regioselective endocyclic cleavage of the ortho ester cis-2-methoxy-4-methyl-1,3-dioxane by Grignard reagents, involving rupture of the less congested C(2)—O(1) bond remote from the 4-methyl substituent, has been discussed.115

High enantioselectivity has been achieved on addition of diethylzinc to benzaldehyde catalysed by a chiral diamine, (S)-2-((N,N-disubstituted aminomethyl)pyrrolidine,116 and by chiral helical titanate complexes of tetrads tate ligands.117 Enantioselective additions of dialkylzinc reagents to N-(diphenylphosphinyl)imines, promoted by aziridino alcohols,118 and to the carbon–nitrogen double bond of the nitrore 3,4-dihydroisoquinoline N-oxide, promoted by dicyclopentyl(R,R)-tartrate,119 have also been reported.

A complete set of 13C kinetic isotope effects determined (by a natural abundance CMR method) for addition of lithium dibutylcuprate to cyclohexenone, in THF at -78°C, have been shown to be consistent with those calculated theoretically for rate-determining reductive elimination from an intermediate square-planar copper complex.120 Thus, the KIE ($^{12}\textit{k}/^{13}\textit{k}$) = 1.020–1.026 at C(3) is indicative of substantial bonding change, and partial alkyl transfer can explain the significant low KIE = 1.011–1.016 for C_a of the butyl group.

Stereospecific generation and reactions of allylic alkali and alkaline earth metals have been reviewed121 and solvent-mediated allylation of carbonyl compounds with allylstannanes has been explored.122 Chiral phosphoramides derived from (S)-proline have been used to catalyse asymmetric allylation of aromatic aldehydes by allylic trichlorosilanes.123

Proton-transfer Reactions

It has been reported that rates of proton transfer from carbon acids to water or hydroxide ion can be predicted by application of multi-dimensional Marcus theory to a model whereby diffusion of the base to the carbon acid is followed by simple proton transfer to give a pyramidal anion, planarization of the carbon, and adjustment of the bond lengths to those found in the final anion.124 The intrinsic barriers can be estimated without input of kinetic information. The method has been illustrated by application to a range of carbon acids having considerable variation in apparent intrinsic barrier.

The kinetics and equilibrium of protium–deuterium exchange between pentafluoromethane and aqueous hydroxide ion have been studied.125

Cubyl anion has been prepared by reacting (trimethylsilyl)cubane with fluoride ion in a Fourier transform mass spectrometer and its reactions with acids such as H$_2$O, Me$_2$NH, EtNH$_2$, MeNH$_2$, and NH$_3$ have been monitored. The results suggest that cubane is thermodynamically more acidic than cyclopropane. The electron affinity of the cubyl radical and the C–H BDE for cubane have also been estimated.126

A comparative study of gas-phase and liquid-phase CH acidity of α-substituted cyclopropanes has verified the correctness of an electrostatic model for the effect of solvation on equilibrium acidity;127 among variants of the LCAO MO method, only the semiempirical AM1 method accurately predicted the proton affinity of the conjugate carbanions; effects of solvation on protonation rates have been desegregated.
Results of *ab initio* study, at the MP2/6–31+G*/MP2/6–31 + G* level, of proton transfers from ZCH₃ to ZCH₂⁻ (Z = F, Cl, Br, OH, SH, SeH) suggest that the polarizability of Z is the dominant effect on both the order of CH acidity and the barriers to proton transfers; however, it is improbable that the reactions could be observed experimentally since Z may be either displaced by SN₂ reaction (Z = halogen) or deprotonated (Z = YH).²¹²

Determination of the acidities of eight enols R¹R²C=CH(OH)R³ in DMSO and the oxidation potentials of their conjugate bases have permitted the estimation of the corresponding H—O bond dissociation enthalpies since BDE₇₈ = 1.37pKₐ + 23.1E₂ₘₖ₂₃(Å⁻) + 73.3 kcal mol⁻¹.²¹³ The results have been discussed in terms of steric and electronic effects. For Me₂C=CH(OH)R, pKₐ increases, E₂ₘₖ₂₃(Å⁻) becomes more negative, and BDE decreases with the bulk of R.

A study of acid-catalysed enolation and carbon-acid ionization of isobutyrophene has combined the solvent isotope effect k⁺/k⁻₁ = 0.56 and substrate isotope effect k⁺/k⁻ = 6.2 determined for the enolation in H₂O and D₂O with literature information in order to estimate the solvent isotope effect on the enolation equilibrium, Kₑ(H₂O)/Kₑ(D₂O) = 0.92, and on the CH ionization of butyrophene, k⁺(H₂O)/k⁺(D₂O) = 5.4.²¹⁴ This is the first report of an isotope effect on Kₑ for keto-enol equilibrium of a simple aldehyde or ketone.

\[
\text{LiN(L)}_1^1(L^2) \quad (71) \quad \text{L}^1 = \text{Pr}^i, \text{L}^2 = \text{SiMe}_3 \\
\text{LiN(L)}_1^1(L^2) \quad (72) \quad \text{L}^1 = \text{Bu}^i, \text{L}^2 = \text{SiMe}_3 \\
\text{LiN(L)}_1^1(L^2) \quad (73) \quad \text{L}^1 = \text{Pr}^i, \text{L}^2 = \text{Ph} \\
\text{LiN(L)}_1^1(L^2) \quad (74) \quad \text{L}^1 = \text{Ph}, \text{L}^2 = \text{SiMe}_3 \\
\]

\[
\text{a; } \text{R}^1 = \text{Et}, \text{R}^2 = \text{Me} \\
\text{b; } \text{R}^1 = \text{Pr}^i, \text{R}^2 = \text{Me} \\
\text{c; } \text{R}^1 = \text{Bu}^i, \text{R}^2 = \text{Me} \\
\text{d; } \text{R}^1 = \text{Ph}, \text{R}^2 = \text{Me} \\
\text{e; } \text{R}^1 = \text{Me}, \text{R}^2 = \text{Et} \\
\text{f; } \text{R}^1 = \text{CH}_2\text{CHMe}_2, \text{R}^2 = \text{Pr}^i \\
\]

The effect of the steric and electronic nature of lithium amide bases (71–74) on highly stereoselective kinetic enolate formation from six ketones (70a–f) in THF has been investigated. The results in general can be rationalized with respect to the cyclic
chair-like transition state for concerted proton transfer to the base and the lithium cation coordinated to the oxygen; the E/Z ratio is dependent on the energy difference between transition states (75) and (76). Excellent E or Z stereoselectivity can be achieved using sterically hindered (72) or electronically dominated (74), respectively.131

An eight-membered cyclic transition has been proposed to account for the enantioselectivity observed on deprotonation of 4-substituted cyclohexanones by chiral bidentate lithium amides in THF, in presence of excess Me$_3$SiCl.132

Reviews have featured asymmetric protonations of enol derivatives133 and of enolates and enols.134 Highly enantiofacial protonation of prochiral lithium enolates has been achieved using chiral β-hydroxy sulfoxides.135

![Chemical structures (79), (80), and (81)]

Results of a study of electrostatic acceleration of enolization in cationic ketones have implications for enzymatic catalysis of enolization.136 Rate constants determined for water-, acetate- and hydroxide ion-catalysed enolizations of cationic ketones (79) (pK_a 11.13) and (80) (pK_a 11.90) have been compared with those for (81). It has been estimated that the inductive effects of the charged rings lower the pK_a's of (81) and (79) by 4.2 and 1.2 log units, respectively, whereas for (79) the electrostatic effect lowers the pK_a by 6.3 log units, and enhances k_{OH} by 330-fold relative to a typical methyl ketone. The rate of enolization of (81) is enhanced 2.3×10^4-fold by the through-space electrostatic effect.

![Chemical reaction (75) and (76)]

A study137 of the disappearance of ester (82) and appearance of enolate (83), promoted by lithium diisopropylamide in THF–toluene, has implicated disolvated LDA
monomers in the rate-determining proton transfer, for which \(k_H/k_D = 22 \pm 1 \) and \(k_{\text{obs}} \propto [\text{LDA}]^{0.53 \pm 0.03} \).

\[
\begin{align*}
\text{D}_3\text{N}^+\text{C}-\text{C}^\equiv \text{O} & \quad \text{(84) in D}_2\text{O} \\
& \quad \text{H} \\
\text{H} & \quad \text{Me} \\
\text{D}_3\text{N}^+\text{C}-\text{C}^\equiv \text{O} & \quad \text{(85)} \\
\text{H} & \quad \text{OMe} \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{Me} \\
\text{D}_3\text{N}^-\text{C}^\equiv \text{C}^- \quad \text{D} & \quad \text{O} \\
\text{H} & \quad \text{OMe} \\
\end{align*}
\]

\[
\begin{align*}
\text{H} & \quad \text{Me} \\
\text{D}_3\text{N}^-\text{C}^\equiv \text{C}^- \quad \text{D} & \quad \text{O} \\
\text{H} & \quad \text{OMe} \\
\end{align*}
\]

It has been found that deprotonation of (84) \((pK_a \approx 21)\) in D\(_2\)O can be monitored by NMR at 25°C and neutral pD but that the rate of hydrolysis of (84) to form glycine is 10 times faster than exchange of the first \(\alpha\)-hydrogen for deuterium.\(^{138}\) The value of \(k_{\text{DO}} = 6.0\ \text{l mol}^{-1}\ \text{s}^{-1}\) for (84) is 20 times larger than for acetone and suggests that the large polar stabilization of (85) by the \(\alpha\)-NH\(_3^+\) group is well developed in the transition state.

\[
\begin{align*}
\text{H} & \quad \text{Me} \\
\text{D}_3\text{N}^-\text{C}^\equiv \text{C}^- \quad \text{D} & \quad \text{O} \\
\text{H} & \quad \text{OMe} \\
\end{align*}
\]

Results of a study of base-catalysed deuteration of \(\beta\)-substituted ethyl butanoates in ethanol-\(d\) under conditions which exclude effects of ion pairing and aggregation establish that stereoelectronic effects generally produce higher stereoselection than do steric effects.\(^{139}\) Electronegative substituents at C(3) adopt an antiperiplanar position to the forming C—D bond in the preferred transition state (87) for electrophilic attack. It is assumed that the geometry of the enolate is \textit{trans} in each case. The diastereoselection achieved with \(\beta\)-OR is independent of R and much greater for OCH\(_3\) than for the larger CH\(_2\)CMe\(_3\) substituent. The same pattern is apparent on protonation of acyclic \(\beta\)-ethoxy aldehyde and ketone enolates but less pronounced for protonation of the cyanocarbanion from a \(\beta\)-ethoxy nitrite. The results also have implications for the stereoselectivity of 1,4-conjugate addition of ethanol-\(d\) to \(\alpha,\beta\)-unsaturated esters.

The H—D exchange reaction of 3-ethoxybutanoate in ethanol-\(d\) (which occurs with a diastereomeric excess of 82\%) has been modelled by performing \textit{ab initio} calculations on protonation of the enolate of 3-fluorobutanoic acid by HCN; the predicted diastereomeric excess (84–91\%) is dependent on the level of theory used but similar for both \textit{cis} and \textit{trans} enolates.\(^{140}\) For each diastereomeric pathway the C—F bond is
orientated anti to the incipient C—H bond; this may be a consequence of a stabilizing interaction between the electron rich σ-orbital of the enolate—HCN bond and the low-lying σ*-orbital of the C—F bond or, alternatively, minimization of electrostatic repulsion.

The similar catalytic behaviour of oximate and phenoxide bases found for deprotonation of \(\text{bis}(2,4\text{-dinitrophenyl}) \text{methane} \) in 50% \(\text{H}_2\text{O} \)–50% Me\(_2\text{SO} \) \((\beta = 0.45)\) implies that comparable solvation changes are involved; this is also apparent from the similar variations of acidity of oximes and phenols on transfer from \(\text{H}_2\text{O} \) to DMSO–H\(_2\)O mixtures.\(^{141}\) Rates of reprotonation of the carbanion by conjugate oxime acids have also been reported. In contrast, the \(\alpha \)-effect causes oximates to be much better nucleophiles, than phenoxides of comparable basicity, in addition or substitution reactions. The rapid levelling off of this advantage with increasing basicity \((pK_a > 8)\) is now believed to reflect especially large solvational imbalances in the transition state for the nucleophilic reactions; it has been argued that the need for desolvation of the oximate develops much further ahead of bond formation than is the case for deprotonation reactions.

A kinetic study of the deprotonation–reprotonation behaviour of \((4\text{-nitrophenyl})\)nitromethane in 50% \(\text{H}_2\text{O} \)–50% Me\(_2\text{SO} \) mixtures promoted by bases (phenoxide and carboxylate ions, primary amines) has revealed a one-step equilibration at \(p\text{H} \geq 4.2 \); the equilibration in acidic media is complicated by protonation of the exocyclic nitro group.\(^{142}\) The results suggest that the substrate acts essentially as a nitroalkane rather than a \(p \)-nitrotoluene. A further study of kinetics of deprotonation of \((4\text{-nitrophenyl})\)nitromethane has provided evidence of a steric effect on proton tunnelling on reaction with \(N'\)-propyl-\(N,N \)-dipropylbenzimidamide.\(^{143}\)

Results of an ab initio study of the identity proton transfer reaction for the system \(\text{CH}_3\text{NO}_2/\text{CH}_2=\text{NO}_2^- \), and previous findings for other \(\text{CH}_3 \text{Y}/\text{CH}_2=\text{Y}^- \) systems, indicate that the evident transition state imbalance in these gas-phase reactions increases with \(\pi \)-acceptor strength of \(\text{Y} \), in the order \(\text{CN} \ll \text{CH}=\text{O} \leq \text{CH}=\text{CH}_2 \leq \text{NO}_2^- \); in contrast to solution reactions there is not a concomitant significant increase in the intrinsic barriers.\(^{144}\) However, it is not clear from results for gas-phase proton transfer from protonated nitromethane to aci-nitromethane \((\text{CH}_3\text{N}^+\text{O}_2\text{H}–\text{CH}_2=\text{NOH})\) whether the stronger \(\pi \)-acceptor \((\text{N}^+\text{O}_2\text{H})\) creates greater imbalance than \(\text{NO}_2^- \). It is concluded that the dependence of the barriers on the \(\pi \)-acceptor is a result of a complex interplay between resonance/imbalance effects, inductive/field effects and electrostatic/hydrogen bonding effects; the dominant influence is solvent dependent.

Solvent and substituent effects on intrinsic rate constants \(k_0 \) for proton transfer from 2-nitro-4-X-phenyl acetonitriles \((X = \text{NO}_2, \ \text{SO}_2\text{Me}, \ \text{CN}, \ \text{CF}_3, \ \text{Br}, \ \text{and} \ \text{Cl})\) to piperidine and morpholine in aqueous Me\(_2\)SO have been explored.\(^{145}\) The expectation that the solvent effect on \(k_0 \) should be intermediate between those reported for deprotonation of acetylacetone and 9-cyanofluorene (based on consideration of delocalization of charge and hydrogen bonding to the nitro group) was not realized, apparently because Me\(_2\)SO is a better solvator than water for nitro groups that carry only a small fraction of charge rather than a full negative charge. Bronsted \(\beta_B \) values \((\text{dlog}k^B/\text{dlog}k^\text{BH})\), Bronsted \(\alpha_{CH} \) values \((\text{dlog}k^B/\text{dlog}k^\text{CH})\) and intrinsic rate constants
have been calculated from the kinetic results for reactions in 10, 50, and 100% (X = NO₂, SO₂Me, CN, only) water. The intrinsic rate constants are insensitive to the Me₂SO content of the solvent. However, they decrease with increasing electron-withdrawing strength of X as a consequence of the transition state imbalance, whereby delocalization of the negative charge lags behind proton transfer, revealed by αCH < βB.

A Brønsted βB value of 0.5 and αCH value of 1.31 have been calculated for deprotonation reactions of (3,5-dinitrophenyl)nitromethane promoted by substituted benzoate ions and of substituted (3-nitro-, 4-nitro- and 3,5-dinitro-)phenylnitromethanes promoted by benzoate ion, respectively, in methanol.¹⁴⁶ The intrinsic rate constants are (2.0–6.3)×10⁴ times lower than for the same reactions in acetonitrile solution, and this has been attributed to commensurate reduction of strength of the hydrogen bond between the carbon acid and benzoate ion in the imbalanced transition state. The transfer activity coefficient (log(YAN)) from methanol to acetonitrile solution have been calculated for (m-nitrophenyl)nitromethyl anion (3.6) and (m-nitrophenyl)-nitromethane (−1.0).

The kinetics of proton transfer from ethyl bis(4-nitrophenyl)acetate to N-bases with guanidine-like character, in acetonitrile, are determined by basicity and steric hindrance in the vicinity of the reacting site of the N-base and also by different distributions of positive charge in protonated N-bases.¹⁴⁷

The stabilizing effects of the 1,3-sulfur atoms on the carbocations, radicals, and carbanions generated from 2-aryl-1,3-dithianes and -dithiolanes has permitted the measurement of a variety of bond-making and bond-breaking energies (in DMSO and sulfolane) and their correlation with electron-transfer energies.¹⁴⁸

AM1 molecular orbital studies of gas-phase deprotonations of N-methyl-4-(Y-phenylsulfonylmethyl)pyridinium cations and N-(Y-benzyl)-4-(phenylsulfonylmethyl)-pyridinium cations promoted by NH₃ reveal negative transition state imbalances, \(I = \alpha - \beta < 0 \) (where \(\alpha = 0.17–0.18 \) and \(\beta = 0.53 \)), which are a consequence of the difference in distance between the substituents and the anionic charge centre in the transition state and products.¹⁴⁹

A study of gas-phase negative-ion chemistry of Lewis acid–base complexes of BH₃ with Me₂S, Me₃N, Me₃P, and Et₃N has shown that the α-CH acidities in the complexes (to form dipole-stabilized carbanions) are up to 20 kcal mol⁻¹ higher than in the uncomplexed molecules.¹⁵⁰

Results of a kinetic study of enamine formation by C(2α)-proton abstraction from 2-benzylthiazolium salts (88) have implications for mechanistic studies of the thiamin diphosphate-dependent enzymes which feature protonation of the enamine/C(2α)-carbanion.¹⁵¹ The primary isotope effect for deprotonation of (88a) is \(k_{2H}/k_{2D} = 4–6 \) and the values estimated for C(2α)—H pKₐ are 15.0–15.5 and 15.7 for (88a) and (88b), respectively. A minimum effective molarity of 4500 M has been estimated for reprotonation of the enamine (89b) derived from (88b) by benzoylformate decarboxylase. Directed aromatic metallation reactions have been reviewed.¹⁵²

Deprotonation of α- and p-bromochlorobenzene by lithium diisopropylamide at the two halogen adjacent positions is unselective whereas lithium 2,2,6,6-tetramethylpiperidine favours deprotonation α- to the smaller halogen atom.¹⁵³ Studies of benzene and
all of its mono-, di-, tri-, tetra-, and penta-fluoro-substituted derivatives, equilibrating with the corresponding anions in the gas phase, have revealed perfect additivity of the substituent effects on the thermodynamic acidity but a tendency for the rates of metallation to level off with the number of halogens. Gas-phase equilibrium measurements have also shown that chlorobenzene is more acidic than fluorobenzene by 0.55 ± 0.15 kcal mol⁻¹ (ΔG° at 330 K).

Lithiation of 3-(t-butoxycarbonyl)amino-4-carbomethoxythiophene by LDA has been found to occur adjacent to the NHBoc group and next to the methyl ester under conditions of kinetic and thermodynamic control, respectively; the N-methylated derivative is lithiated only next to the ester.

A method of metallation of fluoronitro aromatics has been developed in which the metallated intermediate generated by hindered base is trapped by in situ Me₃SiCl or Me₂SnCl; it has been possible to use sodium and potassium salts (e.g. NaHMDS) since the directing effect apparently relies on induction rather than metal coordination. The possible mechanism of ortho-directed metallation of anisole by n-BuLi has been discussed in the light of significant ortho-deuterium kinetic isotope effects (2.3–3.2) determined for the reaction promoted with and without TMEDA added. The regioselectivity of lithiation of certain 1,3-disubstituted methoxyarenes has been studied, and the mesoionic ring has been used to direct ortho-lithiation of 3-phenyl sydnone (91) (Scheme 5).

Asymmetric deprotonation of N-(t-butoxycarbonyl)indolines at the 2-position with s-butyllithium (−) sparteine has been reported. Results of an ab initio MO study of deprotonated 2,3-dihydroxepin suggest that the allylic anion is 15 kcal mol⁻¹ more stable than the vinylic anion, which is, in turn, 8 kcal mol⁻¹ more stable than the vinyl anion of cyclohepta-1,3,5-triene.

Base-catalysed epimerization at the benzylc pyrroline C(2) position of a new carbapenem is induced by a remote cationic centre, and irreversible photodeprotona-
tion of the benzylic protons of 10-methyl- and 10-phenyl-thioxanthenium salts to give the corresponding sulfonium ylide has been achieved.164

Miscellaneous

Review articles have addressed advances in photochemical generation and reactions of carbanions,165 the [1,2]-Wittig rearrangement stereochemistry and synthetic application,167 and the aza-Wittig rearrangement.168

The discovery that a mixture of (Z)-(94a) and (Z)-(94b), on treatment with LDA, forms only (Z)-(95a) and (Z)-(95b) is consistent with an intramolecular mechanism (e.g. Scheme 6) for this new imino-Wittig rearrangement of hydroximates; alternative radical pathways have also been discussed for reactions of Z- and E-isomers.169
The tricyclo[5.3.1.0]undecatrienyl anion (97) undergoes circumambulatory rearrangement at −78 °C to form anion (98) which is trapped by D$_2$O at the least hindered anti face to give (99)-d$_1$.170 At higher temperature (98) is converted to (102), as indicated in Scheme 7.

Methanol-O-d, methyl nitrite, and dimethyl disulfide have been examined as potential chemical probes for distinguishing between alkoxides and enolates in the gas phase.171 Methanol-O-d proved to be unsuitable and methyl nitrite reacts too slowly; in contrast, the reactive ambident behaviour of dimethyl disulfide results in elimination across the C—S bond on reaction with alkoxides (‘hard bases’) and attack at sulfur by enolates (‘soft bases’). This probe has been applied to investigation of the anionic oxy-Cope rearrangement. The dianionic oxy-Cope rearrangement is a key step in a squarate oxy-Cope cascade involving stereoinduced introduction of two alkenyllithium reagents cis to each other.172
Base-catalysed ring fission of 3,4-diphenylcyclobut-3-ene-1,2-diones (103) in 50% (v/v) aqueous DMSO proceeds by rapid reversible addition of hydroxide ion followed by rate-determining benzilic acid-type rearrangement to form an intermediate 1-hydroxycyclopropane-1-carboxylic acid which ring opens to the corresponding (Z)-2-oxo-3,4-diphenylbut-3-enoic acid (Scheme 8).173 This is supported by the value of Hammett $\rho = 1.3$ (for variation of substituents on one or both rings), the kinetic solvent effects, and the three-oxygen enrichment of (107) from reaction of (103) in 50% H$_2$18O–DMSO.

In contrast, for reaction of benzocyclobutene-1,2-diones (108) to give 2-sulfonylbenzoic acids (113) in water–DMSO, $\rho = 3.6$, $k_{2}^{D_{2}O}/k_{2}^{H_{2}O} = 1.7$, and reaction is believed to proceed as shown in Scheme 9, with rate-determining conversion of (110) to (111) or (109) to (110).174

Rates of ring openings of 1,2-diphenylcycloalkanols in dimethyl sodium–DMSO increase in the ring-size order $6 < 5 < 7 < 9 < 8$ with a spread in reactivities of ca 106; correlation with estimates of strain release is poor but improved on consideration of entropic factors.175 Results of isotopic labelling experiments (Scheme 10) suggest that for (114d) the intermediate benzylic carbanion is formed by rate-determining C–C bond cleavage and protonated intermolecularly by DMSO. In the case of (114a) proton transfer is rate limiting and occurs by both inter- and intra-molecular routes.

\begin{center}
\textbf{SCHEME 9}
\end{center}
The first report of direct carbanion formation by acyclic C—N bond cleavage has exploited the benzotriazolyl leaving group in a novel transformation promoted by lithium in THF (Scheme 11).176

\textbf{Scheme 10}

The synthetic application of vicarious nucleophilic substitution, whereby hydrogen of an electrophilic arene is replaced by an \(\alpha \)-functionalized alkyl substituent, has been reviewed;177 the sequence usually involves attack on a nitroalkene by a carbanion containing a leaving group X at the carbanionic centre, \(\beta \)-elimination of HX from the \(\sigma \)-adduct, and rearomatization on subsequent protonation.

Direct and nearly quantitative spectral observation of radical intermediates has provided evidence of single electron transfer on reaction of the sterically hindered 9-mesitylfluorenyl anion with methyl iodide.178 Comparisons with earlier results for 9-
phenylfluorenyl anion, which is more reactive towards MeI yet unreactive towards hindered iodides, suggest that the donor carbanion reacts by an ‘inner-sphere’ electron transfer which requires close approach to the alkyl iodide. Hexakis(trifluoromethyl)-cyclopentadiene has been formed from pentabis(trifluoromethyl)cyclopentadienide ion on reaction with one electron transfer agent.\(^{179}\) Novel nucleophilic addition of fluorenide ion to fullerene C\(_{60}\) in THF has been reported.\(^{180}\)

Gas-phase acidities for the different ring positions of phenyl radical and the corresponding C—H bond strengths for the phenide ion have been derived from a study of o-, m-, and p-benzyne negative ions generated in the gas phase.\(^{181}\) Results of theoretical studies of o-, m-, and p-benzyne negative ions are in good agreement with experimental observations.\(^{182}\)

The acidity of 1,3,5,7-tetranitrocubane, which features nitro groups on alternate corners of cubane, has been measured (pK\(_a\) ≈ 21) and reactions of the corresponding o-nitro anion have been explored.\(^{183}\)

A study of gas-phase reactions of benzyl and methoxide anions with alkyl formate and other esters has revealed some differences in behaviour of these anions of comparable basicity.\(^{184}\) The delocalized benzyl anion and localized methoxide ion engage in exclusive transacylation and proton transfer, respectively, on reaction with alkyl formates. However, proton transfer is sufficiently exothermic to dominate when benzyl anion reacts with methyl acetate. Both anions react with methyl benzoate, methyl trifluoroacetate, and methyl cyanoformate by competing transacylation and S\(_{N}\)2 reactions.

A complex sequence of cyclization and ring-opening reactions (which achieves equivalence of the central carbons of CH\(_2\)C=CCH\(_2\) and that of S=C=S) has been proposed to account for formation of thioketenyl anion on reaction of allenylanion with CS\(_2\) and COS in the gas phase.\(^{185}\)

\[
\begin{align*}
R^1 & \quad X \quad R^2 \\
& \quad \q
methyl nitrogen atom followed by slow, general-base-catalysed proton transfer;190 proton transfer, from protonated nitrosourea to the solvent, has likewise been shown to occur in nitrosation of five ureas RNHCONH$_2$.191 The mechanism of conversion of nitroalkenes RCH$_2$NO$_2$ to corresponding carboxylic acids RCO$_2$H on reaction with NaNO$_2$–AcOH in DMSO has been discussed.192 The stereochemistry of the S_{E2}'' reaction of dienylmethylsilanes has been reviewed.193

References

11 Carbanions and Electrophilic Aliphatic Substitution 357

11 Carbanions and Electrophilic Aliphatic Substitution

CHAPTER 12

Elimination Reactions

A. C. Knipe

School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine

E1cB Mechanisms ... 361
E2 Mechanisms ... 365
Solvolytic Reactions .. 367
Pyrolytic Reactions .. 371
- Cycloreversion with Nitrogen Extrusion 371
- Other Cycloreversions .. 372
- Acid Derivatives ... 375
- Sulfur Compounds .. 378
- Alkyl Halides ... 378
- Nitrogen Compounds ... 379
- Alcohols ... 379
- Other Pyrolytic Reactions .. 379
Reactions Catalysed by Biomolecules 380
Elimination Reactions in Synthesis .. 383
Other Reactions ... 385
References .. 388

E1cB Mechanisms

The degree to which fluorine-substituted ethyl carbamions (1–3) are stabilized by negative hyperconjugation has been examined at the MP2/6–31 + G*//MP2/6–31 + G* level.\(^1\) The expected sensitivity to conformation and consequent weakening of the C—F bond \textit{anti} to the unshared electron pair in the carbamion is revealed for that bond by the increase in length, the corresponding increase in charge on fluorine, and the \(^{18}\text{F}–^{19}\text{F}\) equilibrium isotope effect on ionization of the conjugate acid. In order to determine whether the incipient carbamion of an E1cB reaction may also be stabilized by negative hyperconjugation, stationary points (4–7) for the reaction of hydroxide ion with 1,1,1-trifluoroethane were determined. Isotope effects for the ion–dipole complex (5) reveal little bonding change whereas KIEs for the proton transfer transition state (6) are substantial; the deuterium KIE suggests that the \textit{anti} proton is about half transferred in the transition state and the isotope effect for \textit{anti} fluorine is only 55–60% of its value in the product (7) (which requires relocation of H\(_2\)O before elimination can be completed). Consequently, the transition structure resembles that for a concerted E2 process rather than the proton transfer step of an E1cB reaction. Further calculations
revealed that the corresponding KIEs for E2 reaction of HO− with ethyl fluoride indeed differed little from those for the E1cB reaction of 1,1,1-trifluoroethane. Thus, the deprotonation step of the E1cB reaction involves concerted changes at both the \(\alpha\) and \(\beta\)-carbon atoms; if the intermediate carbanion is well stabilized by induction, resonance, or solvation there will be little weakening of the bond to the leaving group in the transition state for its formation, and vice versa. Consequently, the transition state for an E1cB reaction proceeding via a relatively unstable carbanion can resemble that for a concerted E2 reaction well before actual change of mechanism is dictated by further destabilization of the carbanion. This spectrum of behaviour is in keeping with suggestions of Gander and Jencks, who reasoned that the transformation from E1cB to E2 mechanism occurs with very little change in transition state structure.

\[
\begin{align*}
\text{CF}_2\text{HCH}_2^- & \quad \text{CF}_2\text{CH}_2^- & \quad \text{CF}_3\text{CFH}^- \\
(1) & \quad (2) & \quad (3)
\end{align*}
\]

\[
\text{HO}^- + \text{CH}_3\text{CF}_3 \rightarrow \text{HO}^- \cdot \text{CH}_3\text{CF}_3^- \\
0 \text{ kcal} \quad -19.0 \text{ kcal} \\
(4) & \quad (5)
\]

\[
\begin{align*}
\text{[HO}^- \cdot \text{H}^- \cdot \text{CH}_2\text{CF}_3\text{]}^- & \quad \text{HOH}^- \cdot \text{CH}_3\text{CF}_3^- \\
-18.5 \text{ kcal} & \quad -19.5 \text{ kcal} \\
(6) & \quad (7)
\end{align*}
\]

Mechanistic studies of alkoxide-promoted dehydrohalogenations of \(\text{C}_6\text{H}_5\text{CH}_2\text{CH}_2\text{X}\) and various derivatives \(\text{YC}_6\text{H}_4\text{CHX}’\text{CH}_2\text{X}\) and \(\text{YC}_6\text{H}_4\text{CHX’CHF}_2\text{X}\) (where X = Br, Cl, or F and X’ = Br or Cl) have been extended to include MeO−/MeOH-promoted dehydrohalogenations of (8a–c) and interpreted with reference to Scheme 1.2 The Arrhenius behaviour of the primary KIEs, \(k^H/k^D\)\textsubscript{obs} = 3.40, 3.49, 2.19 and \(k^H/k^T\)\textsubscript{obs} = 6.20, 6.55, 3.56 for (8a), (8b), and (8c), respectively, has been used to calculate the internal return parameters, \(a = k_1/k_{\text{elim}}^X\). For (8a) and (8b), \(a^H = 0.59\), \(a^D = 0.13–0.14\), and \(a^T = 0.07\), whereas for (8c) the values \(a^H = 1.9\), \(a^D = 0.50\), and \(a^T = 0.28\) are indicative of greater internal return which resulted in the relatively low KIEs observed. Since \(k_1 = k_{\text{obs}}(a + 1)\), it has been possible to estimate the respective values \(k_1^H/k_1^D = 4.74, 4.91, \text{ and } 4.75\) and \(k_1^H/k_1^T = 9.20, 9.75, \text{ and } 9.17\) for (8a), (8b) and (8c), respectively. Hence differences in the observed isotope effects are a consequence of variations in the amount of internal return and not variations in the degree of hydron transfer in the transition state. Likewise, the element effect \(k^{\text{HBr}}/k^{\text{HCl}} = 29\), found on comparison of (8d) with (8a), has been shown to depend mainly on \(k^{\text{HBr}}/k^{\text{HCl}} = 19\) for the hydron transfer step and not on the C—X bond breaking reflected in \(k_{\text{elim}}^X\). The kinetic isotope effect \(k^{\text{MeOD}}/k^{\text{MeOH}} \approx 2.5\) is believed to be consistent with the loss of three methanols of solvation prior to the hydron transfer step.

The effects of reactant structures on the ketene-forming elimination reactions of aryl esters of substituted phenylacetic acids (9) and (10) with secondary amines in acetonitrile (Scheme 2) have been studied in anticipation that the transition state might have E1cB-like E2 character.3 The reactions are second order for R\textsubscript{2}NH–MeCN and
12 Elimination Reactions

\[\text{YC}_6\text{H}_4\text{C}^1\text{HClCH}_2\text{X} \]

(8)

\(a; \ Y = m-\text{Cl}, \ X = \text{Cl} \)

\(b; \ Y = m-\text{CF}_3, \ X = \text{Cl} \)

\(c; \ Y = p-\text{CF}_3, \ X = \text{F} \)

\(d; \ Y = m-\text{Cl}, \ X = \text{Br} \)

\[\begin{align*}
X\text{C} - C\text{H} + \text{OR} & \xrightarrow{k_1^H} X\text{C} - C\text{H} - \text{OR} \quad \xrightarrow{k_{\text{Elim}}} X^- \text{C} = \text{C} + \text{HOR} \\
X^- \text{C} = \text{C} & \xrightarrow{(k_{\text{Elim}})^{\text{FC}}} X\text{C} - C\text{C}^- + \text{HOR} \quad \xrightarrow{k_{\text{exc}}} X\text{C} - C\text{C}^- + \text{HOR} \\
X\text{C} - C\text{C}^- & \xrightarrow{k_2^D} X\text{C} - C\text{C}^- + \text{DOR} \quad \xrightarrow{k_1^D} X\text{C} - C\text{C}^- + \text{DOR} \quad \xrightarrow{k_{\text{exc}}} X\text{C} - C\text{C}^- + \text{DOR}
\end{align*} \]

Scheme 1

values of Brønsted \(\beta = 0.44-0.84 \) and \(|\beta_{1g}| = 0.41-0.50 \) decrease with the electron-withdrawing ability of \(Y; \) as the base strength becomes weaker the value of \(\rho_H = 2.0-3.6 \) (the Hammett slope at \(Y = \text{H} \)) changes little but \(|\beta_{1g}| \) increases. Both \(\rho_H \) and \(\beta \) decrease with change of \(X \) from \(\text{H} \) to \(\text{NO}_2 \). The results are as expected, there being evidence that the reaction coordinate has a large horizontal component corresponding to proton transfer. The values of \(\beta, \rho_H \) and \(|\beta_{1g}| \) are lower for the aqueous solvent system in which (9e) was found to react by concurrent \(E2 \) and \(E1_{\text{cB}} \) mechanisms (as evidenced by corresponding dissection of the curvilinear dependence of \(k_{\text{obs}} \) vs free buffer concentration).

\[\text{YCH}_2\text{COC} - \text{O} - \text{HNO}_2 + \text{base} \xrightarrow{\text{solvent}} \]

(9) \(X = \text{H} \)

(10) \(X = \text{NO}_2 \)

\(Y = a; \text{H}, \text{b}; p\text{-MeO}, \text{c}; m\text{-Cl} \)

\(d; m\text{-NO}_2, \text{e}; p\text{-NO}_2 \)

\[\text{YCH} = \text{C} = \text{O} + \text{O} - \text{HNO}_2 \]

(11)

(12)

Base-solvent = \(\text{R}_2\text{N} - \text{MeCN}, \)

\(\text{R}_2\text{N}/\text{R}_3\text{NH}_2^+ - 70\% \text{MeCN (aq.)} \)

\(\text{R}_2\text{NH} = \text{Bz(Pr'i)NH}, \text{Bu}_2\text{'NH}, \text{Pr}_2\text{'NH}, \text{2,6-DMP} \)

Scheme 2
It has been concluded4 that solvent- and hydroxide ion-promoted eliminative formation of imine (14) from (13a) in 25 vol.% acetonitrile in water occurs by the E_2 mechanism for which $k^H/k^D = 4.8 \pm 0.2$ and 6.7 ± 0.2, respectively. Base-promoted reactions of the corresponding substrates (16a–c), which feature a much poorer leaving group, occurs by the reversible $E1cB_R$ mechanism as evidenced by complete incorporation of 1H at the 9-position of the deuterated substrate (d-16b) after one half-life with MeO$^-$/MeOH; the apparent second-order dependence on base has been tentatively ascribed to a medium effect. In contrast, the strongly activated substrate (16d) undergoes desulfonative rearrangement to give (17) by intramolecular nucleophilic aromatic substitution involving rate-limiting general base catalysed hydron transfer for which $k^H/k^D = 5.8 \pm 0.3$ in MeO$^-$/MeOH; alternative mechanisms have been suggested.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{images}
\caption{(13) (14) (15) (16) (17)}
\end{figure}

$X = \text{a; Cl, b; OCOPh}$

$Y = \text{a; OMe, b; Me, c; Br, d; NO}_2$

The pH–rate profile for unbuffered hydrolysis of glyceraldehyde-3-phosphate (6-3-P) has been attributed to hydrolysis of the monoanion of the phosphate monoester at pH <4, spontaneous formation of glyceraldehyde from the phosphate dianion at pH 7–8, and, at higher pH, hydroxide-catalysed methylglyoxal formation. Reaction of the dianion is not subject to a solvent isotope effect and is believed to occur by the irreversible $E1cB_1$ mechanism whereby an enediolate intermediate, formed on rate-determining C(2) deprotonation, subsequently expels phosphate trianion by C—O bond breaking. The diethylacetal and 2-methyl-G-3-P do not hydrolyse under the same conditions.5

The kinetics of reaction of O-(N-arylcarbamoyl)benzophenone oximes in NaOMe–MeOH to give benzophenone oxime sodium salt and the corresponding methyl N-arylcarbamates have been studied.6 The Hammett constants $\rho_{\text{obs}} = 0.68$ and $\rho_{k_2} = -1.32$ have been estimated for the $E1cB_R$ process for which k_2 governs conversion of the intermediate ArN$^-\text{CO}_2\text{N}=\text{CPh}_2$ to ArN=C=O and Ph$_2$C=NO$^-$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{images}
\caption{Images for 13-17 and chemical structures of compounds}
\end{figure}
An attempt to study resolved ((E)-18) as a probe for the detailed mechanism of the A_dN-E vinylic substitution reaction has been complicated by intervention of a competing reaction route; this is believed to involve a competing ($E1cB$)$_l$ elimination–addition, for which antiperiplanar orientation of H and Cl is not a requirement.\(^7\) α-Deuterated (ca 50%) E- and Z-substitution products (which do not themselves exchange deuterium) are obtained on reaction with MeS$^-$ in 9:1 CD$_3$CN–D$_2$O but no incorporation of deuterium in unreacted ((E)-18) occurs and neither does isomerism to ((Z)-18) precede elimination.

![Chemical Structure](18)

E2 Mechanisms

It has been argued that the accepted electromeric interpretation of Saytzeff orientation and its exceptions is unsound. A Unified Rule for Elimination (URE) has now been proposed to account for regioselectivity of eliminations of a wide range of substrates and reaction conditions.\(^8\)

The interpretation is based on the balance of competition between ‘nucleophile-led’ reactions (via contact ion pairs or concerted and tending towards $E1cB$) and ‘electrophile-led’ reactions (the $E1$ extreme, via solvated ion pairs). The solvated ion pairs are favoured with better nucleofuges, and/or greater solvating power, and collapse via loss of the more hydride-like β-hydrogen; collapse of the contact ion pairs involves preferential loss of the most acidic β-hydrogen, and demands interaction with the nucleophile.

Ab initio calculations at the MP2/6–31+G* level have been performed for gas-phase E2 elimination reactions of CH$_3$CH$_2$X (X = NH$_3^+$, Br, Cl, F, SH) promoted by NH$_2^-$, OH$^-$, F$^-$, PH$_2^-$, SH$^-$, and Cl$^-$ in order to determine how changes in transition-state geometry, from reactant-like to product-like, influence kinetic isotope effects.\(^9\) Secondary isotope effects (α-H) on leaving group departure are correlated with the hybridization at C$_\alpha$ in the transition state, whereas there is no such correlation between secondary (β-H) isotope effects and the transition state hybridization at C$_\beta$. The primary deuterium isotope effect is influenced markedly by the nucleophilic atom concerned but approach to a broad maximum for a symmetric transition structure can be discerned when due allowance is made for the element effect.

Computational results from a study of the gas-phase reaction of NH$_2^-$ with CH$_3$CH$_2$SCH$_3$ are consistent with a mechanism proposed by Nibbering in 1987 and reveal that ethene is formed by α-deprotonation followed by an intramolecular *syn*-elimination.\(^10\) Although the barrier for the *syn*-elimination is greater than for a
conventional E2 mechanism, there is energetic advantage for deprotonation which is effectively irreversible.

Density functional theory and a high-level ab initio procedure (G2+) have been used to explore the potential energy surface for the base-induced elimination reaction of fluoride ion with ethyl fluoride.11 The DFT barriers are smaller and looser than those predicted by the ab initio method but the nature of the transition state cannot be defined with confidence since the predictions are unusually sensitive to the choice of functional and basis set. The results suggest that improvement in density functional methods will require fundamental change in the functionals themselves.

A study of the competitive reactivity of two good leaving groups within the same molecule has revealed that for gas-phase anionic elimination reactions, X− + YCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}Z, the kinetic regiochemistry is very sensitive to small differences in leaving group thermochemistry.12 The 1,3-disubstituted framework enables intrinsic leaving group abilities to be compared without interference from other structural effects. For Y = Br, Z = Cl, Br− is favoured as a leaving group over Cl− by 8.4 kcal mol−1 in enthalpy. The observed elimination ratios (Br−/Cl−) for near-collision controlled reactions promoted by AcO− (200 : 1), HO− (6 : 1), MeO− (91 : 1), i-AmO− (95 : 1), and F− (105 : 1) reveal that selectivity increases with the energy difference between attacking base and departing leaving group. For mixed diesters RCO\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}O\textsubscript{2}CR, a difference in leaving group energetics of only 1.1 kcal mol−1 results in a propionate : acetate ratio of 2.5 : 1 when F− is the base, and only 1.6 : 1 when MeO− is used. Interpretation of results for halo esters (Y = halogen, Z = O\textsubscript{2}CMe) has led to the conclusion that bromide is an inherently worse leaving group than chloride by a factor of five, should thermochemistry be factored out.

Formation of the sterically unfavourable (Z)-alkadienes on dehydrsulfonylation of α,α-dialkylated (E)-allylic sulfones promoted by Bu’OK/Bu’OH has been attributed to a ‘syn-effect’ which, by definition, stabilizes the syn-conformation required on approach to the transition state.13 The syn-effect of substituents at the δ-position of the (E)-allylic sulfones decreases in the order RO− >> CH\textsubscript{3} − > RS− > –CH\textsubscript{2}− > (CH\textsubscript{3})\textsubscript{2}CH− > (CH\textsubscript{3})\textsubscript{3}C− > C\textsubscript{6}H\textsubscript{5}− and in accord with previous observations of isomerization of (E)-vinylc to allylic sulfones.

Dehydrochlorination of β,β′-dichlorodiethyl sulfide promoted by PhCH\textsubscript{2}NR\textsubscript{3}+ and KOH or NaOH in aqueous heptane mixtures has been found to give (CH\textsubscript{2}=CH\textsubscript{2})\textsubscript{2}S via CH\textsubscript{2}=CHSCH\textsubscript{2}CH\textsubscript{2}Cl under phase-transfer and single-phase conditions.14

Elimination reactions of (E)- and (Z)-benzaldehyde O-pivaloyloximes (19a) and (19b) with DBU in MeCN have been found to occur by a nitrile-forming E2 mechanism which is ca 2000-fold faster for the latter isomer in each case.15 The corresponding Hammett substituent constants, activation parameters, and primary deuterium isotope effects, suggest that the anti elimination from (19b) (for which ρ = 2.4 ± 0.1, k\textsubscript{H}/k\textsubscript{D} = 2.7 ± 0.3, ΔH≠ = 12.5 ± 0.2 kcal mol−1, and ΔS≠ = −31.0 ± 0.6 eu) proceeds to (20) via a more symmetrical transition state with a smaller degree of proton transfer, less charge development at the β-carbon and greater extent of triple bond formation than for syn elimination from (19a) (for which ρ = 1.4 ± 0.1, k\textsubscript{H}/k\textsubscript{D} = 7.8 ± 0.3, ΔH≠ = 8.8 ± 0.1 kcal mol−1 and ΔS≠ = −23.6 ± 0.4 eu).
12 Elimination Reactions

\[
\begin{align*}
\text{(19a) (E)-isomer} \\
\text{(19b) (Z)-isomer} \\
\end{align*}
\]

Solvolytic Reactions

Solvolytic of R,R and R,S isomers (22a-X) and (22b-X), respectively, ($X = I, Br, OBs$) in 25 vol.% acetonitrile in water has been found to give elimination products (26), (27a), and (27b) and substitution products (22a-OH), (22b-OH), (22a-NHCOMe), and (22b-NHCOMe) (Scheme 3). Previous results for (21-X) have suggested that concerted solvent-promoted $E2$ reactions become significant when the β-hydrogen is of high acidity, otherwise competing stepwise elimination and substitution reactions predominate. Bronsted parameters, $\alpha = 0.08, 0.07$ and -0.10, have been obtained from the elimination rate constants k_E for iodides, bromides, and brosylates, respectively, on variation of Y and Y'. These are believed to indicate that the iodides and bromides react by the concerted $E2$ reaction, with a high degree of proton transfer in the transition state, but that the brosylates (which give much smaller fractions of the stable alkenes) may react primarily through intermediate carbocation formation.

Scheme 3
Solvency of (29-X, X = I, Br, OBs) in 25 vol.% acetonitrile in water gives elimination product (32) and substitution products (33a) and (33b). The rate of elimination increases with increasing acidity of the substrate (Bronsted $\alpha > 0$) as evidenced by results for ring-substituted substrates (30-X) and (31-X). However, for elimination reactions of the brosylates (29-OBs) and (31-OBs), the small kinetic deuterium isotope effect ($k_{H}/k_{D} = 2.0 \pm 0.1$ and 2.8 ± 0.1, respectively) is believed to be a consequence of competing E1 reaction via a primary ion pair.

\[
\begin{align*}
\text{X} &= a; I; b; Br; c; OBs \\
(29) \ Y &= Y' = H \\
(30) \ Y &= H, Y' = Br \\
(31) \ Y &= Y' = Br
\end{align*}
\]

Full details of a study of leaving group-promoted solvolytic elimination reactions of 1-(1-methyl-1-arylethyl)pyridinium cations in 25 vol.% acetonitrile (aqueous) have been reported. Reactions of (34) and (35) are found to proceed via a common carbocation intermediate of ion–molecule pair type to give the substitution product (36) and elimination product (37) (Scheme 4). The total rate of reaction of (35) exceeds that for (34) by 1100-fold, corresponding to a Bronsted parameter of $\beta_{lg} = -0.93$, and the fraction of (37) obtained is governed by $\beta = 0.12$ for the dehydronation (k_{c}) of the ion–molecule pair by the leaving group; the product ratio is hardly affected by the presence of substituted pyridines. For (34) and (35), $k_{obs}^{H}/k_{obs}^{D} = 1.85 \pm 0.10 \ (60 \degree C)$ and $1.53 \pm 0.06 \ (40 \degree C)$, respectively, and corresponding values of $k_{c}^{H}/k_{c}^{D} = 2.7 \pm 0.20$ and 3.4 ± 0.2 have been estimated.

A concerted unimolecular mechanism has been proposed to account for the formation of elimination products on solvolysis of the tertiary 1-(4-methoxyphenyl)-3-methyl-3-butyl derivatives (38-X) in aqueous solvents. Thus, in 50:50 (v/v) CF$_3$CH$_2$OH–H$_2$O, (38a) and (38b) give 39% and 56%, respectively, of the alkene
products of elimination and the constant total alkene yields are unaffected by the addition of the nucleophile $N_3^-(0.5 \text{ m})$. The small amount of adduct (38-N$_3$) obtained in presence of azide ion is believed to form via a preassociation complex N_3^-: (38-X) only at the expense of formation of (38-solv) since the alkenes (39) and (40) can form by concerted elimination of free (38-X) or the association complex. Ion-pair or ion-molecule intermediates of the reactions of simple tertiary derivatives are believed to undergo direct reaction with a molecule of solvent within the solvent shell that is present at the time of their formation, with $k'_s \approx k_s = k_{\text{reorg}}$. The distribution of products obtained from acid-catalysed reactions of (38) and 4-(4-methoxyphenyl)-2-methylbut-1-ene (39) is also inconsistent with reaction exclusively via a common carbocation intermediate, presumably as a consequence of differences in its solvent shell and the possibility that solvent attack may in part be concerted with protonation of (39). It is concluded that the ion pair intermediates (R$^+$.X$^-$) of the reactions of (38-X) are so reactive that they undergo little or no diffusional separation to the free carbocation ($k'_s > k'_d$, Scheme 5).

The partitioning of α-substituted 1-(4-methoxyphenyl)ethyl carbocations (42) between nucleophilic capture (k_S) and deprotonation (k_E) in 50:50 (v/v) MeOH–H$_2$O has been studied (Scheme 6). The effect of α-(N$_2$N-dimethylcarbamoyl) and α-
(N,N-dimethylthiocarbamoyl) substituents (Z) is to reduce the rate of solvent trapping by 80-fold and ≥ 30,000-fold, respectively. This, combined with the much smaller effect on k_E, accounts for the unusually large proportion of elimination product obtained from the α-amido- and α-thioamido-benzyl derivatives. Computational studies have established that the relative magnitude of the rate constants k_S and k_E is strongly controlled by the relative thermodynamic stabilities of the respective neutral products.

\[\text{SCHEME 6} \]

Results of a study of the mechanism and temperature-dependent kinetics of the dehydration of hot compressed liquid water do not corroborate an earlier claim that isobutene formation is catalysed by dissociation of Bu′OH at 250 °C.21

Rate and equilibrium constants have been measured for the acid-catalysed dehydration of heterocyclic ring hydrates of benzofuran, benzothiophene, chromene, and thiochromene.22 The reactions are believed to proceed via intermediate carbocations despite the surprisingly small accelerating effects of heterocyclic oxygen and sulfur atoms in the five-membered ring series and the deceleration observed for dehydration of corresponding six-membered rings. Alcohol dehydration by polyphosphoric acid has also been studied.23

Rate constants and activation parameters have been determined from results of an NMR study of the acid-catalysed ring–chain tautomeric equilibria established for five-, six-, and seven-membered 1,3-dinitrogen heterocycles (45) (imidazolidine, hexahydropyrimidine and -diazepine ring systems, respectively) in 4:1 DMSO–D$_2$O.24 For $n = 2$ and 3 the equilibrium is found to favour the ring tautomer whereas for $n = 4$ the monoimine predominates. The much higher free energy/enthalpy of activation for the six-membered ring opening has been attributed to the lower ground-state energy of this ring.
Pyrolytic Reactions

Cycloreversion with Nitrogen Extrusion

Results of an \textit{ab initio} MO study of the thermal decomposition of several \(\alpha\)-azido five-membered heterocycles suggest that the ring is almost intact in the transition state, there being a concerted but asynchronous process between \(N_2\) departure and ring cleavage.25 It is not clear whether an open-shell singlet nitrene intermediate is formed or whether the transition state leads directly to the ring-opened product. The activation barriers decrease in the order thiophenes \(> \) furans \(> \) pyroles and are much less than for phenyl azide decomposition, which is believed to proceed with smaller charge transfer between the azido group and the ring; larger internal electrostatic force may also favour the transition state for heterocycle cleavage and partly account for the high rate constants observed.

Evidence in support of a stepwise thermal fragmentation of oxadiazolines in benzene at 110 °C has implicated carbonyl ylide intermediates and oxiranes as unstable precursors of the elimination product, ketene acetals, rather than concerted fragmentation to \(N_2\), acetone and carbene.26

\[(\text{46})\]

\[\text{X--N=N--N--X} \quad \text{H} \quad \text{HOCH}_2\text{CH}_2\text{S} \quad \text{N=N--X} \quad \text{H} \quad \text{HOCH}_2\text{CH}_2\text{S} \quad \text{N=N--X} \quad \text{H} \]

\[\text{X: X = OMe, SMe, H} \quad \text{R}^1 = \text{a b c d e f g h} \quad \text{R}^2 = \text{H Me Et Ph Me Ph C}_2\text{H}_4\text{OH CH}_2\text{OH} \]

\[\text{(49) Z = O} \quad \text{(50) Z = S} \]

Gas-phase thermolysis of substituted tetrazoles (46a,b and 48), the 1,4-disubstituted 1,4-dihydro-5\(H\)-tetrazol-5-ones (49a–f) and the 1,4-disubstituted 1,4-dihydro-5\(H\)-tetrazol-5-thiones (50b,c,e–h) have been monitored by photoelectron spectroscopy.27
Compounds (46a) and (46b) lose formaldehyde and thiocetaldehyde, respectively, before nitrogen extrusion from intermediate unsubstituted tetrazole (46c); the tetrazole then extrudes N₂ to form cyanamide. For (49a,b) and (50b,c,e–h) the predominant reaction is 3 + 2-cycloreversion to azides and isocyanates or isothiocyanates, respectively.

Other Cycloreversions

A review of direct observation of the transition state has traced the development of the femtosecond reaction dynamic technique, which has been used to demonstrate that the retro-Diels–Alder reaction can proceed by a stepwise mechanism as well as the usual concerted process. The oxide anion accelerated retro-Diels–Alder reaction has also been reviewed and the promise of this mild reaction for synthetic application has been emphasized.

![Diagram of retro-Diels–Alder reaction]

Retro-Diels–Alder reactions of anthracenedione (51a) have been shown to proceed faster in aqueous solution than in organic solvents, apparently as a consequence of enhanced hydrogen bonding of water to the activated complex, since hydrophobic interactions with (51a) are of negligible importance. The results have been compared with previous kinetic data for bimolecular and intramolecular Diels–Alder reactions and the corresponding hydrogen bond and hydrophobic interactions have been discussed.

![Diagram of reaction between nitrosobenzene and cyclopentadiene]

Reaction between nitrosobenzene (55) and cyclopentadiene (56a) gives an unstable cycloadduct (54a); however, in a highly aqueous medium the adduct is stabilized by hydrogen bonding and the hetero retro-Diels–Alder reaction is retarded, thereby enabling a study of the equilibrium dynamics with both reactants and products present in solution. Comparison with the corresponding reaction of cyclohexa-1,3-diene has been made in an attempt to separate the effects of the aqueous medium on the rate constants for the forward and reverse reaction.
It has been suggested previously that the thermal cycloreversion of cyclohexene to ethylene plus buta-1,3-diene proceeds via a vinylcyclobutane intermediate and that, as a consequence, the stereochemistry of deuterium labels on the cyclohexene is not reflected in the deuterated ethenes obtained. This conclusion is supported by results of a study of the stereochemistry of thermal conversion of 1-vinyl-2,3-cis-dideuteriocyclobutane to butadiene and 1,2-dideuterioethylenes; equal amounts of (E)-CHD=CHD and (Z)-CHD=CHD were formed.32

A detailed quantum mechanical study of the mechanism of thermal decomposition of isoxazole has been conducted since previous theoretical predictions appeared to be inconsistent with the experimental results.33 It has been concluded that the main unimolecular decomposition is through the sequence isoxazole \rightarrow NCCH\textsubscript{2}CHO \rightarrow CH\textsubscript{3}CN + CO and that the minor products, HCN and H\textsubscript{2}CCO, probably arise via a cyclic carbene as proposed in the experimental study.
A systematic *ab initio* study of thermal chelotropic decarbonylations (Scheme 7) has been conducted in order to explore the effects of zero, one, and two orbital disconnections and to resolve an ambiguity in the Woodward–Hoffman rules which envisaged two orbital symmetry-allowed decarbonylation pathways.\(^{34}\) The transition structures were located at the MP2/6–31G* level and single point energies were obtained at the MP4-(SDTQ)/D95** + ZPE level. The out-of-plane ‘linear’ pericyclic transition states for reactions of (57) and (59) are in contrast with the two-orbital disconnection planar transition states found for decarbonylation of furandione (61) and pyroledione (63). In contrast, fragmentations of (67), (69) and (71) each involve a single disconnection. Although decarbonylation of (65) is symmetry allowed it becomes ‘effectively forbidden’ since the energy barrier of this ‘non-linear’ process is unusually high.

\[
\begin{align*}
\text{OH} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{O} & \quad \text{Me} \\
\text{O} & \quad \text{Me} \\
\text{(73)} & \\
& \quad \Delta \\
\end{align*}
\]

\[
\begin{align*}
\text{N} & \quad \text{O} \\
\text{O} & \quad \text{C} = \text{O} \\
\text{Z-form} & \\
& \quad \Delta \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{E-form} & \\
& \quad \Delta \\
\end{align*}
\]

\[
\begin{align*}
& \quad + \\
\text{R}_1 & \quad \text{C} = \text{O} \\
\text{R}_2 & \\
\text{(74)} & \\
& \quad 4 + 2 \\
& \quad \leftrightarrow \\
\end{align*}
\]

\[
\begin{align*}
& \quad + \\
\text{R}_1 & \quad \text{C} = \text{O} \\
\text{R}_2 & \\
\text{(75)} & \\
& \quad 3 + 2 \\
& \quad \leftrightarrow \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{N} & \quad \text{O} \\
\text{(76)} & \\
\text{SO}_2 & \\
\text{Ph} & \\
\text{(77)} & \\
\text{Ph} & \\
\end{align*}
\]

\[
\begin{align*}
\text{SO}_2 & \\
\text{(78)} & \\
\end{align*}
\]

Scheme 8

Cyclic nitrones, which are commonly formed by cycloaddition of ketones to nitrosoketene, can also be obtained by pyrolysis of 5-isonitroso-2,2-dimethyl-1,3-dioxane-4,6-dione (73) (isonitroso Meldrum’s acid) in the presence of various ketones. Two possible reaction pathways (Scheme 8) have been proposed previously to account for formation of cyclic nitrones from (73), but the proposed nitrosoketene intermediate could not be observed. Spectroscopic evidence for generation of the nitrosoketene in the gas phase at \(\geq 80 \degree \text{C}\) has now been found and *ab initio* calculations in support of the vibrational frequencies observed have been reported.\(^{35}\)
Heteroaromatic-fused 3-sulfolenes generally undergo extrusion of SO_2 at 160–180 °C to form the corresponding o-quinodimethanes; 2-phenyloxazolo-3-sulfolene (76), however, loses SO_2 at room temperature to give (77). It has now been shown by theoretical calculations of homodesmic reactions of oxazolo-3-sulfolene relative to 3-sulfolene (78) that oxazolo ring fusion induces strain in the 3-sulfolene ring; this is greater than that induced by other five-membered aromatic heterocycles and can therefore account for the unusual reactivity of oxazolo-3-sulfolene or its 2-phenyl derivative.36 The effect of change of electron delocalization during SO_2 extrusion does not differ to a great extent for oxazolo-, furano-, and thiazolo-3-sulfolenes.

Novel 1,3-selenazabuta-1,3-dienes have been generated by thermal cycloreversion of 2,4,6-trisubstituted 6H-1,3,5-oxaselenazines and trapped with dienophiles or nucleophiles with formation of $4 + 2$-cycloaducts or 1,4-adducts, respectively.37

The potential surface for the gradient path addition of ethylene to silene and the possible existence and stability of intermediates in the thermal decomposition reaction of silacyclobutane has been explored.38 The energy maximum of the multi-step process corresponds to a cyclic transition state leading on one side to a planar silacyclobutane transition state which falls to ground-state puckered silacyclobutane and on the other side to a trans diradical which fragments to ethylene and silene.

Retro-cycloaddition extrusion of the metaphosphate moiety from 2,3-oxaphosphabicyclo[2.2.2]octene derivatives (79), in 1,2-dichloroethane at 100 °C in the presence of PrOH, has been shown to proceed via an unsymmetrical transition state in which C—P bond breakage and P=O bond formation are more advanced than C—O breakage.39 The secondary deuterium isotope effect on H adjacent to the P—C bond is 1.060 ± 0.008 for (79a) and 1.081 ± 0.009 for (79b) and the oxygen kinetic isotope effect on the P—O—C bridge is 0.9901 ± 0.0016 for (79a).

Results of a kinetic and theoretical study of the unimolecular decomposition of cyclobutanol behind incident and reflected shock waves at 950–1450 K show that vinyl alcohol is produced through a biradical before isomerizing to acetaldehyde.40

Acid Derivatives

A theoretical study of the thermal isomerization and decomposition of oxalic acid has attempted to account for the predominant formation of CO_2 and HCOOH from the vapour at 400–430 K.41 Transition-state theory calculations indicate that a bimolecular hydrogen migration from oxygen to carbon of intermediate dihydroxycarbene (formed along with CO_2) achieved through a hydrogen exchange with a second oxalic acid
molecule may account for HCOOH formation. A unimolecular channel to produce CO₂, CO and H₂O may become significant at higher temperatures.

Gas-phase decarboxylation of β-ketocarboxylic acids XCOCH₂COOH (X = H, OH, and CH₃) has also been the subject of theoretical studies. Ab initio calculations reveal that decarboxylation via a six-membered (rather than four-membered) ring transition state is favoured. Activation barriers of 23.8, 23.3 and 28.5 kcal mol⁻¹ have been calculated for decarboxylation of 3-oxopropanoic acid, acetoacetic acid, and malonic acid, respectively. Only marginal effects of solvent on the energy barriers and on the geometries of the reactants and transition structures are predicted. The activation energy predicted for reaction of malonic acid agrees well with the experimental value and rate constants have been predicted for decarboxylation of 3-oxopropanoic acid and acetoacetic acid in the gas phase.

Rates of decarbonylation (promoted by oxygen at room temperature) and decarboxylation (at 190 °C) of 1,3- and 1,4-benzenekehdicarboxylic acids have been reported.

\[
\begin{align*}
R^1R^2\ddagger\text{C}^{\delta+}\text{COOH} & \xrightarrow{\delta-\text{OR}^3} [R^1R^2\text{C}−\text{C}=\text{O}]^+ \\
& \xrightarrow{R^3\text{O}} [R^1R^2\text{C}−\text{C}=\text{O}] + R^3\text{OH} \\
& \xrightarrow{} R^1R^2\text{C}=\text{O} + \text{CO}
\end{align*}
\]

Scheme 9

A unimolecular elimination involving a semi-polar five-membered cyclic transition state (81) (Scheme 9, R¹ = Ph, R² = R³ = H) appears to account for the formation of benzaldehyde, CO, and H₂O on eliminative fragmentation of mandelic acid in the gas phase. The same type of transition state has been proposed for gas-phase pyrolysis of ROCH₂COOH (R = MeO, EtO, and Ph'O) with corresponding formation of ROH, CO, and formaldehyde; the rate of reaction is little dependent on R. The limited knowledge of thermal behaviour of halogenated acids has been extended significantly by a pyrolysis (infrared laser-powered) and semiempirical study which has established that mono-, di- and tri-chloroacetic, trifluoroacetic, and bromoacetic acid eliminate HX and that both bromo- and iodo-acetic acid undergo C—X bond homolysis; acetic acid undergoes decarboxylation and dehydration under the same conditions. The semiempirical calculations of corresponding activation energies are consistent with these conclusions.

Semiempirical and ab initio techniques have been applied to the unimolecular decomposition of 2-chloropropanoic acid, which is known to form HCl, CO, and CH₃CHO. In keeping with the experimental data, the results suggest that reaction proceeds by a two-step mechanism involving rate-determining formation of intermediate α-propiolactone, which then fragments to form CO and CH₃CHO.
The lactone formation occurs via a distorted five-membered transition state with participation of leaving chloride and carboxylic hydrogen.

A systematic study of the impact of geminal \(\alpha \)-fluorine substitution upon the rate of decarboxylation of \(\beta \)-lactones has included investigation of the thermolysis of \(\alpha, \alpha \)-difluoro \(\beta \)-lactones, to give \(\text{CO}_2 \) and 1,1-difluoroalkenes, in the gas phase and in solution.\(^{48}\) The gas-phase results have been interpreted, with reference to \textit{ab initio} calculations on the fluoro- and non-fluorinated \(\beta \)-lactone systems, in terms of a probable concerted, asynchronous, non-polar mechanism. However, a polar mechanism which probably involves formation of an intermediate zwitterion has been invoked to explain the solvent dependence observed.

\[\text{(82)}\]
\[\text{(83)}\]

The kinetics of concerted thermal elimination reactions of a series of ethyl (hetero) arylcarboxylate esters (2-thienyl-, 3-thienyl-, 2-furyl, 3-furyl, 4-pyridyl-, 3-pyridyl-, and 2-pyridylcarboxylate) in the gas phase seem to indicate that there is little charge separation in the transition state (83); this is in contrast with the behaviour of the corresponding \(t \)-butyl and isopropyl esters for which a semi-concerted transition state (82) was proposed previously.\(^{49}\) Results of a kinetic study of the gas-phase elimination reactions of methylbenzoyl formate (84) and 3-hydroxy-3-methylbutan-2-one (85) have been compared with those for pyruvic acid (87) and benzoylformic acid (86).\(^{50}\) The relative rates of reaction \([(86)/(87) \approx 46, (87)/(85) = 1.1 \times 10^5\] and \[(86)/(82) = 1 \times 10^6]\) reveal that the acidity of the hydrogen atom involved in the elimination process, rather than the initial polarization of the \(\text{C}--\text{C} \) bond which undergoes cleavage, is the important rate-controlling factor.

\[\text{(84)}\]
\[\text{(85)}\]
\[\text{(86)}\]
\[\text{(87)}\]

Results of a kinetic study of the formation of phthalide by dehydrobromination of \(\alpha \)-bromo-\(\alpha \)-toluic acid are believed to provide support for an intimate ion-pair mechanism for the pyrolysis of some types of halo acids in the gas phase.\(^{51}\)

The thermal decomposition of 2-azidoacetic acid (\(\text{N}_2\text{CH}_2\text{CO}_2\text{H} \)) in the vapour phase has been shown, by photoelectron and matrix isolation infrared spectroscopy, to involve simultaneous formation of \(\text{CO}_2 \) and methanimine (\(\text{CH}_2\text{NH} \)) with concerted ejection of \(\text{N}_2.\(^ {52}\) No evidence was found for formation of intermediate nitrene (\(\text{NCH}_2\text{CO}_2\text{H} \)) or the imine (\(\text{HNCHCO}_2\text{H} \)) to which it could be converted by 1,2-hydrogen shift.
Benzo[c]phenanthrene-5,6-dicarboxylic anhydride and 6H-benzo[cd]pyrene-6-one have been found to form combustion effluents benzo[ghi]fluoranthene and cyclopenta[cd]pyrene on thermolysis.53 The kinetics of formation of ketene and acetic acid on thermal unimolecular decomposition of acetic anhydride at 750–980 K have been reported and used to re-evaluate the Arrhenius equation as \(k = 10^{12.2}\exp(-145 \text{ kJ mol}^{-1}/RT) \text{ s}^{-1} \) for the temperature range 470–980 K.54 Results of \textit{ab initio} MO calculations suggest that the reaction proceeds by concerted elimination through a six-centre transition state, with potential barrier height 156 kJ mol\(^{-1}\).

Reactivities and activation parameters for pyrolytic unimolecular first-order elimination reactions of \(N \)-acetylurea, \(N \)-acetylthiourea, \(N,N' \)-diacetylthiourea and \(N \)-acetylthiobenzamide have been interpreted with reference to those for other amide derivatives.55 The first-order rate constants for pyrolysis of RCONHCSNHC\(_6\)H\(_4\)R' (R = Me, R' = H; R = Ph, R' = H, 4-NO\(_2\), 3-Cl, 4-Cl, 4-Me) have also been measured at 423–500 K and correlated with Hammett \(\sigma^0 \) values to give \(\rho = 1.99 \) at 450 K.56

\textbf{Sulfur Compounds}

Flash vacuum pyrolysis (FVP) of 1,3-dithiolane 1-oxides (88–90), as a possible route to thiocarbonyl compounds, has been studied.57 Thiobenzophenone and thiofenchone are obtained from (88) and (89), respectively, but there was no evidence of heptane-4-thione formation from (90). A stepwise homolytic cleavage has been proposed.

\[
\begin{align*}
\text{(88)} & & \text{(89)} & & \text{(90)} \\
\end{align*}
\]

FVP has also been used to induce fragmentation of 1,6,6a\(\beta \)-trithiapentalene and its methyl-substituted derivatives with formation of thiophene-3-thiones (or the thiol tautomers) by loss of CS and/or CH\(_2\)=C=S and subsequent rearrangement.58

\textbf{Alkyl Halides}

The reaction dynamics of multi-bond breakage during elimination of iodine from 1,2-diiodo-1,1,2,2-tetrafluoroethane has been the subject of femtosecond clocking in a supersonic molecular beam;59 the process proceeds via C\(_2\)F\(_4\)I\(^+\) and involves sequential C—I bond breakages taking 200 fs and 25 ps, respectively.

Pyrolysis of 2-chloro-1,1,1-trifluoroethane at 973–1148 K has been shown to form primarily CF\(_2\)=CHF (formed by \(\alpha,\alpha \)-HCl elimination followed by 1,2-F migration), along with CH=CHCF\(_3\) and CF\(_2\)=CHCl, at low temperature; pentfluoropropene products predominate at high temperature.60 Competing HX elimination and C—X fission have been found to occur in high-temperature thermal decompositions of C\(_2\)H\(_3\)I\(^6\) and chloromethylacetylene.62
Pyrolyses of chloroacetaldehyde and 1-chloropropionaldehyde have been found to form ketene by elimination of HCl and MeCl, respectively; 2-chloropropionaldehyde eliminates HCl to form \textit{s-trans}-acrolein under the same conditions.63

\section*{Nitrogen Compounds}

\textit{Ab initio} density functional calculations have been applied to dimethylnitramine decomposition in order to calculate the primary deuterium kinetic isotope effect \((k_\text{H}/k_\text{D} = 4.21)\) for HONO elimination \(\text{Me}_2\text{NNO}_2 \rightarrow [\text{TS}] \rightarrow \text{CH}_2\text{NMe} + \text{NO}_2\text{H}\) and the secondary isotope effect \((k_\text{H}/k_\text{D} = 1.4)\) for N–N bond homolysis, each at 240 °C.64 Since the experimentally observed isotope effect is 1.57, it has been concluded that the latter process may be rate determining.

5-Nitro-2,4-dihydro-3\textit{H}-1,2,4-triazol-3-ones (NTO) isotopically labelled with 15N at N(1,2), N(4) and N(6) positions have been used to elucidate the origins of nitrogen atoms in its decomposition gases \(\text{N}_2, \text{NO, NO}_2, \) and \(\text{HCN}\).65 Three competing reactions involving homolysis of the nitro group from the NTO ring have been proposed to occur.

Semiempirical AM1 calculations on the transition state for the retroene-type elimination of propene from allylamines reveal that the most favoured geometry resembles a half-chair or a flattened boat.66 In keeping with experimental observations, it is predicted that electron-donor substituents on nitrogen should promote the reaction since the negative charge on this atom decreases in the polar transition state.

The mechanisms of stepwise monomolecular thermal decomposition of 1,5- and 2,5-disubstituted tetrazoles feature nitrogen evolution by rate-limiting breakdown of intermediate azidoazomethines and azodiazao compounds, respectively,67 the activation parameters have been reported.

Transition states for rate-limiting elimination of nitrogen on unimolecular thermal decomposition of methyl and ethyl azide have been defined by application of Pulay’s SQMFF method.68

\section*{Alcohols}

The gas-phase unimolecular pyrolysis of 2,4-dimethylpentane-2,4-diol has been found to occur by eliminative formation of acetone, isobutene, and \(\text{H}_2\text{O}\) via a concerted six-membered cyclic transition state (Scheme 10).69 Single-pulse shock tube studies of the eliminative decomposition of ethoxy compounds have also been reported.70

\begin{center}
\includegraphics[width=0.5\textwidth]{scheme_10.png}
\end{center}

\textbf{Scheme 10}

\section*{Other Pyrolytic Reactions}

\textit{Ab initio} and density functional calculations of the thermal \textit{syn} elimination transition states for \(E_i\) reaction of organic amine oxide, sulfoxide, and phosphoxide have confirmed the expected planar geometry and known order of reactivity.71
AM1 calculations on an expected retroene-type propene elimination from allylphosphines have revealed that the rigid phosphalkene character of the transition state causes it to be easily distorted and destabilized by substituents on the phosphorus atom; this can favour competing P—C bond homolysis.72

Reactions Catalysed by Biomolecules

The medium-sensitive Kemp elimination reaction (91) \(\rightarrow\) (93) has been used as a probe in an attempt to mimic the microenvironment of enzyme action and the consequent effects on ground-state and transition-state stabilities.73 It has been shown that the reaction is catalysed, with rate accelerations as high as 10\(^6\) and at least 1000 turnovers per basic site, by a subset of several hundred water-soluble polymers prepared by alkylation of polyethyleneimine with different combinations of three contrasting alkyl groups. The proton transfer from carbon is apparently catalysed by polymer amine groups of pK\(_a\) down to 5.7 and exhibiting effective molarities of ca 1000 M in these enzyme-like catalysts (synzymes). It has been pointed out that proton transfer by uncharged amines is relatively insensitive to the solvation or precise positioning of the catalytic base; consequently, high catalytic activity can be attributed to creation of a hydrophobic cavity which enables the substrate to bind in close proximity to a catalytic base embedded in a positively charged framework capable of stabilizing the delocalized negatively charged transition state (92). The most promising synzyme fractions displayed saturation behaviour and Michaelis–Menten kinetics; the effective molarities are exceptionally high for an enzyme model involving general base catalysis.

The stereochemistry of \(\beta\)-elimination reactions catalysed by D-galactonate dehydratase (GalD) and D-glucarate dehydratase (GlucD) enzymes is apparently not dictated by the pK\(_a\)s of the \(\alpha\)-protons of the carboxylate anion substrates.74 It had been observed previously that enzyme-catalysed dehydration initiated by abstraction of the \(\alpha\)-proton (pK\(_a\) > 29) from a carboxylate anion substrate usually proceeds via \(\text{anti}\) elimination, whereas \(\text{syn}\) elimination occurs when the proton is \(\alpha\)- to an aldehyde, ketone, or thioester and correspondingly more acidic (pK\(_a\) < 25).

Alternative mechanisms for the OH transfer process in enzyme–coenzyme B\textsubscript{12}-catalysed dehydration of 1,2-dihydroxyethane, to give acetaldehyde and water, have been explored using \textit{ab initio} MO calculations.75 Transfer within an (HOCH–CH\(_2\)OH\(^+\)) radical was ruled out because the activation energy is too high, and no intermediate bridge structure could be found to facilitate conversion of 1,2-dihydroxyethyl cation (if it could be formed from the radical) to 2,2-dihydroxyethyl cation. The radical cation (HOCH–CH\(_2\)OH\(^+\)) transformed rapidly to a stable
hydrogen-bonded hydrate of the *anti*-vinyl alcohol radical cation (H₂O ⋯ HOCH–CH₂)⁺, which is an acetaldehyde precursor.

β-Elimination catalysed by the N-terminal domain of DNA polymerase β, whereby deoxyribose 5-phosphate is excised from DNA, has been the subject of a modelling study.⁷⁶ Intermediate Schiff’s bases formed through Lys-68 or Lys-72 may be deprotonated at C(2)’ by His-34 or water, respectively, with stabilization of the phosphomonoester leaving group by Lys-35 in either case.

\[
\text{MeO} \quad \begin{array}{c}
\text{N} \\
\hline
\text{B} \\
\text{A}
\end{array} \\
\text{Y}
\]

(94)

\(\text{a; A = CO}_2\text{H, B = H, Y = NHC(O)CH}_2\text{Br} \)
\(\text{b; B = CO}_2\text{H, A = H, Y = NHC(O)CH}_2\text{Br} \)

\[
\begin{array}{cccccc}
\text{Se} & \text{O} & \text{R} & \text{MeO} & \text{X} & \\
& & & & & \\
& & & & & \\
\text{MeO} & \text{R} & \text{SeOH}
\end{array}
\]

(95)

\[
\begin{array}{cccccc}
\text{H} & \text{O} & \text{Se} & \text{R} & \text{MeO} & \text{X} \\
& & & & & \\
& & & & & \\
\text{MeO} & \text{SeOH} & \text{R}
\end{array}
\]

(96)

\(\text{a; R = CO}_2\text{H, X = NO}_2 \)
\(\text{b; R = CH}_2\text{OH, X = NO}_2 \)
\(\text{c; R = CH}_3, \text{ X = NO}_2 \)
\(\text{d; R = H, X = NO}_2 \)
\(\text{e; R = H, X = H} \)

Monoclonal antibodies raised against proline derivatives (94a) and (94b) have been used to catalyse the selenoxide *syn*-elimination reaction (95) → (97). It was reasoned that the flexible selenoxide (95) would be constrained within the low dielectric
environment in a conformation conducive to formation of the planar five-membered pericyclic transition state (96) which is less polar than the initial state. The catalytic activity of the antibodies generally increases with decreasing use of the substituent α- to the selenoxide moiety (R = CO₂H < CH₂OH < CH₃ < H).

\[\text{[2,3]-sigmatropic reaction}] \]

\[\text{Cope elimination of N-oxide (99) to dimethylhydroxyamine and 4-methoxystyrene (101).} \]

Monoclonal antibodies generated against hapten (102) have effected rate enhancement of ca. 10³ over the uncatalysed reaction, largely through reduction of activation enthalpy, and displayed the expected Michaelis–Menten kinetics and inhibition by (102). For reaction of the deuterated substrate (99)-2,2-d₂ the kinetic isotope effect \(k_{\text{cat H}}/k_{\text{cat D}} = 2.78 \). Change of reaction medium from water to organic solvents, DMF and 1,4-dioxane, also accelerates the uncatalysed reaction, mainly by lowering the enthalpy of activation. A crude enzymic preparation from microorganisms has also been used to induce Cope elimination reaction of N-oxides derived from quaternary ammonium surfactants.

The enzyme-catalysed cyclization of (R)-[9-²H₁, ³H₁]geranyl diphosphate to (4S)-limonene has been found to terminate predominately by re-facial, anti proton elimination at the cis methyl group of the intermediate (3S)-linalyl diphosphate.
Elimination Reactions in Synthesis

Review articles of synthetic importance have featured: eliminations involving carbon–halogen bonds and leading to highly strained rings,81 elimination and addition–elimination reactions,82 enol ether formation from unsaturated acetals,83 and the Wittig reaction and related methods.84

The mechanism of the indirect Wittig reaction has been explored85 by investigating the stereochemistry of base promoted reaction of 1,2-hydroxyphosphonium salts (106a,b). The stereoisomeric salts, which were obtained in a 92 : 8 ratio by hydrolysis of stereoisomeric 1,2-oxaphosphetane intermediates (107a,b) formed on reaction of salt free ylide (104) and aldehyde (103), react smoothly with DBU to form stereoisomeric alkenes (105) and in the same proportions ($Z/E = 93 : 7$) as for the direct Wittig reaction. In the absence of any evidence of fragmentation–recombination it has been calculated that the salts (106) re-form (107) via the corresponding betaines and that the stereochemistry of the indirect Wittig reaction is controlled at the initial 2 + 2-cycloaddition stage.

\[
\text{RCO} \xrightarrow{\text{Ph}_3\text{P}=\text{CHCH}_3\ (104)} \text{toluene, } -78\ ^\circ\text{C} \xrightarrow{\text{R} = \text{CH}_2\text{OC}_6\text{H}_4\text{Br}} \text{R} \text{CHO}
\]

The Curtin–Hammett principle has been invoked86 to explain the high Z-selectivity observed on synthesis of 1-chlorovinyl sulfoxides (110) by Horner–Wittig reaction between aldehydes and lithiated anions (108) of [[α-chloro)sulfinylmethyl]diphenylphosphine oxides. It is argued that there is fast equilibrium between Horner–Wittig adducts (109a) and (109b) and that $k_Z \gg k_E$ applies because of the build-up of steric repulsion in (109b) between the sulfinyl substituent [S(O)R1] and R2 as the eclipsed conformation is approached.

A kinetic study of the reaction of trialkylphosphites with mucochloric acid has established that this unusual variant of the Arbuzov reaction proceeds with elimination of both alkyl halide and HCl at the second stage.87

α,β-Epoxysulfones (111), on treatment with base, have been found to undergo a new variant of the Ramberg–Bäcklund reaction and thereby form allylic alcohols (113).88
The reaction (Scheme 12), which is believed to proceed by 3-exo-tet ring opening via a strained 1-hetero-4-thiaspiro[2.2]pentane transition state, has been applied to form a range of mono-, di- and tri-substituted allylic alcohols.

Readily available allylic and benzylic trichloromethyl sulfoxides undergo an unusual base-induced β-elimination of chloroform, with formation of the corresponding α,β-unsaturated sulfine, under mild conditions at room temperature; the procedure has been applied to form vinylthioaldehyde S-oxides and vinylthioketone S-oxides.89 N-Sulfinylamines (115) have likewise been prepared by β-elimination of chloroform from trichloromethanesulfinamides (114).90 The reaction is promoted rapidly at room temperature by pyrrolidine and Et$_3$N and the sulfinylamines (115) can be trapped by o-phenylenediamine (116), to give benzothiadiazole, before desulfonative hydrolysis occurs.
Preliminary results on the enantioselective formation of sulfur and nitrogen medium-sized heterocycles by base-induced ring opening of hetero-oxabicyclic [3.2.1] and [3.3.1] systems have been reported.91 The reaction involves a deprotonation–C—O bond elimination sequence. The kinetics and mechanism of gas-phase unimolecular elimination reactions of some substituted aminoazoles have been studied as an aid to heterocycle synthesis.92

Other Reactions

3-Hydroxythietane derivatives (117b–g) have been shown to undergo eliminative ring cleavage in aqueous sodium hydroxide at a rate which is dependent on the substituent (H or Ph) at the 3-position and the oxidation state of the ring sulfur.93 This retro-aldol reaction occurs 4×10^4–5×10^5 times faster than for open-chain analogues; and it has been estimated that the corresponding relief of strain energy (between 41 and 33%) is much greater than the 26% for alkene-forming eliminations of cyclobutanes. It has been argued that the degree of ring cleavage is greater in the transition state for thietane than for cyclobutane ring opening. Consistent with this view are the relative sensitivities to α-phenyl substitution and the uniformly positive values of ΔS^\ddagger found for the 3-hydroxythietanes. The deuterium isotope effect (1.7) found for reaction of (117e) in NaOD–D$_2$O suggests that protonation of the carbon leaving group is concerted with ring cleavage.

\[
\begin{align*}
\text{RNH}_2 \quad \text{O} \quad \text{CCl}_3 & \quad \xrightarrow{-\text{CHCl}_3_{\text{base}}} \quad \text{RN=S} \quad \text{O} \quad \xrightarrow{(116)} \quad \text{N} \quad \text{S} + \text{RNH}_2 + \text{H}_2\text{O} \\
\text{(114)} & \quad \text{(115)}
\end{align*}
\]

The predictive capabilities of results of theoretical calculations of isotope effects have again been questioned,94 following an experimental and theoretical study of the decarboxylation of 3-carboxybenzisoxazole at room temperature (Kemp’s reaction). The experimentally determined ^{15}N isotope effect in acetone is 1.0312 ± 0.0006 and the ^{13}C isotope effect (1.0448, 1.0445, 1.0472, and 1.0418 in 1,4-dioxane, acetonitrile, DMF, and water, respectively) is independent of solvent polarity even though the reaction rate is markedly solvent dependent. Theoretical models at the semiempirical (AM1, PM3, SAM1) and \textit{ab initio} (up to B3LYP/6–31+ + G**) levels were all unable to predict the experimental results quantitatively.
Results of a PM3 semiempirical study of the quaternary benzencesulfonamide salt of trans-3-(hydroxymethyl)-2-phenyl-1-methylpyrrolidine indicate that it fragments in a stepwise manner via an intermediate benzylic cation. The unexpected formation of a ring-opened sulfonamide rather than the expected tosylate ester on reaction of the 2-aryl-3-hydroxymethylpyrrolidine with R’SO₂Cl is thereby explained.⁹⁵

Thermal cleavage of 4-azido-2-pyrrolinones has been modelled at the MP2/6–31G* and MP4SDQ/6–31G*/MP2/6–31G* levels with allowance for electrostatic effect of the solvent.⁹⁶ The favoured route is rate determining expulsion of N₂ from the trans conformer of the reactant, to give an azirine intermediate from which a zwitterion forms in a concerted manner. Electron donor groups at C(3) and C(5) and alkyl groups at N(1) in the pyrrolidine ring favour electrocyclic closure of the zwitterion to a β-lactone, through cooperative torquoelectronic and steric hindrance effects. Stabilization of the zwitterion by solvent increases the energy barrier for competing fragmentation.

It has been established that competitive charge-remote and anion-induced fragmentation pathways occur during the collision induced loss of C₃H₆, C₄H₈, and C₆H₁₂ from non-8-enoate anion.⁹⁷

A study of the decomposition of β-hydroxy-N-chloroamines in aqueous medium has established that pre-equilibrium formation of the conjugate alcoholate is a prerequisite feature of the competing fragmentation and intramolecular elimination paths (Scheme 13).⁹⁸ A very high effective molarity (EM = 2 × 10⁵ M) has been estimated for the intramolecular process, which cannot occur in the case of (N-chloro)butylethanolamine. For reaction of (N-chloro)ethylethanolamine k_{intra}/k_{frag} = 6.1 and the solvent isotope effect (k_{OH⁻}/k_{OD⁻})_{obs} = 0.68 is consistent with pre-equilibrium deprotonation followed by a unimolecular reaction in which there is no participation by solvent.

\[
\begin{align*}
\text{R}^+\text{N}^+\text{OH} + \text{HO}^- & \rightleftharpoons K_d/K_w \text{H}_2\text{O} \\
\text{X}^- + \text{H}^+\text{C}=\text{N}^+\text{OH} & \xrightarrow{k_{intra}} \text{H}_2\text{O} \text{fast} \\
\text{H}_2\text{O} & \xrightarrow{+} \text{CH}_2\text{O} + \text{Cl}^- + \text{R}^-\text{N}^-\text{CH} = \text{H}_2\text{O} \text{fast} \\
\text{RNH}_2 & + \text{C}=\text{O} \xrightarrow{+} \text{H}^\text{N}^-\text{CH} = \text{H}_2\text{O} \text{fast} \\
\end{align*}
\]

\text{SCHEME 13}
Grob-type fragmentations induced by nucleophilic attack of NH$_2^-$ on the carboxyl group of quaternary β-aminoaldehydes and β-aminoketones (119) have been reported (Scheme 14).99 N-(2-Imino-1-oxopropyl)glycine is formed as an intermediate in the base-catalysed decomposition of (N-X)-Ala-Gly.100

\[
\begin{align*}
\text{PhNHCOC} & \quad \text{Br}^- \\
\text{R}^1 \quad \text{O} \quad \text{R}^2 \quad \text{NMe}_2\text{Bzl} & \quad \text{Br}^- \\
\text{(119)} & \quad \text{Nu}^- \\
+ \quad \text{R}^3 & \quad \text{R}^3
\end{align*}
\]

The oxanilic hydrazide and tetrazine formed when N-aryl-2-oxo-2-phenylamino-ethanehydrazonyl chloride (120) is treated with Et$_3$N in 1,4-dioxane–water (4 : 1, v/v) at 25 °C arise from the intermediate nitrilium amide (121).101 A kinetic study has now established that (121) is formed from (120) according to Scheme 15. The second-order rate constant $k_{\text{obs}} = 0.37\sigma^V - 0.77$, where $\rho_{\text{obs}} = 0.37 = \rho_a + \rho_1$; since $\rho_a \approx 1.18$ [cf. that determined for acid dissociation of PhNHCON(CN)=NNHC$_6$H$_4$X], it has been possible to evaluate $\rho_1 = -0.81$, which compares favourably with the value $\rho = -0.63$ for C—Br heterolysis of PhC(Br)=NNHC$_6$H$_4$X in the same solvent.

\[
\begin{align*}
\text{PhNHCOC} & \quad \text{Cl} \\
\text{NNHC}_6\text{H}_4\text{X} & \quad \text{Et}_3\text{N} \quad K_a \quad \text{fast} \\
\text{(120)} & \quad \text{PhNHCOC} \quad \text{Cl} \\
\text{NNHC}_6\text{H}_4\text{X} & \quad \text{Et}_3\text{NH} \quad k_1 \quad \text{slow} \\
\text{PhNHCOC}^{+} & \quad \text{NNC}_6\text{H}_4\text{X} \quad \text{PhNHCOC}^{+} \quad \text{NNC}_6\text{H}_4\text{X} \quad \text{Cl}^- \\
\text{(121)} & \quad \text{PhNHCOC}^{+} \quad \text{NNC}_6\text{H}_4\text{X} + \text{Cl}^-
\end{align*}
\]

Scheme 15

Results of an *ab initio* study of H$_2$ elimination from protonated formaldehyde and formaldimine suggest that the process is concerted, whereas a two-step elimination mechanism applies in the case of protonated thioformaldehyde.102

Ring opening–ring closure sequences have been proposed to account for formation of 4-((trifluoromethyl)imidazoles on base-promoted trifluoromethyl elimination from 4,4-bis(trifluoromethyl)-5-hydroxyimidazoline.103

Kinetics of oxidative deamination and decarboxylation of D,L-leucine by acidic permanganate in presence of silver ion have been interpreted104 and the formation of
monoaminovinyl derivatives via aminolysis of activated vicinal dihalovinyl compounds has been studied.¹⁰⁵

References

CHAPTER 13

Addition Reactions: Polar Addition

P. KOČOVSKÝ

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK

Reviews ... 391
Electrophilic Additions ... 391
 Halogenation and Related Reactions 393
 Additions of ArSX, ArSeX, and Related Reactions 397
 Additions of Hydrogen Halides and Other Acids 397
 Additions of Electrophilic Carbon 400
 Additions of Electrophilic Nitrogen and Oxygen 402
 Additions Initiated by Metals and Metal Ions as Electrophiles 405
 Miscellaneous Electrophilic Additions 409
Nucleophilic Additions ... 410
 Additions to Multiple Bonds Conjugated with C=O 410
 Additions to Multiple Bonds Activated by Other Electron-withdrawing Groups 416
 Additions of Organometallics to Activated Double Bonds 420
 Miscellaneous Nucleophilic Additions 422
References ... 424

Reviews

During the coverage period of this chapter, reviews have appeared on the following topics: investigation of the early steps in electrophilic bromination through the study of the reaction with sterically encumbered alkenes;\(^1\) new findings in bromination of alkenes;\(^2\) addition of hydrogen halides to vinylc compounds;\(^3\) reactions of alkynes with organometallic reagents (carbometallation and hydrometallation);\(^4\) asymmetric addition of amines to \(\alpha,\beta\)-unsaturated esters and nitriles in the enantioselective synthesis of \(\beta\)-amino acids;\(^5\) asymmetric synthesis of \(\beta\)-amino acids via Michael addition of chiral metal amides (namely Li amides);\(^6\) double Michael additions and other domino reactions and their application to natural product synthesis;\(^7\) asymmetric ylide reactions (epoxidation, cyclopropanation, aziridination, olefination and rearrangements);\(^8\) nucleophilic addition–oxidation reactions of \(\sigma^3\), \(\lambda^3\)-dialkyl(silylamino)phosphines with mono- and di-substituted alkynes;\(^9\) and antibody-catalysed cationic reactions—re-routing of chemical transformations.\(^{10}\)

Electrophilic Additions

Carbon 1s ionization energies of \(\mathrm{CH}_2\equiv\mathrm{CH}_2\), \(\mathrm{MeCH}\equiv\mathrm{CH}_2\), and \(\mathrm{Me}_2\mathrm{C}\equiv\mathrm{CH}_2\) have been measured in the gas phase at high resolution using synchrotron radiation and analysed...
by means of *ab initio* calculations. For the first time, the resolution was high enough to
assign energies to the non-equivalent cations in propene and methylpropene. A linear
correlation was found between the ionization energies and activation energies for
addition of electrophiles HF, HCl, HBr and HI to these molecules. The correlation
revealed that both reactivity and regioselectivity are quantitatively related to core-
ionization energies. Theoretical analysis of the core-ionization energies showed that the
difference between ionization energies for the doubly bonded carbons originate from
the charge distribution in the non-ionized molecule. Theoretical analysis of the
transition state for addition of HCl to propene and 2-methylpropene indicated that a
significant portion of the difference between Markovnikov and anti-Markovnikov
addition is also due to the charge distribution in the initial state rather than to different
ability of the molecule to delocalize the added charge in the transition state. The
increase in reactivity with the number of methyl groups also appears to be strongly
influenced by the initial-state charge distribution.\(^{11}\)

The distinction between electrophilic and electron-transfer mechanisms of addition
reactions to vinyl double bonds of ArX−CH=CH₂ (X = S, O, Se) has been achieved by
studying substituent effects. Specifically, the effects of *meta* and *para* substituents on
the rates of electrophilic additions correlated with Hammett \(\sigma\) values, while ionization
of the substrates to the corresponding radical cations correlates with \(\sigma^+\). The
significance of the respective correlations were confirmed by statistical tests. The
\(\sigma_{(electrophilic)}/\sigma^+_{(ET)}\) dichotomy is in accord with the conventional paradigm for
\(\sigma/\sigma^+\) correlations and further support has been found by *ab initio* calculations.
Interestingly, the application of this criterion to the reactions of aryl vinyl sulfides and
ethers with tetracyanoethylene indicates that cyclobutanes are formed via direct
electrophilic addition to the electron-rich alkene rather than via an electron-transfer
mechanism.\(^{12}\)

The cyclopropyl group embedded in the bicyclo[2.2.2]octene system (1) has been
reported to affect the syn/anti selectivity of electrophilic additions to the C=C bond in
the same way as do electron-withdrawing groups (Table 1).\(^{13,14}\) This behaviour is in
sharp contrast to the conventional viewing of the cyclopropane ring as a strongly
electron-donating functionality. On the other hand, the *exo*-methylene analogue (2)
suggests electron-donating behaviour for the cyclopropane ring. For comparison, the
authors have also studied the corresponding cyclobutane derivative (3), which proved to
exhibit little stereo-differentiation. The previously observed *anti*-facial selectivity for
(2)\(^{15–18}\) was attributed to the out-of-phase interaction of the \(\pi\) and Walsh orbitals;
apparently, the corresponding interaction is irrelevant in the case of (1). Electronic
factors governing stereofacial selectivity in Michael-type additions\(^{19}\) will be discussed
in the section on nucleophilic additions.

The order of redox potentials for oxidation of (4) (F > Cl ≈ Br) has been reported and
found most consistent with a detectable resonance contribution through the \(\sigma\)-
framework. The most difficult oxidation of (5) (despite the fluoro substituent being one
carbon atom more removed from the double bond) is consistent with the Whiffen effect
(\(\sigma\)-hyperconjugative destabilization proceeding through two pathways is more than
double the same effect through one pathway), in consonance with the AM1 prediction.
The facial selectivity of epoxidation and diazietidine formation from (4) proved to be in
Table 1. \(\text{syn/anti} \) selectivity of the electrophilic attack on (1) (3)

<table>
<thead>
<tr>
<th>Alkene</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>Reagent</th>
<th>(\text{syn : anti})</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>H</td>
<td>H</td>
<td>OsO(_4)</td>
<td>95 : 5</td>
<td>13</td>
</tr>
<tr>
<td>(1)</td>
<td>H</td>
<td>H</td>
<td>MCPBA</td>
<td>92 : 8</td>
<td>13</td>
</tr>
<tr>
<td>(1)</td>
<td>H</td>
<td>H</td>
<td>(\text{B}_2\text{HO}_6)</td>
<td>74 : 26</td>
<td>14</td>
</tr>
<tr>
<td>(1)</td>
<td>CN</td>
<td>H</td>
<td>OsO(_4)</td>
<td>98 : 2</td>
<td>13</td>
</tr>
<tr>
<td>(1)</td>
<td>CN</td>
<td>H</td>
<td>MCPBA</td>
<td>82 : 12</td>
<td>13</td>
</tr>
<tr>
<td>(1)</td>
<td>H</td>
<td>CN</td>
<td>OsO(_4)</td>
<td>> 99 : 1</td>
<td>13</td>
</tr>
<tr>
<td>(1)</td>
<td>H</td>
<td>CN</td>
<td>MCPBA</td>
<td>94 : 6</td>
<td>13</td>
</tr>
<tr>
<td>(2)</td>
<td>H</td>
<td>H</td>
<td>OsO(_4)</td>
<td>12 : 88</td>
<td>13</td>
</tr>
<tr>
<td>(2)</td>
<td>H</td>
<td>H</td>
<td>(\text{CCl}_2)</td>
<td>44 : 56</td>
<td>15, 16</td>
</tr>
<tr>
<td>(2)</td>
<td>H</td>
<td>Me</td>
<td>(\text{CCl}_2)</td>
<td>34 : 66</td>
<td>15, 16</td>
</tr>
<tr>
<td>(2)</td>
<td>Me</td>
<td>Me</td>
<td>(\text{CCl}_2)</td>
<td>5 : 95</td>
<td>15, 16</td>
</tr>
<tr>
<td>(3)</td>
<td>–</td>
<td>–</td>
<td>OsO(_4)</td>
<td>40 : 60</td>
<td>15, 16</td>
</tr>
<tr>
<td>(3)</td>
<td>–</td>
<td>–</td>
<td>MCPBA</td>
<td>42 : 78</td>
<td>15, 16</td>
</tr>
</tbody>
</table>

the order \(\text{Cl} > \text{F} > \text{Br} \); (5) was found to be less selective for these reactions, which is not consistent with the Cieplak effect. The authors argue that both steric and electronic factors contribute to these results.\(^{20}\)

Halogenation and Related Reactions

The kinetics and the products of bromination of several substituted stilbenes with \(\text{Bu}_4\text{N}^+\text{Br}^- \) have been investigated in aprotic solvents at different temperatures and concentrations. Stilbenes bearing electron-withdrawing or moderately electron-donating substituents gave stereospecifically the \text{anti} addition products; the reaction followed a second-order rate law and inverse kinetic isotope effect \(k_\text{H}/k_\text{D} = 0.85 (\pm 0.05) \) was
found for the bromination of cis-stilbene. By contrast, the reactions of cis- and trans-4,4′-dimethoxystilbenes yielded mixtures of meso- and d,l-dibromides in both CHCl₃ and 1,2-dichloroethane. The rate constants (k_{Br_2}) measured for the latter alkenes deviate considerably from the Hammett correlations and added Br⁻ had a significant effect on the rates. The reactions of these activated stilbenes with molecular Br₂, carried out at low [Br₂], followed a mixed second-order–third-order rate law. The kinetics and product distribution from the bromination of stilbenes bearing electron-withdrawing or moderately electron-donating substituents were interpreted on the basis of the known mechanism involving a product- and rate-determining nucleophilic attack by Br⁻ on the alkene–Br₂ π-complex. The data related to the bromination of more activated methoxystilbenes were rationalized via the ionization of the initially generated 1:1 π-complex to a bromocarbenium–bromide ion pair competing with the formation of a bromonium–tribromide ion pair and with the nucleophilic attack by Br⁻ (even in aprotic solvents).²¹

An L-shaped arrangement of bromine atoms has been identified by spectroscopy and theoretical studies on the 2:1 π-complex (8) generated by electrophilic bromination of tetraneopentylethylene (6). The reaction stops at the stage (8) which, for the first time, allowed its detection and determination of its thermodynamic parameters by UV spectroscopy (Scheme 1). Theoretical calculations predict an alkene–Br₂·Br₂ rather than the Br₂–alkene–Br₂ structure.²²

![Scheme 1](image)

Discrete and continuum models for the solvent involvement have been employed to steady equilibrium and non-equilibrium solvation effects on bromination of ethylene. Two mechanisms were identified that lead to transition states of different symmetry. One mechanism operates in the gas phase and non-polar solvents. The second one, that leads to the typical C_{2v} transition state, holds in medium-to-very polar solvents. In water, the solvent molecules participate actively and non-equilibration solvations effects proved to be substantial and larger than those previously reported for the S_N2 reaction.²³
The kinetics of bromination of (9a–c; L = H or D) in CH₂Cl₂ (Scheme 2) have demonstrated that the reaction is always second order in Br₂ and first order in alkenes with the following constants \(k_3 \): (9a), \(1.7 \times 10^7 \); (9b), \(8.0 \times 10^4 \); (9c), 52 dm\(^6\) mol\(^{-2}\) s\(^{-1}\) (L = H). Alkene (9a; L = H) gave a mixture of dibromide (10a) and vinyl bromide (11a) in a ratio changing from 99:1 at 10\(^{-2}\) mol dm\(^{-3}\) to 5:95 at 10\(^{-4}\) mol dm\(^{-3}\) Br₂ and alkene. The \(k_3 \) value proved to be independent of the reagent concentrations and of the extent of proton loss from the intermediate, showing that the last step was not rate limiting and the formation of the intermediate was completely rate determining.\(^{24}\)

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 \\
9a & \quad \text{R}^1 = \text{R}^2 = \text{H} \\
9b & \quad \text{R}^1 = \text{CF}_3, \text{R}^2 = \text{H} \\
9c & \quad \text{R}^1 = \text{R}^2 = \text{CF}_3
\end{align*}
\]

(Scheme 2)

Bromine complexes of ethylene and cyclopropene have been isolated in argon matrices and studied by IR spectroscopy and \textit{ab initio} methods. Two methods, namely MP2 and BLYP, were compared and found suitable for the calculation of IR spectra as they exhibited only minor differences.\(^{25}\)

Bromination of tetrafluorobenzobarrelene with Br₂ has been reported to produce stereoisomers of the annulated tricyclic dibromide. However, when pyridine, 15-crown-5, or Me₂S were present, the \textit{trans}-dibromide was obtained as the main product. MNDO calculations suggested that different cationic intermediates are responsible for the two pathways: cyclic bromonium ions lead to the former, whereas open cations give rise to the latter product.\(^{26}\)

The course of addition reactions of ROH–XeF₂ to alkenes has been elucidated using norbornene, 2-methylpent-2-ene and hex-1-ene as model substrates. It turned out that the alkoxyxenon fluoride intermediates (ROXeF) can react either as oxygen electrophiles (initially adding alkoxy substituent) or as apparent fluorine electrophiles (initially adding fluorine), depending on the reaction conditions. Simple addition of poorly nucleophilic alcohols to norbornene was also observed in certain instances. Selectivity between the various reaction pathways (simple fluorination, alkoxyfluorination, or alcohol addition) proved to be sensitive to various reactions conditions, especially solvent, temperature, and catalyst.\(^{27}\)

A formal equivalent of Woodward reaction has been developed, which is based on the addition of hypervalent iodine species (Scheme 3).\(^{28}\)
The course of electrophilic additions (NBS, BrN₃ or IN₃) to the tetrahydropyridazine moiety of (12) has been elucidated and shown to be controlled by conformational factors (Scheme 4).²⁹

Electrophilic iodoiodination of fluoroalkenes (Scheme 5) has been reported to be the preferential pathway when carried out with ICl–HF in the presence of BF₃. By contrast, if BF₃ is absent, the reaction turns into iodesochlorination as the main pathway.³⁰

NaH-mediated iodoaziridination reaction of N-allyl tosylamides (13) has been developed and shown to exhibit excellent anti stereospecificity (Scheme 6).³¹
Additions of ArSX, ArSeX, and Related Reactions

Cis- and trans-di-t-butylthiiranium tetrafluoroborates (14) and (15) were generated from cis- and trans-di-t-butylethylene, respectively (Scheme 7), on reaction with methylbis(methylthio)sulphonium tetrafluoroborate in liquid SO₂ at −78 °C. Their reaction with water was studied and different reaction modes were found.⁴²

Steric protection by the bulky 2,4,6-tri-t-butylphenyl (TTBP) group of the selenium atom in the episelenonium ion intermediate (17), generated in situ from (16), has been utilized in the selective formation of carbocyclic compounds (17)→(19)→(20) and (21)→(22). The selenophilic attack (17)→(18), leading to isomerization, can thus be avoided (Scheme 8).³³

Additions of Hydrogen Halides and Other Acids

A linear correlation has been found between the ionization energies and activation energies for addition of HF, HCl, HBr, and HI to CH₂=CH₂, MeCH=CH₂, and Me₂C=CH₂;¹¹ for a more detailed discussion, see the introduction to this section.

The bimolecular reaction mechanism for adding HCl to CH₂=CH₂ has been studied by a number of advanced quantum chemistry methods. The transition-state structures and energy were examined in detail; high-level calculations support the existence of an intimate association of chloride anion and a bridged ethyl cation, with some covalent bonding retained between chloride and hydrogen. A tunnelling correction of 1 kcal mol⁻¹ in the reaction barrier was obtained by the Bell equation.³⁴ Another theoretical study of the gas-phase addition of HF and HCl to CH₂=CH₂, using the ab initio MP2(full)/6–31G* method, has also been reported.³⁵

A selected ion flow tube has been used to study the reaction of C₂H₇O⁺, generated by the collision of H₃O⁺ with C₂H₄. Reactions of the latter species with EtOCHO, Pr′OH, AcOH, toluene, CH₃CH=O, allene, MeOH, cyclopropane, H₂O and C₂H₆ were studied to obtain information on the isomeric forms of the C₂H₇O⁺ ions and the data were
compared with those previously reported on the reactivity of other isomeric forms, namely (Me₂OH)⁺ and (EtOH₂)⁺, with the same neutral reactants. The rate coefficient data turned out to show a very strong correlation between the reactivities of (EtOH₂)⁺ and H₃O⁺–C₂H₄, indicating that the associated ions are similar in form to these strongly bonded species, and is consistent with conclusions based on calculated potential energy surfaces (see below). The agreement with the product distribution is less conclusive. Generally, where proton transfer is exothermic for the strongly bonded species, it occurs rapidly for the associated ions. Where this transfer is very endothermic, association occurs for the associated ions, as it does for the strongly bonded species. In intermediate cases, the associated ions exhibit some additional transformations that are either endothermic for the strongly bonded species in their ground vibrational state or can be considered as ligand switching, indicating that the associated ions have access to the weak ligand-bonded form. These findings suggest that the associated ions are higher energy forms of protonated EtOH with access to the weak ligand-bonded form. The data further imply that the reaction is controlled by an early barrier giving a set of rate coefficients that are independent of whether the isomer is the strongly bonded form or produced in the association reaction, but that the products are controlled by the energy in the isomer and by the dominant conformation of that isomer.

Another group has explored the potential surface of C₂H₇O⁺ using the G2 procedure, which led to the identification of four stable structures: protonated species (C₂H₅OH₂)⁺ and (Me₂OH)⁺, and the electrostatic complexes (C₂H₄⋯H⋯O⁺H₂)
and \((\text{CH}_3^+ \cdots \text{HOCH}_3\))$_2$. Experiments conducted using a selected ion flow tube identified the product of the ion-molecule association reaction \(\text{H}_3\text{O}^+ + \text{C}_2\text{H}_4\) as \((\text{C}_2\text{H}_5\text{OH}_2)^+\) (protonated ethanol).\(^{37}\)

The \(^{13}\text{C}\) NMR study of the polymerization of pent-1-ene with 95% \(\text{H}_2\text{SO}_4\) points to the carbenium-ion mechanism, which involves the formation of sulfuric acid esters and their further heterolytic dissociation to generate aliphatic carbenium ions, whose steady-state concentration is low. By contrast, polymerization in 60–70% \(\text{H}_2\text{SO}_4\) proved to occur via oxonium (rather than carbenium) ions.\(^{38}\)

The acid-catalysed addition of \(\text{AcOH}\) and \(\text{MeOH}\) to the vinylcyclopropane moiety of the homotroplidene system of tetracyclo[5.3.2.0\(^2\).10\(^{3}\).6]dodeca-4,8,11-triene (23) afforded a kinetic mixture of 9-AcO and 9-MeO-tricyclo[4.3.3.0\(^2\).5]dodeca-3,7,10-trienes, respectively, in which the \(\beta\)-derivatives greatly predominated over their less sterically congested \(\alpha\)-counterparts.\(^{39}\) Studies with \(\text{AcOD}\) excluded a relationship between the stereochemistry of \(\text{D}^+\) (and \(\text{H}^+\)) attack and the nucleophilic trapping of the intermediate carbocation, indicating a stepwise process that involves (1) proton attack on (23) generating a cyclopropyl carbocation and (2) cleavage of the latter species with tight assistance by the nucleophilic solvent to give the final product with high \(\beta\)-diastereoselectivity. By contrast, addition of \(\text{Cl}_2\text{C}=\text{C}=\text{O}\) turned out to occur at the cyclobutene moiety.\(^{39}\)

![Chemical Structures](image)

The solvent and temperature effect on the \(\pi\)-route cyclization of endo-bicyclo[3.3.1]-non-6-ene-3-carboxylic acid (24) has been studied.\(^{40}\)

The reaction of (25; \(\text{R} = \text{Pr}^+\)) with \(\text{HCl}\) has been found to give (26; \(\text{X} = \text{Cl}\)) in quantitative yield as a result of transannular cyclization (Scheme 9); similar reactions occurred with \(\text{H}^+–\text{MeOH}\) or \(\text{H}_3\text{O}^+\). Activation parameters, obtained by investigating the cyclization of (25) at different temperatures, are \(\Delta H^* = 21 \pm 1 \text{ kcal mol}^{-1}\) and \(\Delta S^* = -9 \pm 2 \text{ cal mol}^{-1} \text{ K}^{-1}\). These results are compatible with an \(\text{Ad}_{\text{E}}\text{2}\) mechanism.\(^{41}\)

![Scheme 9](image)

\(\text{R} = \text{Pr}^+, \text{Me}; \text{X} = \text{Cl, MeO, OH}\)
Whereas (29) reacts with sulfides RSH via a radical mechanism to afford the cyclic product (30), in the presence of elemental sulfur the reaction takes an ionic course, giving the expected 1,2 adduct (31).

![Diagram of reaction products (30), (29), and (31)]

The first examples of the highly enantioselective protonation of silyl enol ethers, such as (32), have been reported (68–94% ee), using a complex of SnCl₄ and the monomethyl ether of BINOL (R)-(33). In this catalytic cycle, the active catalyst is reprotonated by a bulky phenol (Scheme 10).

![Scheme 10: Reaction of (32) with SnCl₄ and BINOL to form (33)]

Additions of Electrophilic Carbon

The addition of Me₃C⁺ to Me₂C=CH₂ has been investigated in the gas phase and in solution with *ab initio* calculations and Monte Carlo statistical mechanics simulations. The reaction is exothermic by \(\sim 20 \text{ kcal mol}^{-1} \) and proceeds without activation energy in the gas phase. By contrast, solvation introduces a 3–4 kcal mol⁻¹ barrier at a C⋯C separation near 5 Å in CH₂Cl₂, THF, and MeOH. An intermediate with a shallow energy well was found at near 3 Å separation. Implications for sterol biosynthesis were also discussed in this paper.

Kinetics data suggest that the mechanism for the formation of hydrogenated furan from \(\alpha \)-alkenes and formaldehyde involves the reversible addition of protonated formaldehyde to the alkene.

The reaction of a 1:1 mixture of PhOH (34) and linear alkenes with a Lewis acid (AlCl₃) in CHCl₃ at room temperature has been reported to be *ortho*-regioselective, producing \(s \)-alkylphenols (35) in 48–60% yield. By contrast, branched alkenes give exclusively the corresponding \(p-t \)-alkylphenols (36) (80–85%). Addition of increasing amounts of PhOK to the reacting system reduced the protic acidity and promoted *ortho*-
regioselective alkylation in the latter case. These results were tentatively interpreted in terms of H-bonded templates vs a charge-controlled mechanism.46

\[
\begin{align*}
\text{HO} & \quad \text{R} & \quad \text{R}^' \quad \text{OH} \\
\text{(35)} & \quad & \quad \text{(34)} & \quad \text{R} \\
\end{align*}
\]

Photolysis of \(N\)-(diphenylamino)-2,4,6-trimethylpyridinium tetrafluoroborate (37) generates diarylnitreium ion (38) as revealed by its reaction with electron-rich alkenes (silyl enol ethers and allylsilanes) to give products of substitution at \textit{para}- and \textit{ortho}-positions (39) and (40) (Scheme 11).47

\[
\begin{align*}
\text{Ph}_2\text{N}^+ & \quad \text{Ph} & \quad \text{PhN}^+ \\
(37) & \quad & (38) \\
\end{align*}
\]

\[
\begin{align*}
\text{PhNH} & \quad \text{PhCO} & \quad \text{PhN}^+ \quad \text{NPh} \\
\text{(39)} & \quad & \text{(40)} \\
\end{align*}
\]

Scheme 11

A previously unknown ene reaction of iminium ions with alkynes has been reported (Scheme 12); the parent amines must be of low nucleophilicity for the reaction to occur.48

\[
\begin{align*}
\text{R}^1 & \quad \text{H} & \quad \text{R}^3 \\
\text{R}^2 & \quad \text{N}^+ & \quad \text{R}^3 \\
\text{R}^3 & \quad \text{N}^+ & \quad \text{R}^3 \\
\text{R}^1 & \quad \text{R}^2 & \quad \text{R}^3 \\
\text{R}^1 = \text{Ph, Me} & \quad \text{R}^2 = \text{Me}_3\text{Si, H} & \quad \text{R}^3 = \text{Et, Pr}^i, \text{etc.} \\
\end{align*}
\]

Scheme 12
Substituted furans have been found to undergo vinylogous Mannich-type cyclization to give the \textit{threo}-adducts as the major products (Scheme 13). The effect of solvent (CH\textsubscript{2}Cl\textsubscript{2}, MeCN, THF, and Et\textsubscript{2}O), Lewis acid (ZnCl\textsubscript{2}, BF\textsubscript{3}·Et\textsubscript{2}O, Et\textsubscript{2}AlCl, and 3.0 M LiClO\textsubscript{4}), and temperature (−20 to 40 °C) were examined.49

$$n = 2 \text{ or } 3; \ R = \text{H or Me}$$

\textbf{SCHEME 13}

A stereoselective, Lewis acid-mediated cyclization of 1-substituted-2-naphthols (41) has been reported to produce spirocyclic ketones (43). Evidence has been presented for the involvement of the cyclic aluminium intermediate (42).50

Carbocyclization of a monoepipiselenonium intermediate derived from a diene has been discussed earlier in this chapter (Scheme 8),33 as was the acid-catalysed transannular cyclisation of a bisalkyne (Scheme 9).51

\textit{Additions of Electrophilic Nitrogen and Oxygen}

The addition of NO\textsubscript{2}+ to CH\textsubscript{2}≡CH\textsubscript{2} has been studied in the gas phase by TF-ISR, MIKE and CAD mass spectrometry, complemented by \textit{ab initio} calculations at the MP2/6–31+G* level. The results are believed to provide a clear answer to the principal mechanistic question addressed, demonstrating that the reaction yields an O-nitroso product (presumably CH\textsubscript{3}CHONO+) rather than a C-product.51

Kinetics studies and product analysis of the reaction of 4-R-styrenes (44; R = Me, H, Cl, CF\textsubscript{3}, NO\textsubscript{2}) with HNO\textsubscript{3} in CH\textsubscript{2}Cl\textsubscript{2} showed preferential attack at the C=C bond, while aromatic nitration was negligible. With increasingly electron-withdrawing substituents, the reaction changes from one that is third order in HNO\textsubscript{3} [and gives rise to the 1-arylethyl nitrate (45)] to one which is of higher order in HNO\textsubscript{3} [and affords 2-nitro-1-arylethynitrate (46)]. Both reactions proceed through transition states with
carbocationic character, by initial β-addition of H⁺ and NO₂⁺, respectively. The β-nitro-nitrate (46) is believed to be formed, in part, via a radical pathway.\(^{52}\)

\[
\begin{align*}
&\text{Ar} - \text{CH} - \text{CH}_3 \\
\text{(O)} &\xrightarrow{\text{HNO}_3} \quad \text{(H⁺ attack)} \\
\text{(45)}
\end{align*}
\]

\[
\begin{align*}
&\text{Ar} - \text{CH} = \text{CH}_2 \\
\text{(44)} &\xrightarrow{\text{HNO}_3} \quad \text{(NO}_2^+\text{ attack)} \\
&\text{Ar} - \text{CH} - \text{CH}_2 \\
\text{(46)} &\xrightarrow{\text{O}_2\text{NO}} \quad \text{(NO}_2\text{ attack)}
\end{align*}
\]

Reaction intermediates formed in the nitration of a series of \(\alpha,\beta\)-unsaturated esters, such as (47), with NO₂BF₄ have been reported to exhibit the expected behaviour of \(\alpha\)-carbonyl cations. Three diagnostic reaction types were observed: (1) Ritter reaction; (2) cyclopropane formation from propyl cations; (3) Wagner–Meerwein migration of alkyl groups. Semi-empirical calculations of the relative gas-phase stabilities of the proposed intermediate cations have also been performed.\(^{53}\)

\[
\begin{align*}
&\text{NO}_2^+ \\
\text{(47)} &\xrightarrow{\text{CO}_2\text{Me}} \quad \text{CO}_2\text{Me} \\
\end{align*}
\]

The ene reaction of \(N\)-alkyltriazolinediones (48) with propene, \(\text{trans}\)- and \(\text{cis}\)-butene, and tetramethylethylene has been investigated theoretically with \emph{ab initio} MO calculations. All geometries were fully optimized at the RHF/6–31G* level, followed by MP2/6–31G* and Beckel3LYP/6–31G* single-point energy calculations. A stepwise mechanism, involving an aziridinium imide intermediate (49), has been identified as the lowest energy pathway. The most stable transition structure for the first, rate-limiting step involves a decidedly non-least-motion attack of (48) on the alkene, with methyl group rotation to bring hydrogen in close proximity with the nitrogen of (48) for favourable electrostatic and secondary orbital interactions. Some isomerization of the intermediate (49) appears feasible, while reversion to reactants is less favourable than the product-forming hydrogen transfer. The activation energies decrease in the series from propene to butenes to tetramethylethylene, as the alkenes become more substituted and electron-rich. Kinetics isotope effects (KIE) were computed with the RHF/6–31G* geometries and frequencies, using the Bigeleisen–Mayer equation and the QUIVER programme. The calculated KIE were in reasonable accord with the experimental measurements. The unique stabilizing N···H interaction in the first transition structure, involving both electrostatic and secondary orbital interactions, was proposed as significantly stabilizing the first transition state and contributing to the observed KIE.\(^{54}\)

The addition of \(N\)-methyltriazolinedione to bisadamantylidene (50), that gives the [2 + 2] adduct (53), clearly does not proceed in one step, since aminoaziridinium intermediate (52) was observed to build up during the reaction and its amount correlates
with the overall reaction rate of (53) formation. However, no correlation of the overall reaction rate and any solvent polarity parameters could be found despite the fact that charge-separated intermediates are involved. It was proposed that the zwitterion species (51) is the likely intermediate between (50) and (52), although it could not be directly detected owing to its apparently low concentration. C–H bonding stabilization of both (51) and (52) in CHCl₃ has been suggested as a possible rationalisation for the correlation between the overall rate of (53) formation and the stability of (52) relative to the starting materials.⁵⁵

A full report has now been published on the asymmetric version of Atkinson’s aziridination of activated alkenes.⁵⁶

Vinyl ethers, such as EtOCH=CH₂, EtOCH=CHMe, EtOCH=CHOEt, etc. (with or without an additional oxygen function), have been shown to react with α-peroxy lactones (54) to give mainly the products of stereoselective cycloaddition (55) contaminated by epoxides (56).⁵⁷
Additions Initiated by Metals and Metal Ions as Electrophiles

The hydroboration of 6α- and 6β-hydroxyandrost-4-ene-17-one (57) and (58) has been shown to take place predominantly on the face of the alkene opposite to the allylic OH group (Scheme 14). The same stereochemistry has been observed for 5α-hydroxy-2-enes (59), 5β-hydroxy-2-enes (60), and 1α-hydroxy-2-enes.

Rates of hydroboration of (61; R = Me, Et, Pr, Bu', and Ph) with 9-borabicyclo-[3.3.1]nonane have been elucidated and found to decrease with increasing steric bulk of R; no reaction was observed for R = Pr'. The products (62) are potentially valuable for the asymmetric reduction of prochiral ketones.
Hydrosilylation of hex-1-ene and ethylene with SiH4 occurs in the presence of LiAlH4 as a catalyst. A reaction mechanism involving SiH4 and the alkyl anion, generated by the initial interaction of the olefin with LiAlH4, has been proposed.62

By the action of GaCl3, trimethylsilylacetylene is converted into a strongly electrophilic species that reacts with aromatic hydrocarbons in the Friedel–Crafts fashion (Scheme 15) to generate (63) that can be further reacted with MeLi to afford, after aqueous workup (65).63

\[
\text{Cyclohexene} + \text{HC≡CSiMe}_3 \xrightarrow{1. \text{GaCl}_3, 2. \text{MeLi}} \text{(63)} \quad X = \text{Cl} \\
\text{(64)} \quad X = \text{Me}
\]

SCHEME 15

The addition of substituted allylsilanes (68) to alkynes (66) in the presence of HfCl4 or EtAlCl2–Me3SiCl as Lewis acid catalysts produced the silylated 1,4-dienes (69) regio- and stereo-selectively in high yields in an exclusive trans-fashion (Scheme 16). The relative reactivities within the series are consistent with the involvement of cationic species (67) as intermediates.64

A study of the intramolecular alkoxymercuration of (E)-5-arylpent-4-en-1-ols (70) has indicated that the regioselectivity is closely related to the Hammett constants of the para-substituents on the benzene ring. Large solvent effects on the regioselectivity were also observed (Scheme 17 and Tables 2 and 3). By contrast, the related oxymercuration of β-methylstyrene is 100% α-selective. This comparison shows that the regioselectivity of the intermolecular reaction is controlled by electronic factors, whereas the cyclization is governed by a delicate balance of steric and electronic effects.65

The C–H bond of terminal alkynes (the donor alkynes) (73) can be added to either terminal alkynes (self-coupling) or activated internal alkynes (acceptor alkynes) (74) in the presence of (AcO)2Pd as catalyst and an electron-rich encumbered ligand, tris(2,6-dimethoxyphenyl)phosphine to afford enynes (76) (Scheme 18). The activated internal alkynes (74) for the cross-coupling include those bearing an ester, sulfone, or ketone group. In these cases, the self-coupling is completely suppressed (even at 1 : 1 ratios of donor to acceptor alkyne, although the recommended ratio is 2 : 1 in favour of the acceptor alkyne). This technology was applied to the synthesis of conformationally rigid retinoid analogues.66
Regio- and stereo-selective dimerization of alk-1-yne catalysed by classical and non-classical hydride complexes of Ru(II) and Os(II) stabilized by the tripodal polydentate ligand (Ph₂P(CH₂)₂)₃P has been reported to produce the corresponding (Z)-1,4-disubstituted butenynes. Irrespective of the nature of the hydride ligand (classical or non-classical), vinlylidene complexes appear to be the immediate precursors to the C—C bond-forming step.\(^{67}\)
Iodoarenes (77) and (78) have been reported to undergo intramolecular Heck reaction producing the isochromanes (80)–(83). The selectivity of the reaction depends on the size of the substituent R: increasing bulk of R leads to a decrease in diastereoselectivity and an increase in regioselectivity (Table 4). High-pressure experiments confirmed the proposed mechanism and showed that bromoarenes, such as (79), which tend to be unreactive, give good results when the cyclization is carried out under high pressure.\(^\text{68}\)

In the [3 + 2] vs [2 + 2] controversy for the osmylation reaction,\(^\text{69,70}\) the pendulum has now swung in favour of the [3 + 2] mechanism. The main arguments are derived from kinetics and Hammett correlation, kinetic isotope effect (KIE),\(^\text{69,70}\) and quantum
chemistry calculations.71 Interestingly, high-level calculations of various models, such as pure OsO\textsubscript{4}, and OsO\textsubscript{4} with one or two coordinated NH\textsubscript{3} molecule(s) (as model for basic ligands), have clearly demonstrated a much higher activation energy for the [2 + 2] pathway as opposed to very low energy for the [3 + 2] cycloaddition.71 Even Sharpless, the main supporter of the [2 + 2] mechanism, has recently shown the KIE to be consistent with a [3 + 2] cycloaddition as the rate-limiting step.72 However, in view of the complexity of the problem, namely the apparent variation in the mechanism as a function of ligands present and the non-linear Hammett relationship,70 this may not yet be the final word. Note, for instance, that for the analogous rhenium-mediated reaction, a stepwise mechanism has been clearly demonstrated.73

Miscellaneous Electrophilic Additions

The reaction of alkenyl alkyl ethers and ketene acetics with PX\textsubscript{3} (X = Cl or Br) has been reported to occur readily in the presence of an organic base and to result in the electrophilic substitution of a vinyl hydrogen atom with the PX\textsubscript{2} group. Thus, (2-alkoxyalkenyl)-, (1-bromo-2-alkoxyalkenyl)- and (2,2-dialkoxyalkenyl)-phosphorus dichlorides and dibromides were obtained in 70–98% yield. The reaction proceeds regio- and stereo-selectively and is believed to involve formation of a cyclic phosphireniurn ion.74
Nucleophilic Additions

The effect of a remote substituent on the facial selectivities in a nucleophilic conjugate addition has been investigated for the reaction of EtSH with a series of dibenzobicyclo[2.2.2]octatrienes (84). Syn-addition proved to be favoured for nitro substituent and polar solvents increased the selectivity (Table 5).19

<table>
<thead>
<tr>
<th>X^1</th>
<th>X^2</th>
<th>Solvent</th>
<th>syn : anti</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>NO₂</td>
<td>Neat</td>
<td>63 : 37</td>
</tr>
<tr>
<td>H</td>
<td>NO₂</td>
<td>C₆H₆</td>
<td>62 : 38</td>
</tr>
<tr>
<td>H</td>
<td>NO₂</td>
<td>Et₂O</td>
<td>69 : 31</td>
</tr>
<tr>
<td>H</td>
<td>NO₂</td>
<td>DMF</td>
<td>79 : 21</td>
</tr>
<tr>
<td>H</td>
<td>NO₂</td>
<td>DMSO</td>
<td>77 : 23</td>
</tr>
<tr>
<td>NO₂</td>
<td>NO₂</td>
<td>Neat</td>
<td>54 : 46</td>
</tr>
<tr>
<td>NO₂</td>
<td>NO₂</td>
<td>DMF</td>
<td>75 : 25</td>
</tr>
<tr>
<td>NO₂</td>
<td>NO₂</td>
<td>DMSO</td>
<td>73 : 27</td>
</tr>
</tbody>
</table>

![Table 5. syn/anti selectivity in the reaction of (84) with EtSH](image)

Additions to Multiple Bonds Conjugated with C=O

In the reaction of hydrazine with 2-(1-alkoxyalkylidene)-1,3-dicarbonyl compounds, the 13C NMR spectral evidence indicates that the only point of initial hydrazine attack is the carbon atom in the ethylene bond and the only observed intermediate is the corresponding enehydrazine. MNDO calculations of the electronic characteristics showed that the reaction obeys orbital control.75

Parameters useful to predict and control the reaction outcome of conjugate addition of HN₃ to quinones have been assessed and the optimum conditions for the efficient synthesis of aminonaphthoquinones and azidobenzhydroquinones were found. This strategy was applied to the formal synthesis dephostatine.76

Michael addition of a series of primary amines RNH₂ [R = H, PhCH₂, H₂N(CH₂)₃NH₂] to \textit{t}-butyl (S,E)-2-(\textit{p}-tolylsulfanyl)cinnamate (85), followed by Sm(II) reduction, has been reported to produce (S)-β- amino esters (86) with 49–98% ee.77

Addition of morpholine, H₂N–GlyGlyOH or N₂H₄ to HC≡CCOMe gives the expected oxo enamines via a second-order process (first order in each reactant). The product of the hydrazine addition, H₂NNHCH≡CHCOMe, reacted with additional...
N₂H₄ to afford 3-methylpyrazole via an intramolecular nucleophilic attack followed by dehydration.⁷⁸

Thiophenoxide ion reacts with PhC≡CCO₂Me in DMF containing ~ 0.5% MeOH to give a mixture of (E)- and (Z)-products PhC(SPh)=CHCO₂Me. The rate constant depends on the MeOH concentration, indicating a third-order reaction. The plot of log k₃ vs Hammett σ constants varies from 0.42 to 0.77, depending on the temperature. The activation parameters and ρ values are consistent with a concerted mechanism.⁷⁹

While Michael addition of mercaptoethanol to dienones and trienones, e.g. (87), occurs at ω-carbon (88), β-attack can be enforced by the presence of TiCl₄ (Scheme 19). The latter outcome has been rationalized by Ti chelation (89). The resulting β-isomer (90) can be equilibrated to the ω-isomer (88).⁸⁰

Reaction of methyl β-chloro-(3-bromo-2,4,6-trimethyl)cinnamate (91) with MeS⁻ has been shown to give mixtures of elimination (92) and substitution (93) products (Scheme 20).⁸¹

Benzils (94) react with typical Michael acceptors in the presence of a catalytic amount of CN⁻ to give 1,4-diketones (95), which arise by insertion of ethylene group between the carbonyls of the benzil units (Scheme 21).⁸²
The Michael addition of \((-\)-dimenthyl malonate to a series of \(\alpha,\beta\)-unsaturated ketones, including ferrocenyl derivatives, has been reported to occur with 10–50\% \(de\); pure diastereoisomers were obtained by recrystallization.\(^{83}\)

In addition to an earlier report by another group,\(^{84}\) FeCl\(_3\) has now been found to catalyse Michael addition of \(\beta\)-dicarbonyl compounds to highly reactive enones (\(\text{CH}_2\text{=CHCOMe}, \text{PhCH=CHCOMe}, \text{PhCH=COPh}\)).\(^{85}\)

The reactions of (aryl)methylene)isoxazol-5-ones (97) with pyridinium ylides (98) leads to the diastereoselective formation of olates (99) as a result of preferential Michael addition rather than 1,3-cycloaddition (Scheme 22). The stereoselectivity of the reaction has been rationalized by the involvement of the preferential transition state [(100) over (101)].\(^{86}\)
Regioselectivity in the Michael addition of nitromethane to \(\alpha,\beta \)-unsaturated esters in the presence of Triton B has been studied both theoretically and experimentally.\(^{87}\) A rubidium salt of proline (5–10 mol\%) has been reported to catalyse the asymmetric Michael addition of nitroalkanes to prochiral acceptors. When L-proline was used, acyclic (\(E\))-enones produced (\(S\))-adducts, whereas cyclic (\(Z\))-enones gave (\(R\))-adducts.\(^{88}\) Syn-selective Michael addition of nitromethane and its homologues to enoates derived from (\(R\))-(-)-glyceraldehyde acetonide (\(Z\))-\((102)\) in the presence of \(\text{Bu}_4\text{N}^+\text{F}^- \cdot 3\text{H}_2\text{O}\) or DBU has been reported to produce mainly syn-(\(103\)) with 80–100\% de (Scheme 23).
The addition to \((E)-(102)\) exhibited slightly lower diastereoselectivity for \(\text{CH}_3\text{NO}_2\) and, in particular, for its primary homologues (34–80% \(de\)), while secondary homologues were non-selective. The observed stereochemical outcome has been rationalized by the preferential transition states (104) and (105), respectively.\(^8\)

Sequential ‘double Michael’ addition of cyclic dienolates, generated from (107) or (108), to fulvene (109) has been developed as a method for rapid access to the tricyclo[5.3.0.\(2,5\)]alkane system (Scheme 24).\(^9\)

![Scheme 24](image)

Highly diastereoselective conjugate addition of lithiated \(\gamma\)-crotonolactone (110) to cyclic enones has been reported to give adduct (111) (Scheme 25). This methodology has been applied to the synthesis of brefeldine.\(^1\)

![Scheme 25](image)

Stabilized lithiated sulfoximines (112) undergo highly diastereoselective Michael additions to cyclic enones at \(-78^\circ\text{C}\) under kinetically controlled conditions. At room temperature, the initially formed adducts (113) undergo intramolecular substitution of the sulfonimidoyl group, with inversion of configuration to afford the corresponding cyclopropanes (114).\(^2\)

In a search for open-chain 1,3-stereo-control, addition of organometallic nucleophiles [MeLi, MeMgBr, Me\(_3\)ZnLi, Me\(_2\)CuCNLi\(_2\), (PhMe\(_2\)Si)\(_2\)CuLi, etc.] to a series of \(\delta\)-
substituted Michael acceptors (115) has been studied (Scheme 26). In an attempt to identify a rule based purely on steric effects by which it might be possible to predict which diastereoisomer would be the major product in each of these reactions, lowest energy conformations were calculated for the substrates (115). The rule that emerged (with a number of anomalies, however), predicts structure (116) to be somewhat preferred over (117).93

The conjugate addition of R1R2NLi (R1 = R2 = PhCH2 or R1 = Me2Si, R2 = PhCH2) to t-butyl 4-(RO)-substituted pent-2-enoates (118) has been reported to produce mixtures of the syn- and anti-amino esters (119) and (120).
Sterically bulky OR groups (trityloxy or Bu’Ph₂SiO) gave the syn-diastereoisomer (119) either exclusively or predominantly. The syn-selectivity was rationalized by a modified Felkin–Ahn model (121).⁹⁴

Lewis acid-promoted asymmetric conjugate addition of an allylsilane to a series of 8-arylmethanol-derived N-acyl-2,3-dihydro-4-pyridones (122) has been reported to lead to 2-allyl-4-piperidones with moderate to high levels of asymmetric induction; the highest levels were attained with Ar = 2-naphthyl. The stereochemical course of the reaction was attributed to π-stacking and the method was applied to the asymmetric synthesis of (−)-N-methylconine.⁹⁵

![Chemical structure](image)

Theoretical studies of cyclization of 2′-hydroxychalcone (123) using AM1 with totally optimized molecular geometries suggest a six-step mechanism including several equilibration states and led to the following conclusions: (1) at the conformational equilibration of (123), there could be 43.9% of s-cis-conformer; (2) the acid dissociation of trans-s-trans-(123) is considerable; (3) the E_E, ΔH_f and net charges show that the rotation of ring A of (123) and the formation of the ring of (124) occur without great difficulty; (4) although the keto structure of (124) is the most stable one, the enolate is also present in the reaction medium; (5) the conversion of the enol of (124) into the keto form is the rate-limiting step of the reaction.⁹⁶

Additions to Multiple Bonds Activated by Other Electron-withdrawing Groups

The addition of substituted benzylamines to z-cyano-4-nitrostilbene (125) has been found to involve the formation of the zwitterionic species (126) in an equilibrium, and its subsequent decomposition to (127) catalysed by a second molecule of the amine.⁹⁷

![Chemical structure](image)

Addition of sodium alkoxides, thiolates, and Na salts of stabilized carbanions across the double bond of 6-vinylpurines has been described.⁹⁸

Bu’OK has been reported to promote the reaction of 4-chlorobut-2-yn-1-ol (129) with nitroalkanes (128) affording 3-vinylidenetetrahydrofurans (130) as a result of tandem
oxo-Michael addition–S₉2 substitution. The reaction occurs with excellent diastereoselectivity originating in the 1,3-strain-control.⁹⁹

Michael addition of 1,3-dicarbonyl compounds to conjugated prochiral nitroalkenes catalysed by (acac)₂Ni and (acac)₂Co has been reported to give up to 30% ee when carried out in the presence of cinchonidine.¹⁰⁰

Addition of PhSeNa to the conjugated system of enyne sulfones (131; X = H, Cl, Br) occurs at the δ-position with preferential formation of the (1E,1Z)-isomer (132).¹⁰¹

Conformational analysis of α,β-unsaturated sulfonamides based on ab initio calculations predicts a hinge-like molecular shape for the ground-state conformation. Following this lead, three chiral trifluoromethylated sulfonamides (133) were reacted with PhCOMe–LDA and CH₂(CO₂Me)₂–NaH, respectively, to give the addition products (134) of up to 98% ee (Scheme 27).¹⁰²

Reformatsky reagents have been shown to react with various styrenes activated by electron-withdrawing groups in the 1,1-positions (135). The reaction is further improved when carried out in the presence of Cp₂TiCl₂. Strong evidence has been accumulated for the involvement of an SET process.¹⁰³

Cycloaddition vs conjugative Michael-type addition of 2-ethoxy-3-morpholinobuta-1,3-diene (137) to nitroalkenes (136) has been thoroughly investigated. With 1-nitrocyclopentene (136a), carbocyclic products (138) largely predominated, whereas
with 1-nitrocyclohexene (136b), only Michael-type products were formed (139). The products from β-nitrostyrene proved to be dependent on the reaction conditions.\(^\text{104}\)

The origin of the observed 1,4-asymmetric induction in Michael reactions of chiral imines (Scheme 28) has been rationalized by conformational transmission of chirality. Thus, the phenethylamine auxiliary forces the cyclohexene part of the intermediate enamine into a half-chair conformation (140) that is 0.8 kcal mol\(^{-1}\) lower in energy than (141). Axial attack as shown then leads to the major product; the energy difference between (140) and (141) roughly correlates with the observed diastereoselectivity (\(\sim 9:1\)).\(^\text{105}\)
Michael additions of \(\beta \)-keto sulfoxides (142) and \(\beta \)-keto sulfones to highly activated acceptors (143) has been shown to produce 2-amino-4H-pyran adducts (144) under mild conditions.\(^{106}\)

\[
\begin{align*}
\text{O} & \quad \text{Ar} \\
R^1 & \quad \text{CN} \\
\text{R}^2 & \quad \text{Y} \\
(142) & \quad \text{piperidine} \\
(143) & \quad \text{EtOH, r.t.} \\
\text{O} & \quad \text{Ar} \\
\text{R}^1 & \quad \text{Y} \\
\text{R}^2 & \quad \text{NH}_2 \\
(144)
\end{align*}
\]

According to a semiempirical study, the stereoselectivity of conjugate addition of lithiated bislactim ethers (145) to alkenylphosphonates (146) in the gas phase originates from an initial lithium–phosphoryl coordination to generate a disolvated chelate (147), followed by a rate-determining reorganization through competitive eight-membered cyclic transition structures (148) and (149).\(^{107}\)

\[
\begin{align*}
\text{Et} & \quad \text{O} \\
\text{N} & \quad \text{Li} \\
\text{S} & \quad \text{S} \\
\text{OEt} & \quad \text{OEt} \\
(145) & \quad + \quad \text{(EtO)}_2\text{P} \\
\text{R}^2 & \quad \text{R}^1 \\
(146) & \quad \rightarrow \\
\text{EtO} & \quad \text{OEt} \\
\text{LiS} & \quad \text{O} \\
\text{S} & \quad \text{Li} \\
\text{N} & \quad \text{OEt} \\
(147)
\end{align*}
\]

S = solvent

\[
\begin{align*}
\text{EtO} & \quad \text{O} \\
\text{Li} & \quad \text{OEt} \\
\text{Et} & \quad \text{O} \\
\text{N} & \quad \text{R}^2 \\
(148) \quad \text{major} \\
\text{Li} & \quad \text{O} \\
\text{EtO} & \quad \text{OEt} \\
\text{P} & \quad \text{OEt} \\
\text{N} & \quad \text{R}^1 \\
(149) \quad \text{minor}
\end{align*}
\]

\text{Scheme 29}

Dithiane anions undergo intramolecular conjugate addition to the \(\alpha,\beta \)-unsaturated nitrile moiety in (150) to produce indolizidine and quinolizidine (151), in which the nitrile group exhibits a strong, thermodynamic preference for the axial orientation.\(^{108}\)
Additions of Organometallics to Activated Double Bonds

In a study of the reactivity of organolithium reagents with selected carbohydrate enones, such as 2,3,6-trideoxy-α-L-hex-2-enopyranosid-4-ulose (152) and 2,3-dideoxy-α-D-hex-2-enopyranosid-4-ulose, addition to the carbonyl group has been found to occur with increasing stereoselectivity in the order butyl, benzyl, and 2,5-dimethoxy-4-methylphenyllithium. By contrast, 2,5-dimethoxybenzyllithium underwent preferential and completely stereoselective 1,4-addition (the 1,4- to 1,2-addition ratio was 1.7 : 1 in this instance).109

Organoberyllium compounds, generated by transmetallation from Grignard and organolithium reagents with BeCl₂, have been found to add to 2-cyclohexen-1-one via 1,4-addition in THF (Scheme 30), whereas 1,2-addition is favoured in Et₂O. Generally, the selectivity varies with the conditions and the nature of the R group.110

Mixtures of BuLi and CuI prepared in toluene have been shown to react with α,β-unsaturated ketones predominantly in a 1,2-fashion. Addition of two equivalents of Et₂O to the mixture resulted in a dramatic preference for the usual 1,4-product. These results have been interpreted as evidence for stabilization of the intermediate Cu(II) species (153) on the 1,4-pathway by coordination to the ethereal solvent (Scheme 31).111
The stereoselective synthesis of β-branched α-halocarboxylic acids containing two newly formed chiral centres (155) has been accomplished by a reaction consisting of 1,4-addition of dialkylaluminium chlorides to α,β-unsaturated N-acyloxazolidinones (154) followed by quenching the intermediate aluminium enolate with N-halosuccinimides. The most efficient stereo-control was achieved with oxazolidines derived from glucosamine (154). Although β-branched aliphatic α-halo carboxylic acids were synthesized stereoselectively, the highest stereoselectivity was observed for β-aryl substrates.

A ruthenium-catalysed, three-component addition of alkyne to α,β-unsaturated ketones to produce 1,5-diketones has been developed (Scheme 32).

The semi-stabilized telluronium ylides, generated in situ from the corresponding telluronium salts (156; $R^1 = CH=CHSiMe_3$, CH=CH$_2$, CH=CHMe, CH=CHPh, Ph), have been reported to react with α,β-unsaturated carbonyl compounds (157: $R^2 = Ph$, OR', NR$_2$') to afford 2-vinlycyclopropyl derivatives (158) with high
selectivity. On the other hand, arsonium ylides gave mainly their diastereoisomers (159); mechanistic differences were extensively discussed.114

Miscellaneous Nucleophilic Additions

Ab initio calculations of hydroxide attack on acetylene at the SCF/6–31+G** and MP2/aug-cc-pvdz level resulted in the identification of several C₂H₃O⁻ species. MP2 geometry optimizations were performed with augmented, correlation-consistent, polarized valence, double-ζ basis sets. The total energies of the most crucial structures were also recalculated at the QCISD(T) level with MP2-optimized geometries. Nine structures corresponding to local minima have been found at the MP2 level, their stability decreasing in the following order: acetaldehyde>enolate anion>acetyl anion>ethylnedi anion–H₂O complex>ethenolxy anion≈vinlyoxy anion. The ethynide–water complex is either the most stable product of the reaction of HO⁻ with acetylene or at least an initial stable intermediate.115 These results agree well with gas-phase data on the reaction, where ethynide has been observed as the only product.116 This investigation provides the basis for a different view of nucleophilic addition to acetylene: both thermodynamic and kinetic factors seem to favour the formation of an ethynide–water complex rather than ethynyloxy anions.115

DBU (161) has been reported to react with diarylpyrone (160) in a 1,4-fashion, followed by a fragmentation cascade, to afford the aminopropyl caprolactam derivative (162) (Scheme 33).117

Reactions of PhO⁻ with the super-electrophilic substrate (163) have been examined by 400 MHz ¹H NMR spectroscopy in MeCN–DME (1:1) as a function of temperature (−40 to 23 °C) and in DMSO at room temperature (Scheme 34). The O-bonded σ-adduct (164), resulting from the attack at C(7) of (163), has been observed and characterized for the first time; no C(5) adduct was detected at −40 °C or in subsequent monitoring the reaction. Apparently, the C(7) attack is favoured by both kinetics and thermodynamics. Upon warming the reaction mixture to ambient temperature, (164)
gave way to the more stable C(7) C-bonded σ-adducts (165) and (166) (~ 1 : 6). With 3,5-di-t-butylphenoxide (in place of PhO⁻), the C(7) attachment is precluded by steric hindrance and the O-attached product [analogous to (164)] was observed at room temperature. The results of the kinetics and thermodynamics were discussed with regard to stereoelectronic stabilization in the adducts.¹¹⁸

β-Dicarbonyl compounds (ethyl acetoacetate and diethyl malonate) have been added to indene in a cerium(IV) ammonium nitrate-mediated addition.¹¹⁹ Similar additions have been observed for ring-substituted styrenes.¹²⁰

Tetrachlorobenzoquinone derivative (167) has been reported to react with MeSNa to give triply-substituted product (168); other N-, O-, and C-nucleophiles behave in a similar way.¹²¹
References

13 Addition Reactions: Polar Addition

13 Addition Reactions: Polar Addition

CHAPTER 14

Addition Reactions: Cycloaddition

N. DENNIS

University of Queensland, GPO Box 6382, Brisbane, Queensland 4067, Australia

<table>
<thead>
<tr>
<th>Reaction Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 + 2-Cycloaddition</td>
<td>429</td>
</tr>
<tr>
<td>2 + 3-Cycloaddition</td>
<td>435</td>
</tr>
<tr>
<td>2 + 4-Cycloaddition</td>
<td>446</td>
</tr>
<tr>
<td>Miscellaneous Cycloadditions</td>
<td>461</td>
</tr>
<tr>
<td>References</td>
<td>466</td>
</tr>
</tbody>
</table>

Reviews have appeared on the use of cycloaddition reactions in organic synthesis\(^1\) and on asymmetric cycloaddition reactions and their application in asymmetric synthesis of natural products.\(^2\)

An extensive review of the use of density functional theory calculations on electrocyclic reactions, cycloadditions, and sigmatropic shifts has been published.\(^3\) A cycloaddition model for the transformation of graphite into the carbon cages of fullerenes is described.\(^4\)

A book describing the numerous 2 + 2-, 2 + 3-, 2 + 4- and 2 + 1-cycloadditions of silenes has been published.\(^5\) Silylated bisketenes [O=C=C(SiMe\(_3\))CR=C=O] undergo 2 + 2-, 4 + 1- and 4 + 2-cycloaddition reactions.\(^6\)

The 2 + 1-, 2 + 2-, 3 + 2-, 4 + 2- and 5 + 2-cycloaddition reactions of pyrylum salts and pyrenes have been reviewed.\(^7\)

2 + 2-Cycloaddition

The effect of temperature on the disappearance rate of the starting material and the effect of temperature on the product selectivity in 2 + 2-intramolecular cycloadditions have been investigated.\(^8\)

An \textit{ab initio} CASSCF study of the dimerization of cyclobutadiene showed that syn-dimerization is highly favoured over trans-dimerization, and no synchronous concerted pathway was detected.\(^9\) Photo-ionization and photo-sensitized electron transfer have been used to generate radical cations of arylalkene probe molecules that undergo intramolecular cyclobutane or Diels–Alder reactions.\(^10\) The intramolecular 2 + 2-photo-cycloaddition of dicinnamates (1) is a key step in the synthesis of \(\text{C}_2\)-symmetric chelating bisphosphanes (2) incorporating a cyclobutane backbone (Scheme 1).\(^11\)

Esters of \(\alpha\)-(4-ethoxyphenyl)acrylic acid with chiral auxiliaries undergo thermal 2 + 2-cycloaddition with tetrafluoroethylene at 130 °C, to afford tetrafluorocyclobutanecarb-
oxylic esters with high diastereoselectivity. The photo-reaction of the captodative alkene, 2-morpholinoacrylonitrile with 2- and 4-substituted 1-acetonaphthones yields both 2 + 2- and 2 + 4-cycloadducts. L-Lactic acid and (R)-3-hydroxybutyric acids (3) prove to be effective chiral spacers for asymmetric intramolecular 2 + 2-photo-cycloaddition reactions leading to cyclobutanes (4) (Scheme 2).

Fullerene, C\textsubscript{60}, undergoes photochemical 2 + 2-cycloaddition with N,N-diethyl-4-methylpent-3-en-1-yn-1-amine to produce the stable C\textsubscript{60}-fused cyclobutenediamine that is photo-oxidized to the dihydrofullerenone amide in high yield. The photochemical 2 + 2-cycloaddition of arylalkenes with C\textsubscript{60} has been shown to occur by a two-step mechanism involving the formation of a dipolar or diradical intermediate in the rate-determining step. The 2 + 2-photo-cycloaddition of cis- and trans-1-(p-methoxyphenyl)-1-propene to C\textsubscript{60} produces only trans-2 + 2-adduct. This is consistent with a two-step mechanism. The 2 + 2-photo-cycloaddition of cyclic 1,3-diones to C\textsubscript{60} results in the formation of two furanylfullerenes, one chiral and the other achiral. None of the expected De Mayo cyclooctane-1,3-dione addition products were formed.
The intramolecular $2 + 2$-photo-cycloadditions of optically active allenesilanes (5) with enones and enoates produce silyl-substituted *exo*-methylenecyclobutanes (6) in high enantiometric excess. Photo-desilation leads to the parent unsaturated *exo*-methylenecyclobutanes (7) (Scheme 3). The cycloaddition of naphthoquinone to allyltrimethylsilane in the presence of Me$_2$AlCl yields the expected $2 + 2$-cycloadduct that slowly rearranges to the $2 + 3$-adduct.

In the presence of bases, Cephalosporin triflates (8) undergo $2 + 2$- and $4 + 2$-cycloaddition with alkenes, alkynes, and dienes via an intermediate six-membered cyclic allene (9) (Scheme 4).

SCHEME 3

![Cycloaddition reaction](image)

SCHEME 4

RHF methodology, used to investigate the cycloaddition reaction of isocyanic acid with methylenimine, confirmed a two-step mechanism via a *cis* intermediate for the equimolar reaction. The $2 + 2$-cycloaddition of chlorosulfonyl and trichloroacetyl
isocyanates to sugar vinyl ethers yields the corresponding azetidin-2-ones, intermediates in the synthesis of β-lactam antibiotics.23

\textit{Ab initio} self-consistent reaction field and Monte Carlo statistical mechanics calculations were used to study the solvent effects on the polar 2 + 2-cycloaddition of 1,1-dicycnoethylene with methyl vinyl ether.24 The cycloaddition of (\textit{Z})-[6]paracycloph-3-ene (10) with TCNE is regioselective, yielding a single 2 + 2-cycloadduct (11) (Scheme 5).25 The addition of LiCl in Et\(_2\)O shows a strong salt effect in the 2 + 2-cycloaddition of TCNE with EtOCH=CH\(_2\) and PhCMe=CH\(_2\).26 The reaction of cyanoacetylene with [2.2](2,5)furanoparacyclophane (12), at 160 °C and 1 bar, produces a mixture of ‘ring-enlarged’ ketones (13)–(18) (Scheme 6).27 The 2 + 2-photo-cycloaddition of cyanoethylenes to 1,4,5,6-tetrahydro- and 1,4-dihydro-pyridines proceeds with retention of alkene geometry, suggesting a concerted process.28 A study of the irradiation of photo-substrates containing 2-carboalkoxycyclopentenone chromophores has shown that hydrogen bonding and solvent effects can control the diastereoselectivity in intramolecular 2 + 2-photo-cycloadditions.29

![Scheme 5](image)

The semi-empirical AM1 method was used to investigate the cycloaddition of ketenes with 2-amino-β-D-arabinol[1', 2': 4, 5]oxazoline to β-lactams.30 The rates of 2 + 2-ring closure of the bisketenes, \(O=C=\underset{\text{C(SiMe)}_3}{\text{C}}=\text{C}=\), to cyclobutanediones correlate well with \(\sigma^+\) constants of the aryl substituents at 70 °C.31 Ketenes derived photochemically from diazoketones cycloadd stereospecifically with N-benzylbenzaldimine to form \textit{trans}-substituted β-lactams, being intermediates in the synthesis of β-lactam antibiotics such as thienamycin.32

The 2 + 2-cycloaddition reaction of \(\alpha\)-alkoxyketene-derived imines yields β-lactams with quaternary stereogenic centres at C(4).33 The 2 + 2-cycloaddition of chiral aminoketenes with chiral imines yields \textit{cis}-β-lactams with the absolute stereochemistry of the C(3) and C(4) positions being controlled by the ketene partner only.34 The 2 + 2-cycloaddition of ketenes with (\textit{R})-2-\textit{t}-butylhydroxazole (19) yields predominately the regioisomer (20) from steric control rather than the expected electronic control (Scheme 7).35 The double 2 + 2-cycloaddition reaction between ketenylidenetriphenylphosphorane (21) and carbon suboxide (22) produces the bis(ylidic) spirocyclobutanedione (23) (Scheme 8).36 Semiempirical and \textit{ab initio} calculations have been used to investigate the Lewis acid-promoted 2 + 2-cycloaddition leading to the formation of β-lactones.37
Scheme 6

Ab initio calculations indicate that in the gas phase the reaction of ketene imine and formaldehyde is concerted but asynchronous whereas in dichloromethane it is a two-step zwitterionic reaction. The 2 + 2-cycloaditions of keteniminium triflates with imines yields 2-azetidiniminium salts with cis stereoselectivity. The intramolecular 2 + 2-cycloaddition of ketenimines with imines (24) provides a novel synthesis of azeto[2,1-b]quinazolines (25) (Scheme 9).
A review of photo-cycloadditions of dienones and quinones has been published.\(^{41}\) The first example of a Lewis acid-catalysed \(2 + 2\)-cycloaddition of styrene with naphthoquinone has been reported.\(^{42}\) FMO methods have been used to investigate the effect of substituents on the regiochemistry of the \(2 + 2\)-photo-cycloaddition of \(\alpha, \beta\)-unsaturated carbonyl compounds with substituted alkenes.\(^{43}\) Evidence has been presented for the presence of a triplet exciplex intermediate in the photo-cycloaddition of 4,4-dimethylcyclohexenone to 1,1-diphenylethylene.\(^{44}\) The intramolecular \(2 + 2\)-photo-cycloaddition of 2-acyloxy-3-hexenoylcyclohexenones (26) is highly diastereoselective yielding the tricyclic adduct (27) (Scheme 10).\(^{45}\)

FMO calculations using PM3-Cl were used to investigate the regioselectivities obtained by the photochemical reactions between 2-pyridone and penta-2,4-dienoate.\(^{46}\) The hard and soft acid–base principle has been successfully used to predict product formation in Paterno-Büchi reactions.\(^{47}\) The \(2 + 2\)-photo-cycloaddition of homobenzvalene with methyl phenylglyoxylate, benzyl, benzophenone, and 1,4-benzoquinone produced the corresponding Paterno-Büchi products.\(^{48}\) The photo-cycloaddition of acrylonitrile to 5-substituted adamant-2-ones produces \textit{anti-} and \textit{syn-}oxetanes in similar ratios irrespective of the nature of the 5-substituent.\(^{49}\)

Theoretical calculations rule out a \(2 + 2\)-cycloaddition step of osmium tetroxide to alkenes as the initial step of the dihydroxylation reaction.\(^{50}\) A synchronous \(2 + 2\)-
cycloaddition step, (29) to (30), has been proposed for the indirect Wittig reaction of aldehyde (28) leading to the alkenes (32) via the isolated 1,2-hydroxyphosphonium salt (31) (Scheme 11).51

\begin{equation}
\begin{array}{c}
\text{Me} \quad \text{RO} \\
\text{Me} \quad \text{CHO}
\end{array}
\begin{array}{c}
\text{Ph}_3\text{P}=\text{CHMe} \\
\text{C}_6\text{H}_5\text{Me}, -78^\circ \text{C}
\end{array}
\begin{array}{c}
\text{Me} \quad \text{RO} \\
\text{Me} \quad \text{Me} \\
\text{O}^{-} \text{PPh}_3
\end{array}
\begin{array}{c}
\text{Me} \quad \text{RO} \\
\text{Me} \quad \text{Me} \\
\text{Me}
\end{array}
\begin{array}{c}
\text{Me} \quad \text{RO} \\
\text{Me} \quad \text{Me} \\
\text{OH} \text{PPh}_3
\end{array}
\begin{array}{c}
\text{Br}^{-}
\end{array}
\end{equation}

(28)

(29)

(30)

(31)

(32)

\textbf{SCHEME 11}

2 + 3-Cycloaddition

Tandem intramolecular 1,3-dipolar cycloadditions and cycloreversion, phosphinimine alkylideneenalate cyclization, and retro-malonate additions have been reviewed.52 The origins of the stereoselection in the 1,3-dipolar cycloadditions to chiral alkenes53 and the 3 + 2-cycloadditions of fullerene, C\textsubscript{60}, have been reviewed.54 The selectivity of the double 3 + 2-cycloaddition of tethered double vinyl carbene species in the presence of C\textsubscript{60} varies with the nature of the tether.55

The 1,3-dipolar cycloaddition of allenes with 1,3-dipoles has been reviewed.56 The scope and limitations of palladium-catalysed intramolecular 3 + 2-cycloaddition of diastereomerically pure methylenecyclopropanes (33) yielding methylenecyclopentenes (34) has been investigated (Scheme 12).57 Chiral 2,5-dialkyl-7-phenyl-7-phosphabicy-
clo[2.2.1]heptanes catalyse the asymmetric 3 + 2-cycloaddition of buta-2,3-dienoates with electron-deficient alkenes to yield cyclopentenes with high regio- and stereo-selectivity.58

Ab initio MO calculations (MP2/6–31G*) of the reactions of nitrosoketene with formaldehyde, acetone and prop-2-enal indicate a 3 + 2-pathway via a concerted, planar, and pseudo-pericyclic transition state.59

The 3 + 2-cycloaddition of commercially available Me\textsubscript{3}SiCHN\textsubscript{2} with camphor sultam-derived dipolarophiles produces 3-trimethylsilyl-substituted-\(\Delta^1\)-pyrazolines which on acid treatment convert into optically active \(\Delta^2\)-pyrazolines.60 The nucleophilic addition of ethyl diazoacetate with \(N\)-ethoxycarbonyl-\(N\)-\(N\)-(2,2,2-trichloroethylidene)amine produces a new diazo intermediate (35), which by 1,3-dipolar cycloaddition followed by a sigmatropic rearrangement of the cycloadduct (36) furnishes a substituted pyrazole (37) (Scheme 13).61
The use of TiCl$_2$–TADDOLate and Mg(II)-phenanthroline catalysts in asymmetric 1,3-dipolar cycloadditions of alkenes with nitrones has been reviewed.62 The 1,3-dipolar cycloaddition of 3-acyloyloxazolidin-2-one with nitrones catalysed by [TiX$_2$(TADDOLato)] complex shows high regio-, diastereo-, and enantio-selectivity.63

Cyclic nitrones with substituents α to the nitrogen atom (38) undergo 1,3-dipolar cycloaddition with methyl propiolate to form isoxazolo[2,3-α]pyridines (39) and (40) with high regio- and stereo-specificity (Scheme 14).64 The chiral cyclic nitrones (41) undergo asymmetric $3 + 2$-cycloaddition reaction with α, β-unsaturated carbonyl compounds to form cycloadducts (42) with very high diastereomeric excess (>99%) (Scheme 15).65

Chiral crotonates derived from S-citronellol, 1-(-)-menthol, and S-solketol undergo 1,3-dipolar cycloaddition with cyclic and acyclic nitrones.66 Asymmetric 1,3-dipolar cycloaddition of optically active trifluoromethylated α, β-unsaturated aryl sulfones (43) with nitrones yield the corresponding isoxazolidines (44) and (45) with high regio- and
diastereo-selectivity (Scheme 16).67 Nitrones (47) generated from indol-3-yl-carbaldehyde oximes (46) undergo 1,3-dipolar cycloaddition with electron-deficient dipolarophiles to produce isoxazolidines (48) and (49) (Scheme 17).68

\begin{align*}
\text{(43)} & \quad \text{(44)} \\
\text{(45)}
\end{align*}

\textbf{SCHEME 16}

\begin{align*}
\begin{array}{ccc}
\begin{array}{c}
\text{NOH} \\
\textstyle(46)
\end{array} & \quad & \begin{array}{c}
\text{R}^1\text{HC} = \text{CHCOR}^2 \\
\textstyle(47)
\end{array} \\
\text{R}^1\text{HC} = \text{CHCOR}^2 & \quad & \begin{array}{c}
\text{MeO}_2\text{C} \\
\textstyle(49)
\end{array} \\
\text{MeO}_2\text{C} + \begin{array}{c}
\text{CHR}^1\text{CH}_2\text{COR}^2 \\
\textstyle(48)
\end{array} \\
\end{array}
\end{align*}

\textbf{SCHEME 17}

The 1,3-dipolar cycloaddition of \(N\)-benzyl-\(C\)-ethoxycarbonylnitronewith (S)-5-hydroxymethyl-(5\(H\))-furan-2-one is regio- and stereo-selective.69 The intramolecular 1,3-dipolar cycloaddition of sugar ketonitrones (50) provides a convenient method for the stereoselective formation of carbohydrate derivatives (51) possessing nitrogenated quaternary centres. This methodology has been successfully used to prepare synthetic precursors of \((-\)-tetrodotoxin (52) (Scheme 18).70 The hydrophobic effect has been shown to influence the rate and selectivity of 1,3-dipolar cycloaddition reactions of \(C,N\)-diphenylnitronewith electron-deficient dipolarophiles.71 The diastereoselectivity in the intramolecular 1,3-dipolar cycloaddition of 2-fluoronitrones with ethyl vinyl ether was the reverse of that exhibited by the
corresponding 2-hydonitriones. The initial PhSeBr cyclization of oximes (53) produces the bicyclic nitrone salt (54) that undergoes 1,3-dipolar cycloaddition with N-methylmaleimide to yield the tetracyclic cycloadduct (55) in 67% overall yield from the oxime (Scheme 19). The diastereofacial selectivity in the 3 + 2-cycloaddition of cyclic nitrones to (E-γ-oxygenated α, β-unsaturated esters leading to endo adducts may be rationalized through the Houk transition state model. The dinitrone (56) undergoes two consecutive intramolecular 1,3-dipolar cycloadditions to form the chiral nonracemic compound (57) (Scheme 20). The 1,3-dipolar cycloaddition of C-2(thiazolyl)nitrone with chiral acrylates substituted with Oppolzer’s camphor sulfamate produces isoxazolidines with high regio- and diastereo-selectivities and good asymmetric induction. The use of 9-anthrylcarbinol as a chiral auxiliary in the 1,3-dipolar cycloaddition of acrylates to cyclic nitrones has been described. The
phenylthio derivative (58) is an efficient masked chiral synthetic equivalent of p-benzoquinone in the 1,3-dipolar cycloaddition with cyclic nitrones (59), which forms the tricyclic cycloadducts (60) and (61) (Scheme 21).²⁸

The addition of ZnBr₂ to the tandem 1,3-azaprotio cyclotransfer–cycloaddition of a ketoxime with divinyl ketone results in rate enhancement and the exclusive formation of 1-aza-7-oxabicyclo[3.2.1]octan-3-ones.²⁹ The 1,3-dipolar cycloaddition of 1-aza-1-cyclooctene 1-oxide with alkenes produces the corresponding isoxazolidines in high yields with a minimum of polymeric material.³⁰ The cycloaddition of thiophene-2-carbaldehyde oxime with acetonitrile and methyl acrylate produces the 1,3-dipolar adduct, substituted isoxazolines, and not the previously reported 4 + 2-adducts.³¹ Density functional theory and semi-empirical methods have been used to investigate the 3 + 2-cycloaddition of azoxides with alkenes to produce 1,2,3-oxadiazolidines.³² The 3 + 2-cycloaddition of α-nitrosostyrenes (62) with 1,3-diazabuta-1,3-dienes (63) and imines produces functionalized cyclic nitrones (64) regioselectively (Scheme 22).³³

The first unequivocal 1,3-dipolar cycloaddition of sulfines involves the reaction of 2,2,4,4-tetramethyl-3-thioxocyclobutanone S-oxide with diaryl thietketones to produce

$$\text{(62)} \quad \text{+} \quad \text{(63)} \quad \xrightarrow{\text{Na₂CO₃, CH₂Cl₂, 34–48 h}} \quad \text{(64)}$$
spiro-1,2,4-oxadithiolanes at room temperature. The reaction of adamantanethione S-oxide (65) with thioketones (66) produces the mixed bis-spirane (67) by 1,3-dipolar cycloaddition (Scheme 23). However, the reaction of thiobenzophenone S-oxide with the thiketone afforded the spiro-1,2,4-trithiolane rather than the expected spiro-1,2,4-oxadithiolane.

\[
\begin{align*}
\text{(65)} & \quad + \quad \text{(66)} \\
\text{CHCl}_3 & \quad 80-100 ^\circ \text{C}
\end{align*}
\]

\[
\text{(67)} \quad 83\%
\]

\text{SCHEME 23}

Nitrile oxides react with the methyl enol ethers of (Rs)-1-fluoro-alkyl-2-(p-tolylsulfonyl)ethanones to produce 4S,5S,Rs)-4,5-dihydroisoxazoles with high regio- and diastereoselectivity. In the 1,3-dipolar cycloaddition of benzonitrile oxide with adamantane-2-thiones and 2-methyleneadamantanes, the favoured approach is syn, as predicted by the Cieplak’s transition-state adamantane model. The 1,3-dipolar cycloaddition reaction of acetonitrile oxide with bicyclo[2.2.1]hepta-2,5-diene yields two 1:1 adducts and four of six possible 2:1 adducts. Moderate catalytic efficiency, ligand acceleration effect, and concentration effect have been observed in the magnesium ion-mediated 1,3-dipolar cycloadditions of stable mesitonitrile oxide to allylic alcohols. The cycloaddition reactions of acryloyl derivatives of the Rebek imide benzoxazole with nitrile oxides are very stereoselective but show reaction rates and regioselectivities comparable to simple achiral models.

The \(3 + 2 \)-cycloaddition of nitrile oxides to 2-crotyl-1,3-dithiane 1-oxides produces exclusively 5-acyldihydroisoxazoles. Lewis acid addition to 1,3-dipole cycloaddition reactions of mesityl nitrile oxide with \(z, \beta \)-unsaturated 2-acyl-1,3-dithiane 1-oxides can reverse the sense of induced stereoselectivity. The 1,3-dipolar cycloaddition of 4-\(t \)-butylbenzonitrile oxide with \(6^A \)-acrylamido-\(6^A \)-deoxy-\(\beta \)-cyclodextrin (68) in aqueous solution favours the formation of the 4-substituted isoxazoline (69) rather than the 5-substituted regioisomer (Scheme 24). Tandem intramolecular cycloadditions of silyl nitronate, synthons of nitrile oxides, yield functionalized hydrofurans.

\[
\begin{align*}
\text{(68)} & \quad + \quad \text{(69)} \\
\text{H}_2\text{O} & \quad 296 \text{ K}, 16 \text{ h}
\end{align*}
\]

\text{SCHEME 24}
AM1 calculations have been used to explain the regioselectivities of the intermolecular asymmetric 1,3-dipolar cycloadditions of 2,2-dimethyl-3,4-dihydro-2H-pyrrole N-oxides with chiral α, β-unsaturated esters.96 MO calculations have shown that only in-plane aromaticity is operating in transition structures associated with the 1,3-dipolar cycloaddition of acetylene and ethylene with H\textsubscript{2}C═N−O− and fulminic acid.97 Steric factors control the face selectivity of the regiospecific reactions of diazomethane, 3,4-dihydroquinoline N-oxide, and nitrile oxides with trans-3,4-dimethyl-1-methoxycarbonylcyclobutene. In the case of cis-3,4-dimethyl-1-methoxy-carbonylcyclobutene, the expected increase in diastereoselectivity is only observed with 3,4-dihydroquinoline N-oxide.98 The 1,3-dipolar cycloaddition reactions of heterocyclic N-oxides with alkenes, alkynes, isocyanates, thioisocyanates, and heterodienes have been reviewed.99 The 3 + 2-cycloaddition of C-(dialkoxycarbonyl)nitrite oxides to alkenes provides a route to functionalized heterocycles bearing a phosphonate moiety.100

Stable N-phosphino- and N-phosphonio-nitrilimines undergo 3 + 2-cycloaddition with electron-poor and electron-rich dipolarophiles, respectively, to produce substituted pyrazolines.101 The first diastereoselective 3 + 2-cycloaddition between bis(trityl)nitrimine and an acrylate, (R)-α-(acyloxy)-β, β-dimethyl-γ-butyrolactone, has been reported.102 The 1,3-dipolar cycloaddition of N, N′-diallylbisnitrite imides with cinnaminitriles produces exclusively 5, 5′-dicyano-4, 4′, 5, 5′-tetrahydro[3, 3′-di-1H-pyrazoles] which yield the corresponding 3, 3′-di-1H-pyrazoles on thermal aromatization.103

The Rh\textsubscript{2}(OAc)\textsubscript{4}-catalysed reactions of ethyl diazoacetate with substituted benzaldehydes yielded 1,3-dioxolanes via an initially formed carbonyl ylide. Catalyst-dependent diastereoc-control was observed only when p-nitrobenzaldehyde was used as catalyst.104 The intramolecular cycloaddition of carbonyl ylide dipoles with tethered alkenyl π-bonds is greatly enhanced by placing an sp2 centre on the tethered side-chain.105 The thermal reaction of 3-phenyloxirane-2,2-carbonitrile and 2-phenyl-3-thia-1-azaspiro[4,4]non-1-ene-4-thione yields cis- and trans-cycloadducts via a regioselective 1,3-dipolar cycloaddition of an intermediate carbonyl ylide.106

Non-stabilized azomethine ylides (71), produced from 4-substituted protoanemonin (70), undergo intramolecular cycloaddition to produce polycyclic cycloadducts (72) and (73) in good yield (Scheme 25).107 The dihalogen-substituted azomethine ylides, iminodifluoromethanides, prepared by the reaction of difluorocarbene with N-benzylidine amines, undergo 1,3-dipolar cycloaddition with electron-deficient alkenes to produce substituted pyrrolidines.108 A general synthesis of tri- and tetra-substituted oxotetrahydroindoles (75) via the intramolecular 1,3-dipolar cycloaddition of azomethine ylides (74) with tethered alkynes has been described (Scheme 26).109 Silicon-based tethers have been used to control the diastereofacial selectivity in azomethine ylide cycloadditions. Thus, azomethine ylides incorporating longer tethers [OSiPh\textsubscript{2}O(CH\textsubscript{2})\textsubscript{2}OCOCH═CH\textsubscript{2}] (76) favour endo-si attack (77) whereas shorter tethers [OSiR\textsubscript{2}CH\textsubscript{2}CH═CH\textsubscript{2}] (78) favour the endo-re product (79) (Scheme 27).110 UV–VIS spectroscopy has been used to investigate the kinetics of 1,3-dipolar cycloaddition reactions between N-p-methoxybenzylidene-α-phenylglycine methyl ester and nitrosobenzene.111
The 3 + 2-cycloaddition of ring-fused isomunchnones with various dipolarophiles produces predominantly the exo-dipolar adduct; exo selectivity could be enhanced by the inclusion of substituents on any position of the fused five-membered ring.112 Dihydropyrimidine-fused isothiomunchnones and isomunchnones (80) undergo intramolecular 1,3-dipolar cycloadditions to form cycloaducts (81) with high regio- and stereo-selectivity (Scheme 28).113 The tandem 1,3-dipolar cycloadditions of 1,3-
Scheme 27

\[
\text{Ph}_2\text{Si} \quad \begin{array}{c}
\text{O} \\
\text{O} \\
\text{O} \\
\text{NMe} \\
\text{OPh} \\
\text{Ph}_2\text{Si} \\
(76)
\end{array}
\xrightarrow{h \nu (3000 \text{ Å}) \text{ MeCN, isoprene}}
\begin{array}{c}
\text{Ph}_2\text{Si} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{NMe} \\
\text{OPh} \\
\text{Ph}_2\text{Si} \\
(77)
\end{array}
\]

\(73\%, \ ds = 12:1\)

\[
\text{Ph}_2\text{Si} \quad \begin{array}{c}
\text{O} \\
\text{O} \\
\text{O} \\
\text{NMe} \\
\text{OPh} \\
\text{Ph}_2\text{Si} \\
(78)
\end{array}
\xrightarrow{h \nu (2537 \text{ Å}) \text{ quartz, MeCN}}
\begin{array}{c}
\text{Me} \\
\text{N} \\
\text{N} \\
\text{O} \\
\text{Si} \\
\text{Ph}_2
\end{array}
\]

\(71\%, \ ds = 10:1\)

Scheme 28

\[
\text{EtO}_2\text{C} \quad \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_2\text{Me} \\
\text{Me} \\
\text{N} \\
\text{Me} \\
\text{Me}
\end{array}
\xrightarrow{\text{Rb}_2\text{(OAc)}_4 \text{ heat}}
\begin{array}{c}
\text{EtO}_2\text{C} \\
\text{N}^+ \\
\text{N} \\
\text{O} \\
\text{CO}_2\text{Me} \\
\text{Me} \\
\text{Me} \\
\text{Me}
\end{array}
\]

\(88\%\)

\[
\text{EtO}_2\text{C} \quad \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_2\text{Me} \\
\text{Me} \\
\text{N} \\
\text{Me} \\
\text{Me}
\end{array}
\]

\(80\)

\[
\text{EtO}_2\text{C} \quad \begin{array}{c}
\text{N} \\
\text{O} \\
\text{CO}_2\text{Me} \\
\text{Me} \\
\text{N} \\
\text{Me} \\
\text{Me}
\end{array}
\]

\(81\)
oxazolium-5-olates (82) with cycloocta-1,3,5,7-tetraene yields 10-benzyl-9,11-diphenyl-10-azatetracyclo[6.3.0.0^{11}.0^{5.9}]undeca-2,6-diene (83), which can be photolyzed to give azahomopentaprismane (84) (Scheme 29). The 1,3-dipolar addition of 3-methyl-2-(4-nitromethyl)-4-phenyl-1,3-oxazolium-5-olate with chiral nitroalkenes derived from D-galacto- and D-manno-hept-1-enitols produced acyclic pyrrole C-nucleosides with high regiospecificity. The 1,3-dipolar cycloaddition of 1,3-thiazolium-4-olates (85) with trans-β-nitrostyrene produces the transient cycloadducts (86) and (87), which rearrange to the diastereoisomeric racemic 4,5-dihydrothiophenes (88) and (89), respectively (Scheme 30).

\[
\begin{align*}
\text{Ph} & \quad \text{N} \\
\text{Ph} & \quad \text{Bn} \\
\text{N} & \quad \text{Ph} \\
\text{O} & \quad \text{O} \\
\text{(82)}
\end{align*}
\]

\[
\text{PhH} \quad \text{heat} \quad \text{PhH} \quad \text{acetone}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{N} \\
\text{Ph} & \quad \text{Bn} \\
\text{N} & \quad \text{Ph} \\
\text{O} & \quad \text{O} \\
\text{(83)} & \quad \text{14}\% \\
\text{(84)} & \quad \text{76}\%
\end{align*}
\]

SCHEME 29

\[
\begin{align*}
\text{Ph} & \quad \text{N} \\
\text{Ph} & \quad \text{Bn} \\
\text{N} & \quad \text{Me} \\
\text{O} & \quad \text{O} \\
\text{Ar} & \quad \text{(85)}
\end{align*}
\]

\[
\text{CH}_2\text{Cl}_2, \ 0 \ ^\circ \text{C}
\]

\[
\begin{align*}
\text{MeBnN} & \quad \text{S} \\
\text{O}_2\text{N} & \quad \text{MeBnN} \\
\text{Ph} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{Ph} & \quad \text{Ph} \\
\text{Ar} & \quad \text{Ar} \\
\text{(86)} & \quad \text{rt} \\
\text{(87)} & \quad \text{rt}
\end{align*}
\]

\[
\begin{align*}
\text{MeBnN} & \quad \text{S} \\
\text{O}_2\text{N} & \quad \text{MeBnN} \\
\text{Ph} & \quad \text{Ph} \\
\text{CONHR} & \quad \text{CONHR} \\
\text{(88)} & \quad \text{(89)}
\end{align*}
\]

SCHEME 30

A review on the inter- and intra-molecular cycloaddition of oxidopyridiniums and pyridinium ylides has appeared. The known 1,3-dipolar cycloaddition of 1-methyl-4-phenyl-3-oxidopyridinium with electron-deficient dipolarophiles has been used to produce tropenones which can be transformed into 6- and 7-substituted 3-phenyltropanes, analogues of cocaine.

(2-t-Butyleleseleno)propenitriile reacts with DMAD to yield the expected 3 + 2-cycloadduct which spontaneously converts into dimethyl 5-cyano-4,5-dihydroselenophene-2,3-dicarboxylate.
Calculated and experimental kinetic isotope effects for the asymmetric OsO₄
dihydroxylation support a 3+2-cycloaddition as the rate-determining step.¹²⁰

2+4-Cycloaddition

Activation energy has been estimated for the Diels–Alder reaction.¹²¹ AM1 MO
calculations of the thermal Diels–Alder reactions of cyclohexadiene with CH₂=CHR
(R = Me, CN, CHO) indicate that these reactions may occur through a concerted
pathway and also two radical pathways.¹²²,¹²³ The Diels–Alder reactions between
cyclopentadiene and conformationally flexible dienophiles have been studied by the
PMO method.¹²⁴ A density functional study of the Diels–Alder reactions of
cyclopentadiene with ethylene, acrylonitrile, and acrylaldehyde has been published.¹²⁵
Ab initio MO calculations on the Diels–Alder reaction between 2-phenylcyclopenta-
diene and α-(methylthio)acrylonitrile correctly describe the observed endo/exo
stereoselectivity and the para/meta regioselectivity observed experimentally.¹²⁶
Conformational and endo/exo preferences of acrylates in Diels–Alder reactions have
been investigated at several ab initio levels.¹²⁷ Semiempirical PM3 methods have been
used to investigate the Diels–Alder reaction between methyl propenoate and thebaine
and its analogues.¹²⁸ The Diels–Alder additions of hexachlorocyclopentadiene with
chiral alkenes show excellent anti selectivity that follows the ‘inside-alkoxy’ model.¹²⁹
The dibromoboryl group is a powerful neutral active group for the Diels–Alder
reaction of cyclopentenyl and cyclohexenyl dienophiles at room temperature.¹³⁰ The
diene moiety of 5-bromopyrone reacts with unactivated or poorly activated alkenes to
yield cycloadducts with high regio- and stereo-selectivity.¹³¹

Diels–Alder reactions in aqueous solutions have been reviewed.¹³² The stereo-
selectivities and rates of Diels–Alder reactions in different solvents have been
related with a solvent parameter, defined on the basis of internal pressure and
polarity of the reaction medium.¹³³ An investigation of the solvent effects on Diels–
Alder reactions indicates that hydrogen bonding is a major factor in aqueous
accelerations.¹³⁴ Monte Carlo simulations have been performed to investigate further
the hydrophobic and hydrogen-bonding effects on Diels–Alder reactions in aqueous
solution.¹³⁵ The retro-Diels–Alder reaction between cyclopentadiene and nitrosoben-
zele can be retarded by using water as solvent.¹³⁶ Semiempirical methods using SCRF
approach and a combined quantum (transition state) and molecular mechanics (solvent
molecules) method (QC/MM) have been used to investigate the endo/exo selectivity of
Diels–Alder reactions in water and methanol.¹³⁷ Cu(NO₃)₂ in water catalyses the Diels–
Alder reaction of 3-phenyl-1-(2-pyridyl)prop-2-en-1-ones with cyclopentadiene by a
factor of 79 300 relative to the non-catalysed reaction in CH₃CN.¹³⁸ The Diels–Alder
reactions of cyclopentadiene with acrylonitrile and diethyl fumarate have been
performed in supercritical water.¹³⁹ An investigation of solvent effects on Diels–Alder
reactions of acrylonitrile in fluorinated alcohol–water mixtures showed that reaction
rate depends on solvophobic, hydrogen-bond-donating, and dipolarity interactions,
while endo/exo selectivity is influenced by solvophobic and dipolarity interactions.¹⁴⁰
By changing the reaction solvent from CH₂Cl₂ to THF, it is possible to reverse the
enantiofacial selectivity of the Diels–Alder reactions of 3-crotonyl-2-oxazolidinone
with cyclopentadiene catalysed by an aluminium complex of a chiral menthol derivative.141 In carbo- and hetero-Diels–Alder reactions, the use of CH$_3$NO$_2$ as the solvent enhances the reactivity of Cu(OTf)$_2$-bisdihydrooxazole catalyst compared with the reactivity of CuX$_2$-bisdihydrooxazole in CH$_2$Cl$_2$.142 The rate of 4 + 2-cycloadditions of furan with methyl acrylate in solid C$_6$H$_6$ was found to fluctuate rapidly with time.143 The regiochemical course of the Diels–Alder reaction has been examined in supercritical CO$_2$. The previously reported reversal of the normal regiochemical course of the reaction was not confirmed.144 The π-facial selectivity of the Lewis acid-catalysed 4 + 2-cycloaddition of 2,4-diphenyl-1-thiabuta-1,3-diene with (S)-N-acryloyl-4-benzyl-1,3-oxazolidin-2-one can be controlled by solvents or additives without altering the auxiliary chirality for the asymmetric induction.145

 cis-Hydroisobenzofuranone (91), a potential precursor of the taxol C-ring, can be prepared by the intramolecular Diels–Alder reaction of triene (90) (Scheme 31).146 The unactivated intramolecular Diels–Alder reaction of trienes, (92) and (93), will lead to the trans- and cis-cycloadducts, respectively, through a choice of the proper substituents (Scheme 32).147 The thermal conversion of nona-1,3,8-triene to indan and indene by flash thermal pyrolysis involves an intramolecular 2 + 4-cyclo-aromatization to a benzene intermediate.148 Experimental activation parameters for the intramolecular Diels–Alder reactions of nona-1,3,8-triene, deca-1,3,9-triene, and undeca-1,3,10-triene were measured and their stereoselectivities were predicted using the Monte Carlo jumping between wells/molecular dynamics method.149 The key step in the asymmetric synthesis of the marine toxin (−)-isopulo’upone (96) is the intramolecular Diels–Alder reaction of the trienimide (94), in the presence of a chiral cationic Cu(II) bis(oxazoline) complex, to produce the bicyclic cycloadduct (95) with high diastereo- and enantio-selectivity (Scheme 33).150 The reaction of 2-(methylthio)acetonitrile with cyclooctatetraene provides a further example of an all-carbon Diels–Alder cycloaddition to COT.151

Acenaphthylene, indene, and styrene undergo periselective 4 + 2-cycloaddition with 3-ethoxycarbonyl-2H-cyclohepta[b]furan-2-one in high yield.152 Ab initio and DFT calculations of the Diels–Alder reactions of vinylallene and dialkene with dipolarophiles show that these reactions are concerted processes and that cumulated dienes are less reactive than non-cumulated dienes.153 Electron-rich
aryllallenes react with 1,2,3,4,5-pentamethylcyclopentadiene to yield Diels–Alder products via a cation radical-catalysed cycloaddition. The palladium(0)-catalysed intermolecular 4 + 2-cycloaddition of unactivated dienes with vinylallenes (97) readily produces substituted cyclohexenes (98) in high yields (Scheme 34).

Scheme 32

Scheme 33
An AM1 semiempirical method was used to investigate the Diels–Alder cycloaddition reactions of vinyl sulfenes with buta-1,3-dienes.156 The reactivity and stereoselectivity of vinyl boranes have been reviewed.157 Aromatic methyleneamines undergo reverse-electron-demand Diels–Alder reactions with cyclopentadiene, norbornene, and vinyl sulfides.158

Tungsten Fischer alkynyl carbene complexes (99) react with neutral 1-azadienes (100) to produce regioselectively substituted 1,4-dihydropyridines (102) in high yields. An initial Michael addition yields an allenic intermediate (101) (Scheme 35).159 Alkynylidihydroboranes undergo Diels–Alder reaction with isoprene in hexanes to produce the corresponding hexa-1,4-dienes in high yield and high regioselectivity.160 Substituent effects on the Fe2+-mediated 4 + 2-cycloadditions of dienes with alkynes have been examined by four-section ion-beam and ion cyclotron resonance mass spectrometry.161 The Diels–Alder addition of β-functionalized alkynyliodonium salts to unsymmetrical diones proceeds with excellent regioselectivity to produce substituted cyclohexadiene iodonium compounds.162
the reactivity of C₆₀ is much greater than that of C₇₀ with butadiene.¹⁶³ The Diels–Alder reaction of 4-hydroxytriphenes with fullerene (C₆₀) under pressure (300 MPa) yields two bicyclo[3.2.2]non-3-ene-2,6-diene adducts.¹⁶⁴ o-Quinodimethanes derived from sulfoxines undergo 4 + 2-cycloaddition with C₆₀ to yield cycloadduct which can be oxidized to the corresponding p-benzoquinone-containing fullerene.¹⁶⁵

A variety of quantum chemical procedures for assessing Diels–Alder reactions of butadiene with C₂H₄, HCHO, and HCHS have been investigated.¹⁶⁶ A density functional theory study of the Diels–Alder reaction of cyclopropene with butadiene supports the hypothesis that transition state structures are stabilized through interactions between the hydrogen of cyclopropene and the π-bond of butadiene.^{167,168} An <i>ab initio</i> MO study of the cycloaddition of perfluorobuta-1,3-diene to perfluorobutene confirms the experimentally observed reversal of relative stabilities on perfluorination of buta-1,3-diene and cyclobutene.¹⁶⁹ The dimerization of benzocyclobutadiene was investigated by flow NMR spectroscopy and the results indicate an initial formation of a 4 + 2-dimer (103) which rearranges to the isolated dimer (105) via a dibenzo[a,d]-cyclooctatetraene (104) (Scheme 36).¹⁷⁰ Investigations of the aminium salt-catalysed Diels–Alder reactions of 2,2-dimethylbutsa-1,3-diene with β-methylstyrenes indicated rate-determining one-electron oxidation of the styrenes to their cation radicals via an outer-sphere electron transfer.¹⁷¹ <i>Ab initio</i> G2MS and IMDMO(G2MS : MP2) methods have been used to calculate the activation barriers of Diels–Alder reactions of acetylene with butadiene and cyclopentadiene.¹⁷² AM1 calculations were used to determine the role of secondary orbital interactions in the regioselectivity of the catalysed and non-catalysed Diels–Alder reactions of juglone with aliphatic dienes.¹⁷³ The Diels–Alder reaction of 1-(2-butadienyl)pyridinium bromide with cyclopentadiene proceeds stereospecifically and regioselectively.¹⁷⁴

![Scheme 36](image)

Density functional theory computational studies have been used to determine the importance of secondary orbital interactions for the stability of transition-state structures for the 4 + 2-cycloaddition of furan with cyclopropene.¹⁷⁵ Kinetic studies of the 2 + 4-cycloaddition of 2-cyclopropylidene acetates with furan and dimethylfulvene suggest a mechanism involving diradicals or zwitterions as intermediates.¹⁷⁶ Cyclopropene, produced by the reaction of allyl chloride with sodium bis(trimethylsilyl)amide, reacts with 1,3-diphenylisobenzofuran to produce both endo- and exo-Diels–Alder cycloadducts isolated for the first time.¹⁷⁷
Ab initio calculations at the MP2(FC)/6-31G*/RHF/6-31G* level show that the chelotropic reactions of 1,3-dienes with SO₂ cannot be two-step as recently reported.178 On investigation, the Diels–Alder reactions of 1-(phenylthio)-4-alkoxy-1,3-dienes have been shown to produce exclusively the endo adducts. The regio competition between sulfur and oxygen favours the oxygen substituent.179 Molecular mechanics calculations have been used to quantify the geometric and strain effects controlling homo-Diels–Alder reactivity of 1,3-dienes.180 Unexpectedly, the 4 + 2-cycloaddition of nitroalkenes with Danishefsky’s diene exhibits exo selectivity as a result of electrostatic repulsion between the nitro group and the silyloxy group on the diene.181 A biradical mechanism has been shown to operate in the Diels–Alder reaction of 5-methylene-2(5H)-furanones with 1,3-dienes.182 The geometry of dienes obtained from 2,3-disubstituted sulfolenes bearing a 3-carbonyl derivative is dependent on the nature of the 3-carboxy group and on the functionality of the 2-substituent.183

Ab initio and density functional theoretical studies of the 4 + 2-cycloaddition of 2-azabutadiene with formaldehyde predict a concerted reaction that agrees well with experimental evidence.184 The azadiene N-phenyl-1-aza-2-cyanobuta-1,3-diene reacts with electron-rich, electron-poor, and neutral dipolarophiles under mild thermal conditions.185 5,6-Dihydro-4H-1,2-oxazines have been shown to be useful as synthon equivalents of 2-cyano-1-azabuta-1,3-dienes.186 The intramolecular Diels–Alder reaction of 1-aza-1,3-butadienes (106) can be activated by a 2-cyano substituent (Scheme 37).187 Stereoselectivity in the hetero-Diels–Alder reactions of heterobuta- dienes, nitrosoalkenes, and heterodienophiles has been extensively reviewed.188 The azadiene 1-(t-butylidimethylsilyloxy)-1-azabuta-1,3-diene (107) reacts with halobenzoquinones, naphthoquinones, and N-phenylmaleimide to yield low to good yields of various pyridine heterocycles (108) (Scheme 38).189 The 4 + 2-cycloaddition of homophthalic anhydride with N-(cinnamylidene)tritylamine produces the 3,4-adduct whereas with N-(cinnamylidene)benzylidine the 1,2-adduct is produced.190

\begin{center}
\textbf{Scheme 37}
\end{center}

In hetero-Diels–Alder reactions, the effect of ligand structure and acidity on the catalytic activity of lanthanide catalysts has been reviewed.191 The effect of different C(2)-symmetric bisoxazolines on the zinc(II)-catalysed hetero-Diels–Alder reaction of ethyl glyoxylate with conjugated 1,3-dienes has been investigated.192 The hetero-Diels–Alder reaction 4-dimethylamino-2-phenyl-1-thiabuta-1,3-diene with methyl acrylate and N-enoyloxazolidinone produces cis-3,4-disubstituted 3,4-dihydro-2H-
thiopyrans. The use of hetero-Diels–Alder reactions of \(N\)-arylimines and \(N\)-benzylimines in the synthesis of nitrogen heterocycles has been reviewed. Hetero-Diels–Alder addition of DMAD to \(z\)-thiothioamides produces unstable 1,4-dithianes that extrude sulfur to yield substituted thiophenes. The hetero-Diels–Alder reaction of \(trans\)-1-methoxy-3-(trimethylsilyloxy)buta-1,3-diene with aliphatic and aromatic ketones in the presence of chiral Cu(II) complexes of bidentate bisoxazoline yields cycloadducts with enantiomeric excess up to 99%. The asymmetric hetero-Diels–Alder reaction of a thiabutadiene with acrylamides in the presence of chiral Cu(OTf)\(_2\)-bis(benzylideneamino)cyclohexane complex is highly enantioselective. The Diels–Alder reaction of thiobenzophenone and its 4,4’-dichloro derivative with DMAD furnishes 1\(H\)-2-benzothiopyrans. Monoclonal antibodies have been shown to catalyse the hetero-Diels–Alder addition of \(cis\)-piperylene to nitroso dienophiles.

A semiempirical AM1 method has been used to investigate the hetero-Diels–Alder dimerization of methyl 4,6-\(O\)-benzylidine-3-deoxy-3-\(C\)-methylene-\(z\)-d-hexopyranoside-2-ulose. AM1 semiempirical calculations have been used to investigate the reactivity of 4 + 2-cycloaddition of silylketenes with acyl isocyanates followed by hetero-Diels–Alder reaction with acetylene derivatives. Tetraethoxyethylene reacts with \(C\)-arylimines to produce only 4 + 2-cycloadducts. The Diels–Alder reactions of 7-(methoxyimino)-4-methylchromene-2,8-dione with electron-rich dienophiles yields oxazines with high regio- and site selectivity. The retro-Diels–Alder dissociation of cyclopentadiene–acyl nitroso compound cycloadducts provide a good source of nitroxy.

An extensive review of recent advances in the area of asymmetric Diels–Alder reactions has been published. Sterically constrained tricyclic 2-oxazolidinones serve as excellent chiral auxiliaries for asymmetric Diels–Alder reactions. The Diels–Alder reactions of \((-\)(aS, 7S)-colchicine (109) with hetero- and carbo-dienophiles show
high positional selectivity at the 8,12-positions of the alkaloid and high \(\pi\)-facial diastereoselectivity (Scheme 39). Electrostatic and steric interactions are considered to control the \(\pi\)-facial diastereoselectivity of the Diels–Alder reactions between anthraceno[3.3.3]\textit{ortho}-benzophane and -napthophane with dienophiles. The \(\pi\)-facial reactivity of hetero-Diels–Alder reaction 2-(2', 3', 4', 6'-tetra-\(O\)-acetyl-\(\beta\)-d-glucopyranosyloxy)buta-1,3-diene in the presence of lanthanide–(fod)\(_3\) complexes can be correlated with the ionic radius of the lanthanide metal. In the reaction of chiral 1,3-dienes with maleic anhydride, \(\pi\)-facial selectivity is increased when the homoallylic hydroxyl group is substituted with larger protecting groups. An investigation of the Diels–Alder reactions of cyclopenta-1,3-dienes substituted at C(5) by simple alkyl groups has shown that the facial selectivity can be explained by steric hindrance. The asymmetric Diels–Alder reaction of chiral 1-amino-3-siloxybuta-1,3-diene (110) with a variety of dienophiles proceeds with excellent facial selectivity to yield substituted cyclohexenones (111) with high enantiomeric excess (Scheme 40).
The Diels–Alder reaction between cyclopentadiene and acryloyloxazolidinone is enantioselectively catalysed by the bis(oxazoline)–magnesium perchlorate complex.\(^{214}\)

Ab initio calculations of the ionic Diels–Alder reactions of triazoloisoquinolinium and tetramethoxycarbonylquinolizinium ions with electron-rich dienophiles have been reported.\(^{215}\) The \(2^+ + 4\)-cycloadditions of arendiazonium ions with \((E)\)-penta-1,3-diene, 2,3-dimethylbutadiene, and \((E)\)-2-methylpenta-1,3-diene produce dihydropyridazines and pyridazinium salts.\(^{216}\) The similarity approach has been applied to predict successfully the preferred regiochemistry of various types of pericyclic reaction including polar and semi-polar Diels–Alder and \(2 + 2\)-cycloadditions.\(^{217}\)

The use of isopropylidene acetics (112) as tethers in the intramolecular Diels–Alder reactions of dienes with alkenes facilitates the formation of cis-fused cycloadducts (113) from an *endo* transition state (Scheme 41).\(^{218}\) The intramolecular Diels–Alder reaction of 4-[tris-(2-methylethyl)silyl]oxy-2H-thiopyran derivatives with potential dienophiles tethered at C(2), C(3), C(5), and C(6) positions yielded cycloadducts when the dienophiles were activated with a carbomethoxy group.\(^{219}\) By the substitution of a phenylsulfonyl group on the dienophile of 2-benzopyran-3-ones, it is possible to enhance *exo* addition during intramolecular Diels–Alder cyclizations to yield a predominance of *trans*-fused hexaphenanthrenes related to natural products.\(^{220}\) The intramolecular Diels–Alder reaction of 2-furfuryl fumarates has been investigated by molecular mechanics (SIBFA)/continuum reaction field computations.\(^{221}\) The intramolecular \(4 + 2\)-photo-cycloaddition of \(N\)-benzylcinnamides (114) in the presence of \(C_6H_6\) gives 3-azatricyclo[5.2.2.0\(^1\)5]undeca-8,10-dien-4-ones (115) with high stereo-selectivity (Scheme 42).\(^{222}\)
cis-2-Amino-3,3-dimethyl-1-indanol is a highly efficient chiral auxiliary in the Diels–Alder addition of N-acryloyloxazolidinones to dienes in the presence of Lewis acids.223 The chiral boron Lewis acid catalysts CAB1, BLA2, and BLA3 catalyse the Diels–Alder addition of cyclopentadiene with acetylenic aldehydes with good enantioselectivity.224 The formyl C–H···O hydrogen bond has been proposed as the key to transition-state organization in enantioselective Diels–Alder reactions catalysed by chiral Lewis acids.225 The Lewis acid-catalysed Diels–Alder cycloaddition of \textit{exo}-2-oxazolidinone dienes with methyl vinyl ketone and methyl propiolate proceeds with high regio- and stereo-selectivity.226 For the first time, the Lewis acid-catalysed Diels–Alder addition of activated cyclooctenes to various 1,3-dienes has been observed.227 The first enantioselective Diels–Alder reactions of cyclopentadiene with \(\alpha, \beta \)-acetylenic aldehydes catalysed by a chiral super Lewis acid has been described.228 Scandium(III) perfluoroocetanesulfonate is a Lewis acid catalyst for intramolecular Diels–Alder reactions of aldehydes with non-activated dienes under mild conditions.229 Lewis acid-catalysed Diels–Alder reactions of (\(Z \))-1,3-dienes with a variety of \(\alpha \)-substituted acrolein have been shown to proceed with excellent regio- and high \textit{endo} selectivity.230 The tin(IV) chloride-catalysed hetero-Diels–Alder reaction of methyl 2-oxo-4-phenylbut-3-enoate with styrene produces dihydropyrans via an ionic stepwise mechanism.231 The Lewis-acid catalysed 4 + 2-cycloaddition of chiral \(\alpha \)-silyloxyaldimines with 2-silyloxybuta-1,3-dienes yielded only two 2,6-\textit{trans}-isomeric adducts which were transformed into \textit{trans}-2,6-disubstituted-4-piperidones.232 The asymmetric Diels–Alder reaction of TIPS-protected trienolsilyl ethers (116) with chiral dienophile (117) catalysed by TiCl\textsubscript{4}–SbPH\textsubscript{3} coupled with glycosidation with \(p \)-methoxybenzyl (MPM)-protected carbohydrate sulfoxides is a key step in the synthesis of the antiulcerogenic terpene glycoside (–)-cassioside (118) (Scheme 43).233

The facially perturbed enantiopure (S,S)-2-(p-tolysulfinyl)norbormeno-p-benzoquinones (119), undergo asymmetric Diels–Alder additions with cyclopentadiene to yield the four possible adducts (120) and (121). The \textit{endo-syn} cycloadducts (121) can be used in the synthesis of the cage compound garudane (122) (Scheme 44).234 The anti-aromatic compound 1,4-biphenylenequinone (123) has been synthesized and trapped by Diels–Alder reaction with cyclopentadiene (Scheme 45).235 The 4 + 2-cycloadditions of 4-methylene-5-(bromomethylene)-4,5-dihydrothiazole with 2- and 3-bromonaphthaquinones are highly regiospecific.236

The Lewis acid-promoted tandem int[4 + 2]/intra[3 + 2]-cycloaddition of the (fumaroyloxy)nitroalkene (124) with the chiral \(\beta \)-silylvinylic ether (125) is the key step in the total synthesis of (+)-crotanecine (126), the neince base of a number of pyrrolizidine alkaloids (Scheme 46).237 The tandem int[4 + 2]/intra[3 + 2]-cycloadditions of nitroalkenes (127) with dipolarophiles attached to the \(\beta \)-carbon of a vinyl ether (128) provides a method of asymmetric synthesis of highly functionalized aminocyclopentanes (129) (Scheme 47).238 \textit{trans}-2-(1-Methyl-phenylethyl)cyclohexanol has been developed as a new auxiliary in tandem 4 + 2/3 + 2-cycloadditions of nitroalkenes.239 The scope and limitations of the bridged mode tandem inter-[4 + 2]/intra[3 + 2]-cycloadditions involving simple penta-1,4-dienes are described in detail.240 A tandem intermolecular/intramolecular Diels–Alder cycloaddition was successfully used to synthesize a B/C cis-fused taxane nucleus (130) in 50% overall
yield (Scheme 48).241 Tandem cyclopropyl iminium ion/4 + 2-cycloaddition reactions provide a route to bicyclic and tricyclic heterocycles (Scheme 49).242 The Diels–Alder reaction of pyrrole-3-carboxylic esters with N-methyl- and N-phenyl-maleimides yield exclusively endo adducts.243 The Diels–Alder reaction of
cyclopentadiene with chiral cinnamoyl- and crotonyl-(2-p-tolylsulfinyl)pyrrole in the presence of AlCl₃ or Yb(OTf)₃ proceeds readily to yield the corresponding endo adducts with high diastereoselectivity. Radical cation-initiated cycloaddition reactions between 2-vinylpyrrole and β-substituted enaminonitriles lead to different cycloadducts depending on the substituents. The 4 + 2-cycloadditions of N-acrylindole-2,3-quinodimethanes and substituted 3-vinylindoles (131) with bismaleimides (132) provide a new route to biscardazoles (133) with potential as DNA minor groove binding ligands (Scheme 50). An investigation of the second-order rate constants for the Diels–Alder addition of dimethyl fumarate to isobenzofuran, 5H-cycloprop[f]isobenzofuran, and substituted derivatives suggests that π-bond fixation (Mills–Nixon effect) does not control the reactivity of 5H-cycloprop[f]isobenzofuran. A Pummerer reaction of an o-amido-substituted sulfoxide (134) produces a 2-amino-substituted isobenzofuran (135), which in the presence of an electron-deficient dienophile undergoes a Diels–Alder cycloaddition followed by a ring opening to produce vinylogous C-acyliminium ions (136), which readily aromatize (Scheme 51).
$\text{(127)} + \text{(128)} \xrightarrow{\text{MAPh (3 equiv.)} \ , \ \text{CH}_2\text{Cl}_2, -25 \degree \text{C}} \text{(129)}$

$G^* = \text{trans-(1R,2S)-phenylcyclohexanol}$

$\text{Ac}_2\text{O/py}$

$R = \text{H}, 72\%$

$R = \text{Ac}, 77\%$

$93\% \text{ ee}$

SCHEME 47

$\text{(130)} 82\%$

SCHEME 48
MO calculations at the MP4SDTP/6–311G**//MP2/6–311G** level on the Diels–Alder reaction of ethylene with 1-phosphabut-3-en-1-yne show that the reaction is endothermic compared with the all-carbon case, which is exothermic.249 \textit{Ab initio} studies have been presented for hetero-Diels–Alder reactions between phosphorus-containing dienes and dienophiles.250 \textit{Ab initio} calculations on the Diels–Alder reaction between 2\textit{H}-phosphole and phosphaethene indicate that the reaction is concerted and synchronous.251 The Diels–Alder reaction between 1,3,5-triphosphabenzene and phosphaacetylene to form tetr phosphabarrelene was studied at the MP4SDQ/6–
31G*/M2/6–31G* level.252 Trialkyl 2-phosphonoacyrates undergo 4 + 2-cycloaddition with \textit{N}-buta-1,3-dienylsuccinimide to produce the ortho adduct.253

The kinetics of high-pressure cycloaddition reactions of tropone with dienophiles and enophiles have been reviewed.254 The Diels–Alder reaction of 9,10-dimethylanthracene with acrylonitrile has been investigated at high pressure in acetonitrile and in ethereal solutions of lithium perchlorate.255 The combination of high pressure and a solution of lithium perchlorate in diethyl ether is an excellent reaction rate accelerator in 4 + 2-cycloaddition reactions.256

The presence or absence of the dioxolane protecting group in dienes dictates whether they participate in normal or inverse-electron-demand Diels–Alder reactions.257 The intramolecular inverse-electron-demand Diels–Alder cycloaddition of 1,2,4-triazines tethered with imidazoles produce tetrahydro-1,5-naphthyrinidines following the loss of \textit{N}_2 and CH\textsubscript{3}CN.258 The inverse-electron-demand Diels–Alder reaction of 4,6-dinitrobenzofuroxan (137) with ethyl vinyl ether yields two diastereoisomeric dihydrooxazine \textit{N}-oxide adducts (138) and (139) together with a bis(dihydrooxazine \textit{N}-oxide) product (140) in the presence of excess ethyl vinyl ether (Scheme 52).259 The inverse-electron-demand Diels–Alder reaction of 2,4,6-tris(ethoxycarbonyl)-1,3,5-triazine with 5-aminopyrazoles provides a one-step synthesis of pyrazolo[3,4-d]pyrimidines.260 The intermolecular inverse-electron-demand Diels–Alder reactions of trialkyl 1,2,4-triazine-4,5,6-tricarboxylates with protected 2-aminimidazole produced 1\textit{H}-imidazo[4,5-c]pyridines and the rearranged 3\textit{H}-pyrido[3,2-d]pyrimidin-4-
The unsymmetrical 3-methoxy-6-methylthio-1,2,4,5-tetrazine reacts with neutral and electron-rich dienophiles to yield 4 + 2-cycloadducts.(262) Tetrahydrodianthracene undergoes 4 + 2-cycloaddition with electron-deficient dienes such as 1,2,4,5-tetrazines.(263) The Diels–Alder reactions of [3.3]orthoanthracenophanes with \(N\)-(p-nitro, chloro, or methoxy-substituted phenyl)maleimides yield approximately equal quantities of \textit{inside} and \textit{outside} adducts.(264) The photooxidation of bulky water-soluble 1,4-disubstituted naphthalenes with singlet oxygen yields both the expected 1,4- and the unexpected 5,8-endoperoxides.(265)

The reaction of aryl and methyl isothiocyanates with \(\alpha\)-thiothioamides produces 2,3-dihydro-2-thioxothiazole and 2-iminothiazole via 4 + 2- and 2 + 2-cycloadditions, respectively.(266) The Diels–Alder reaction of 2-(\(p\)-tolylthio)naphthazarin with 1-methoxycyclohexa-1,3-diene yields a tricyclic cycloadduct which, after oxidation to the corresponding \(p\)-tolylsulfanyl derivative, reacts with a second molecule of the diene to form tetracyclic tetrahydropolyhydroxyquinones.(267) \(N\)-Arylmonothioamaleimides readily undergo 4 + 2-cycloaddition at both the C=S and C=C groups with both electron-withdrawing and electron-donating groups.(268)

Miscellaneous Cycloadditions

\textit{Ab initio} MO calculations have been used to determine the transition structures for the ene reactions of cyclopropene with ethylene, propene, and cyclopropene.(269)
Zinconacyclopentadienes (141), substituted with alkyl groups, undergo 1,1-cycloaddition with propynoates to yield cyclopentadienes (142) as outlined in Scheme 53.270

The SnCl₄-promoted 2 + 1-cycloaddition of 1-seleno-2-silylethene with 2-phosphonoacrylates yields highly functionalized cyclopropanephosphonic acid ester products.271 The Lewis acid-promoted 2 + 1-cycloadditions of 1-(phenylseleno)-2-(trimethylsilyl)ethene with tris(alkoxycarbonyl)olefins yields cis-substituted cyclopropanes exclusively.272

PhCH₂=RU(C₅H₅)₂Cl₂ catalyses the cyclooligomerization of trienes (143) to benzene derivatives (144) via a cascade of four metathesis reactions (Scheme 54).273 Isocyanate cyclotrimerization catalysed by dimethylbenzylamine–phenyl glycidyl ether–phenol has been studied by IR and PMR spectroscopy.274

The attempted Pd(II)-catalysed aza-Claisen rearrangement of the trichloroacetimidate (145) yielded the diastereoisomerically pure cyclopropane derivative (146) (Scheme 55).275
The rhodium-catalyzed asymmetric 4 + 1-cycloaddition of vinylallenes (147) with CO furnishes 5-substituted 2-alkyldene cyclopent-3-enones (148) with up to 95% enantioselectivities (Scheme 56). 276

A review of intramolecular 4 + 3-cycloadditions of allyl cations has been presented. 277 The 4 + 3-cycloaddition reaction of C(2)-substituted furans with 1,3-dimethoxyallyl cations show high endo diastereoselectivity and a cis diastereospecificity. 278 The tandem Peterson olefination/[4 + 3]-cycloaddition of tertiary alcohols (149) in the presence of furan and Lewis acids (TiCl₄) furnishes cycloheptanes (150) in modest yields (Scheme 57). 279 (Trimethylsilyl)methyl allylic sulfones (151) were used to investigate the scope and limitations of intramolecular 4 + 3-cycloadditions of allylic sulfones (Scheme 58). 280 Lewis acid-catalysed 4 + 3-
intermolecular cycloaddition of (trimethylsilyl)methyl allylic acetals with furan proceed with high diastereoselectivity.281 Chiral \(\alpha \)-chloroimines are efficient precursors of chiral 2-aminoallyl cations which undergo facial and \textit{endo}-selective 4 + 3-cycloadditions with furan or pyrrole to produce iminium salts of chiral bicyclo[3.2.1]octanone.282

Conical intersections of the 4 + 4-photo-cycloaddition of butadiene with butadiene has been located at the CASSCF/4-31G level.283 The intramolecular 4 + 4-photo-cycloaddition of two pyridones linked by a three-atom chain yields a nearly quantitative yield of head-to-head cycloadducts.284 The photo-irradiation of 2-furan in the presence of 1-naphthalene-carbonitrile through a Pyrex filter produced both the major 4 + 4-cycloadduct and the minor 2 + 2-adduct.285

Trimethylsilyl triflate in 3.0 M lithium perchlorate–ethyl acetate is an effective promoter of 5 + 2-cycloaddition reactions between quinone monoacetal and 2,3-dimethylbut-2-ene.286

An extensive review of 6 + 4-cycloaddition reactions has been published.287 The use of a ‘precatalyst’ in the chromium(0)-promoted 6 + 4-cycloaddition reaction of cyclohepta-1,3,5triene with acyclic dienes ensures that only stoichiometric quantities of the metal are involved in the cycloaddition (Scheme 59).288 The first example of an aqueous 6 + 4-cycloaddition of tropone with the water-soluble diene 1-(\(\beta \)-d-glucopyranosyloxy)buta-1,3-diene (152) yields 2-(glucopyranosyloxy)bicyclo[4.4.1]undecanones (153) and (154) with \textit{exo} selectivity (Scheme 60).289 A new benzannulation sequence is based on chromium(0)-promoted 6\(\pi \) + 4\(\pi \)-photo-cycloaddition of (\(\eta^6 \)-thiopin-1,1-dioxide)tricarbonylchromium(0) in the presence of a diene followed by a Ramberg–Bäcklund rearrangement of the cycloadduct.290
Scheme 59

The $8 + 2$-cycloaddition of $2H$-cyclohepta[b]furan-2-one (155) with acyclic 1,3-dienes provides a facile route to bicyclo[5.3.0] ring systems (156) (Scheme 61). 291 $2H$-Benzo[b]thiete in the o-quinoid form undergoes $8 + 2$-cycloaddition with 1,3-dithiolane-2-thione, 1,3-dithiole-2-thiones, and adamantanolene to produce $4H$-1,3-benzodithianes. 292
References

14 Addition Reactions: Cycloaddition

14 Addition Reactions: Cycloaddition

CHAPTER 15

Molecular Rearrangements

A. W. MURRAY

Department of Chemistry, University of Dundee

Aromatic Rearrangements ... 473
Benzene Derivatives .. 473
Heterocyclic Derivatives ... 484

Sigmatropic Rearrangements .. 496
[3,3]-Migrations ... 496
Claisen and related rearrangements 496
Cope and related rearrangements 507
[2,3]-Migrations ... 512
[1,3]-Migrations ... 519
[1,5]-Migrations ... 522
Miscellaneous ... 523

Electrocyclic Reactions .. 530
Anionic Rearrangements .. 543
Cationic and Related Rearrangements 550
Rearrangements in Natural-product Systems 565

Rearrangements Involving Electron-deficient Heteroatoms 568
Rearrangements Involving Organometallic Compounds 571
Rearrangements Involving Ring Opening 577
Isomerizations ... 587
Tautomerism ... 588
References .. 590

Aromatic Rearrangements

Benzene Derivatives

A simple example of a Fries rearrangement accelerated by microwave irradiation has been presented.\(^1\) A study has been made\(^2\) of solvent effects on the liquid-phase Fries rearrangement of phenyl acetate over zeolites, and a selective Fries rearrangement of that ester into hydroxyacetophenones has been catalysed by high-silica zeolites.\(^3\) It has been shown\(^4\) that, in the Fries rearrangement of phenyl and naphthyl esters over K10-montmorillonite, framework aluminium acts as a Lewis acid, catalysing the rearrangement. An increase in the size of the migrating group and/or substrate was found to increase the proportion of ortho-isomer. Group 3 and 4 metal triflates have also been found to act as efficient catalysts in the Fries rearrangement of phenyl and naphthyl acylates.\(^5\) A new LDA-mediated O → C carbamoyl migration in O-(2-
(1) methylaryl)carbamates (1) has provided an efficient route to aryl acetamides (2), precursors to benzo- and naphtho-furanones (3) (see Scheme 1). New O-mercaptoaryl phosphonates and their derivatives have been prepared via an ortho-lithiation of O,O-diisopropyl S-aryl phosphorothioates followed by a phosphoryl group S \rightarrow C migration (see Scheme 2). Dimeric ketenes, presumably generated from transient cyclohexa-2,4-dienones, have been observed on laser flash photolysis of phenyl acetate (and benzyl phenyl ether), thus providing additional proof for the involvement of cyclohexadienones in the photo-Fries (and photo-Claisen) rearrangements.

It has been demonstrated that photo-protonation of 2-diphenylmethyl-1,3-dimethoxybenzene (4) to the cyclohexadienyl cation (5) not only results in dissociative cleavage of the diphenylmethyl cation (the reverse of the step in a Friedel–Crafts alkylation that produces the cyclohexadienyl cation), but is accompanied by a surprising rearrangement to the isomeric 2,4-dimethoxybenzenium ion (6). This (see Scheme 3) represents the first example of a system where rearrangement involving two isomeric
cyclohexadienyl cations has been observed with laser flash photolysis, and shows that cyclohexadienyl cations of the Friedel–Crafts reaction of 1,3-dimethoxybenzene and the diphenylmethyl cation rearrange on the nanosecond time-scale, without separating the aromatic substrate and the electrophile. 6-Methoxytetralins have been transformed into 8-methoxytetralins through the action of zirconium tetrachloride. The authors proposed that the transformation proceeds via scission of the C(1)–C(8a) bond, followed by an intramolecular Friedel–Crafts cyclization (see Scheme 4). The formation of spiroketone (9) from treatment of 5-(2-naphthalenol)pent-1-ene (7) with aluminium chloride has been explained by invoking the involvement of a cyclic aluminium
Intermediate (8). A super acid-catalysed reductive Friedel–Crafts reaction of arenes using areneacetaldehyde acetals has been reported.\(^\text{12}\) The reaction, yielding diarylmethanes, is assumed to proceed through a redox process involving a hydride shift from the acetal moiety to the benzylic carbon. It has been reported\(^\text{13}\) that photolysis of the charge-transfer complex of tetrinitromethane and pentamethylbenzene yields the labile epimeric 1,2,3,4,6-pentamethyl-3-nitro-6-trinitromethylcyclohexane-1,4-dienes, one of which rearranges rapidly to afford 2,3,4,5-tetramethyl-1-(2',2',2'-trinitroethyl)benzene, 2,3,4,5-tetramethylphenylnitromethane, 2,3,4,5-tetramethylbenzyl nitrate, and 2,3,4,5-tetramethylbenzyl nitrite. \(\alpha,\alpha',\alpha'\)-Tetraaryl-1,4-benzenedimethanols (10), in the presence of a catalytic amount of acid, have been found\(^\text{14}\) to rearrange to 3-aryl-3-aryl-6-diarylmethylenecyclohexa-1,4-dienes (12), presumably by initial formation of carbocations (11) and subsequent intramolecular migration of an aryl group. Diels–Alder adducts (13), obtained from the reaction of \(o\)-benzoquinones substituted with electron-withdrawing groups at C(3) or C(4), with a variety of dienes, have been shown\(^\text{15}\) to undergo migration of the ‘angular’ electron-withdrawing substituent with concomitant aromatization, to produce substituted catechols (14). A novel base-promoted oxidative rearrangement of 2-methyl-4-substituted phenols (15) to 1,2-(methyleneoxy)-4-substituted benzenes (16) has been reported.\(^\text{16}\) The mechanism shown in Scheme 5 has been tentatively proposed for the process. Evidence for the mechanism of the aromatic Pummerer-type rearrangement of \(p\)-sulfinylphenols (17) has been obtained\(^\text{17}\) from the isolation of acetel intermediates (18) during the acid anhydride-induced rearrangement of (17) to \(p\)-quinones (19).

The recently observed\(^\text{18}\) silica gel-promoted lactonization of 4-aryl-5-tosyloxypentanoates represents the first instance of a phenonium ion inducing migration of an aryl
15 Molecular Rearrangements

[Chemical Structures and Equations]

SCHEME 5
group in tandem with intramolecular attack by a nucleophilic functional group (see Scheme 6). An MO study\(^{19}\) has been undertaken on the gas-phase phenyl group migration within protonated ketones, viz. (20) to (21), and a mechanism in which the aromatic ring is involved has been proposed\(^{20}\) for the novel rearrangement of \(\omega\)-phenylalkanols to phenylalkyl ketones. A series of condensed aromatics have been prepared\(^{21}\) by the superacidic dehydrative cyclization of aryl pinacols (see Scheme 7), and photolysis of \(\alpha\)-chloroacetophenones in different solvents has shown\(^{22}\) that the observed 1,2-aryl migration (see Scheme 8) is media controlled. A short-lived radical dication (23) has been postulated\(^{23}\) as a key intermediate in the oxidative cyclization of
2,2-dimesityl-1-(4-\(N,N\)-dimethylaminophenyl)ethenol (22) to benzofuran (24). Bromination of the methyl ether of 3,6-di-\(t\)-butylnaphthalen-2-ol has been found to yield the 1-
bromo product, which subsequently underwent a rapid proton-catalysed reversible reaction leading ultimately to the formation of the 8-bromo product by an intermolecular route. The authors proposed that the driving force for this conversion is steric buttressing by the 3-i-butyl group which destabilizes the initial 1-bromo adduct towards 1-protonation, thus leading to facile loss of the bromonium ion. Low-temperature protonation of 9-isopropenylphenanthrene in FSO₃H–SO₂ClF has led to the direct observation of the 5,6-dihydrobenzanthracenium cation from which the corresponding benz[de]anthracene is obtained on quenching, while stable and ultrastable carbocations have been generated spontaneously by inclusion of 4-vinylanisole within zeolites.

Labelling studies have shown that the unusual base-catalysed rearrangement of the β-O-4 lignin model (25) to (27) containing an α-O-4 linkage, proceeds by way of intermediate (26). Acylation of hydroxy aromatic compounds with 2-bromo-2-methylpropionamide, followed by Smiles rearrangement of the resulting 2-aryloxypropionamide in a one-pot procedure, has been shown to produce the corresponding 2-hydroxy-2-methyl-N-arylpropionamides, while the Smiles rearrangement has been established as a suitable method for the preparation of 5-[(2-hydroxyacyl)amino]-2,4,6-triiodo-1,3-benzendicarboxamides; see (28)→(29). The effect of α- and β-cyclodextrins on the kinetics of the Smiles rearrangement of salicylic acid esters, such as 4-nitrophenyl salicylate, has been studied.

A study has been made of the rearrangement of N-triarylmethylanilines to their p-triaryl methyl derivatives. N-Methyl-N-nitrosamine has been observed to undergo a Fischer–Hepp rearrangement when treated with montmorillonite clay, and N-aryl-N-nitrosohydroxylamine ammonium salts (30) have been transformed into azoxy
compounds (31) upon thermolysis or photolysis. The rearrangement mechanisms of several types of azoxy compounds, including PhN(O)NPh, have been studied\(^{36}\) by density functional theory, and diazoaminobenzene has been rearranged to \(p\)-aminoazobenzene in the presence of a catalytic amount of clay.\(^ {37}\) A \([9,9]\)-sigmatropic shift has been proposed\(^ {38}\) to account for the acid-catalysed benzidine rearrangement of bis[4-(2-furyl)-phenyl]diazane to 5,5'-bis(4-aminophenyl)-2,2'-bifuryl. 1-Aryl-2-acyl-2-cyanohydrazines have been found\(^ {39}\) to undergo a smooth thermal rearrangement to provide 2-aminoacylbenzimidazoles (see Scheme 9), while a study with particular emphasis on the influence of the leaving group on the mode of reaction has been made\(^ {40}\) of the oxidative rearrangement and cyclization of \(N\)-substituted amidines (32) to (33). A new aromatic rearrangement, observed during the cyclization of ylideneenalonicnitriles in strong acids, has been described,\(^ {41}\) and a free-radical mechanism has been suggested\(^ {42}\) to account for the plethora of products obtained on the pyrolysis of 1,4-diarylthiosemicarbazides.

![Diagram](image_url)

\[
\begin{align*}
R^1NHCO & \quad \overset{\text{aq.NaOH}}{\longrightarrow} \quad R^1NHCO \quad (28) \\
\text{CONHR}^3 & \quad \overset{\text{aq.NaOH}}{\longrightarrow} \quad \text{CONHR}^3 \quad (29)
\end{align*}
\]

The first spectroscopic detection of singlet phenylnitrene has been reported,\(^ {43}\) and the ring-expansion reactions of several fluorinated arylnitrenes have been studied computationally\(^ {44}\) in an attempt to understand the dramatic difference in reactivity between phenylnitrene and pentafluorophenylnitrene. The effect of the trifluoromethyl group on the rearrangement of diarylcarbenes in the gas phase has been examined,\(^ {45}\) and it has been demonstrated that trifluoromethylated diphenylcarbenes can be regarded
as synthetically useful intermediates for trifluoromethylated fluorene derivatives which are otherwise not easily obtainable. A kinetic study of the rearrangement of benzylfluorocarbene to β-fluorostyrenes has been undertaken, and a theoretical study of the thermal isomerization of fulvene to benzene has identified three possible pathways for the process.

Surprisingly smooth skeletal rearrangements, leading to planar polycyclic aromatic compounds, have been found to occur during the intramolecular cyclodehydrogenation of non-planar oligophenylenes, thus providing evidence that the driving force for intramolecular cyclodehydrogenation is the considerable gain in energy of planar polycyclic aromatics compared with their more energetic oligophenylene precursors. Semiempirical AM1 calculations have provided a rationalization via consecutive ring contraction–ring expansion processes and vice versa, for the unexpected conversion of benz[/]acephenanthrylene (34) and its isomer, benz[/]acephenanthrylene (36), into benz[/]fluoranthenes (35). It has been reported that under high-temperature conditions the oxy-polycyclic aromatic hydrocarbons (37) and (39) are precursors to the C$_{18}$H$_{10}$ potential energy surface. Benzo[ghi]fluoranthenene (38) was found to be the primary product and it rearranges to cyclopenta[cd]pyrene (40). An examination of the high-temperature behaviour of 1,8-diethynylantracene has identified benz[mno]aceanthrylene as a transient intermediate for the formation of cyclopenta[cd]pyrene in the thermolysis. The observed formation of (40) and (38) from 3,9-bisethynylphenanthrene and 8-ethynylfluoranthenene, respectively, under FVT conditions suggests that redundant ethynyl substituents, which cannot give five- and/or six-membered ring formation via ethynyl ethylidene carbene equilibration followed by carbene C–H insertion, can migrate along the polycyclic aromatic hydrocarbon periphery. The thermal interconversions of the cyclopenta-fused polycyclic aromatic hydrocarbons fluoranthene, acephanthrylene, and aceanthrylene have been re-examined.

The FVP of angular [3]phenylene and bis(2-ethynylphenyl)ethyne has been found to produce benz[ghi]fluoranthenene and chrysene, respectively. A non-chain stepwise radical mechanism which is initiated by hydrogen-atom transfer from the donor to azulene has been proposed for the mechanism of the uncatalysed transfer–
hydrogenation of azulene to the isomeric octahydroazulenes with hydrogen donors. Furthermore, the formation of naphthalene and tetralin via the azulene–naphthalene rearrangement, also found to occur under these conditions, has been explained by a combination of the Scott mechanism and the Alder ‘walk’ mechanism, which are initiated by the hydrogen-transfer step.

The first observation of the thermal transformation of a strained paracyclophane into its Dewar isomer has been reported.56 Hexahalobispropellane (41), on treatment with potassium \(t \)-butoxide, has been shown to afford the phenol (43) along with (44). The formation of both these compounds has been rationalized57 by invoking the intermediacy of (42) (see Scheme 10).
Heterocyclic Derivatives

A novel acid-catalysed rearrangement of 2-hydroxy-2-phenylazo-γ-butyrolactone (45) to the interesting N-substituted tetrahydro-1,3-oxazine-2,4-dione derivative (46) has been reported. The photo- and thermo-chemistry of diazo(2-furyl)methane and diazo(3-furyl)methane have been investigated using matrix isolation techniques, and 3,7-diphenylpyrano[4,3-c]pyran-1,5-diones have been prepared from 5,5'-diphenyl-
bifuranylidenediones. Thiazyl chloride (47) (generated from trithiazyl trichloride) has been found to convert 2,5-disubstituted\(^{61}\) and 2,3,5-trisubstituted\(^{62}\) furans into isothiazoles regiospecifically, thus providing a new one-step synthesis of isothiazoles, for which a novel mechanism involving the formation and ring opening of a \(\beta\)-thiazylfuran (48) has been proposed\(^{63}\) (see Scheme 11). Although the same reagent converts 1-aryl-2,5-diphenylpyrroles into isothiazole imines, 1-alkyl-2,5-diphenylpyrroles have been found to react very differently with (47), yielding the bis-1,2,5-thiadiazole (49) in which two \(N-S-N\) units have been fused on to the pyrrole and the alkyl-\(N\) unit has been extruded in a new dissection of the pyrrole ring\(^{64}\) (see Scheme 12).

The thermal reactions of indole have been studied. The authors\(^{65}\) suggested that the indole to benzyl cyanide isomerization involves a series of unimolecular steps which
are preceded by a very fast indole ⇆ indolenine tautomerism. New arguments have been presented\(^6\) against the direct rearrangement of a spiroindolenine intermediate into the \(\beta\)-carboline system in the Pictet–Spengler cyclization, and spiro(indan-2,4′-quinoline)-keto lactams have been obtained from the reaction of 1-keto-2-indanylacetic acid with substituted phenylhydrazine hydrochlorides.\(^6\) The flash vacuum pyrolysis of a series of \(N\)-alkyl-(or -aryl)-substituted carbazole-1,2-dicarboxylic anhydrides has been shown to lead to 1,2-didehydrocarbazoles, which undergo ring expansion, cyclization, and other reactions.\(^6\) Microwave heating of 2-hydroxy- or 2-oxo-pyrrolo[2,1-c][1,4]benzodiazepinediones (50) in boiling phosphoryl chloride has led\(^6\) to cyclopenta[b][1,4]benzo-
diazepines (51). This appears to be a general reaction which can be applied to derivatives bearing a substituent in the 2-position or a C(2)—C(3) double bond.

On the basis of labelling studies it has been concluded\(^70\) that an intermediate of the type (53) must be involved in the reaction of 3-bromo-2-nitrobenzo[\(b\)]thiophene (52) with 3-(trifluoromethyl)aniline in order to account for the observed labelling patterns in the products (54) and (55).

A mechanism has been proposed\(^71\) to account for the formation of \(\alpha\)-carboline (56) as the major product from pyrolysis of 1-benzylpyrrole. 1,4-Dinitro- and 2-methyl-1,4-dinitro-imidazoles have been found to rearrange to their \(C\)-nitro isomers on heating in solution.\(^72\) The photochemical isomerization of the \(N\)-oxides and \(N,N\)-dioxides of imidazoles have been reported.\(^73\) Intermolecular cycloadditions between trialkyl 1,2,4-triazine-4,5,6-tricarboxylates and protected 2-aminimidazole have been found to afford 1\(H\)-imidazo[4,5-\(c\)]pyridines and the rearranged 3\(H\)-pyrido[3,2-\(d\)]pyrimid-4-ones,\(^74\) the latter presumably being formed by the pathway depicted in Scheme 13. This work has been extended\(^75\) to the preparation of tetrahydro-1,5-naphthyridines. Recent attempts to synthesize the novel imidazo[4,5-\(e\)][1,2,4]triazocine ring system have been found to result in a number of novel rearrangements.\(^76\) 3-Substituted 6\(H\)-imidazo[1,2-\(c\)]quinazolin-5-ones have been shown to undergo a Dimroth-type rearrangement to the thermodynamically more stable 2-substituted 6\(H\)-imidazo[1,2-\(c\)]quinazolin-5-ones.\(^77\) Scheme 14 has been proposed\(^78\) to account for the HCl-mediated rearrangement of 6-(4-chlorophenyl)-3-methyl-5-nitrosoimidazo[2,1-\(b\)][1,3][thiazole (57) into 8-(4-chlorophenyl)-8-hydroxy-5-methyl-8\(H\)-[1,4]thiazino[3,4-\(c\)][1,2,4]oxadiazol-3-one (58).

A common reaction intermediate (59) has been invoked\(^79\) to account for the isomerization of 5-alkoxyisoxazoles to azirine derivatives, and the reductive cleavage of 5-alkyl(aryl)isoxazoles to enamino ketones, in the presence of a catalytic amount of
iron dichloride (see Scheme 15). It has been reported that a number of tetrachlorocyclopropanes bearing an isoxazole (60) or bicyclic isoxazoline at C(3), lead directly to 2-alkenoylpyrroles (64) on reaction with methyllithium. The formation of (64) has been explained\(^\text{80}\) in terms of an initial 1,2-dechlorination to produce the cyclopropene (61) followed by ring opening of this to the corresponding vinylcarbene which cyclizes to (62) and (63); fragmentation would then account for (64). A new rearrangement of 2,3-dihydroisoxazoles has been described,\(^\text{81}\) and a series of thiazolo[5,4-d]isoxazoles have been prepared\(^\text{82}\) by the interaction of 4-bromo-3-substituted-(4\(H\))-isoxazol-5-ones with alkyl(aryl)thiocarbamates and related derivatives. On direct irradiation, [2,1]benzisoxazolequinones (65) have been shown to rearrange to the corresponding \(\gamma\)-cyanoalkylidenebutenolides (66). A mechanism
involving a triplet nitrene intermediate has been proposed83 for the reaction (see Scheme 16). The formation of 5,6-dihydropyrrrolo[2,1-\(\alpha\)]isoquinoline derivatives (68) from 5-methylenesoxazolidines (67) has been rationalized84 on the basis of two competitive, consecutive rearrangements, the major route being the transient formation of pyrrolidin-3-ones followed by their novel rearrangement via 3,4-bond scission and cyclo-condensation (see Scheme 17). A new rearrangement of oxazolium salts to \(\delta\)-3-pyrrolin-2-ones has been observed85 while oxazolium salts (69) produced from the reaction of tropones with nitrilium salts have been found to undergo cleavage of the N–C(3a) bond followed by a Chapman rearrangement to afford86 stable \(N\)-acyliminium salts (70).
The 1,2-hydrogen shift isomers of neutral (singlet and triplet) thiazole and its radical cation have been investigated by a combination of mass spectrometric experiments and hybrid density functional theory calculations. An unexpected isomerization of \(N\)-aryl-3-amino-4-nitrothiazole-5(2H)-imines (67) to 2-(benzothiazol-2-yl)-2-nitroethene-1,1-diamines (68) has been reported.

It has been demonstrated that the reaction of acetoxybenziodazole (70) with alcohols in the presence of trimethylsilyl triflate produces 3-iminobenziodoxoles (71). A plausible mechanism for the process is shown in Scheme 18.

The rearrangements of 1,2,3-triazolines to aziridines and imines have been reviewed. 1-Arylamino-2-(4-cyanobutyl)-3,4-bis(alkoxycarbonyl)pyrroles have been generated by heating tricyclic 7,8,9,10-tetrahydro-3\(H\),5\(H\)-benzo[\(d\)]pyrrolo[1,2-c]-[1,2,3]triazoles, while it has been shown that the reaction of 1,3-diaryl-1- triazolo-[1,5-\(a\)]benzimidazole (72) with dimethyl sulfate results in ring transformation to a benzimidazolylindazole (73). A process involving ring opening to a nitrenium cation (74) and subsequent electrophilic ring closure has been proposed to account for product formation. A new fused nitrogen–phosphorus–sulfur ring system (75) has been identified from the reaction of substituted 1,2,3-triazolium-1-imide 1,3-dipoles with Lawesson’s reagent (see Scheme 19), and although flash vacuum pyrolysis of \(\alpha\)-benzoazetazolyl-\(\beta\)-oxophosphorus ylides generally leads to loss of both \(R_2\)PO and \(N_2\), it

\[\text{Scheme 17}\]

\[\text{Scheme 18}\]
15 Molecular Rearrangements

\[
\begin{align*}
R^2HN & \quad \text{NO}_2^- \\
R^1N & \quad \text{Ar} \\
\text{(71)} & \\
R^2HN & \quad \text{NO}_2^- \\
R^1N & \quad \text{Ar} \\
\text{(72)} &
\end{align*}
\]

\[
\begin{align*}
R^1N & \quad \text{O}^- \\
\text{(73)} & \\
R^1N & \quad \text{O}^- \\
\text{(74)} & \\
\text{Me}_3\text{SiOTf} & \quad \text{ROH} + \text{HOTf} \\
\text{(75)} & \\
\text{BF}_4^- & \\
\text{(76)} & \\
\text{TFA} & \\
\text{(77)} &
\end{align*}
\]
has been shown94 that, in the case of (79), extrusion of Bu\textsubscript{3}P occurs instead, with the formation of 3-acetyl-1,2,4-benzotriazine (81) and 2-cyanoacetophenone (82). These products appear to be derived from rearrangement of an initially formed carbene (80) (see Scheme 20). The mechanism of the base-catalysed ring expansion of 1,2,3-triazolium and \textit{N}-methyl-1,2,5-oxadiazolium perchlorate salts to six-membered azines has been studied95 (see Scheme 21).
The photolysis of 1,2,4-oxadiazoles in the presence of sulfur nucleophiles has been shown to afford 1,2,4-thiadiazoles. N—S bond formation between the ring species and the sulfur nucleophile is thought to account for the observed products. A review has appeared which includes an account of the rearrangement of 1,2,3-thiadiazoles to other heterocycles such as 1,2,3-triazoles and 1,2,3,4-thiatriazoles.

It has been shown that when N-methyl-N-pyridylnitramines are heated they rearrange to the corresponding methylaminopyridines by an intramolecular pathway. A deallylboronation–allylboronation process outlined in Scheme 22 has been presented in order to account for the isomerization of trans-2-allyl-6-alkyl(aryl)-1,2,3,6-tetrahydropyridines into the corresponding cis isomers on heating with triallylboron. The authors proposed that the driving force for this mechanism is the greater thermodynamic stability of the cis isomer (with two pseudo-equatorial groups) compared with the corresponding trans isomer.

The rearrangements of some quinoline-4-spiro heterocycles to fused heterocycles have been reported, as has the thermal rearrangement of 4-alkoxy-3'-alkylthio-3,4'-diquinolinyl sulfides to 1-alkyl-1,4-dihydro-4-oxo-3'-alkylthio-3,4'-diquinolinyl sulfides. It has been established that aqueous 6-hydroxyquinoline in the first excited singlet state undergoes protonation of the amine group first, then deprotonation from the enol group, and finally rearrangement to the quinoid form.

A study of the vacuum pyrolysis of 4-diazoisothiochroman-3-one with ultraviolet photoelectron spectroscopy has established the mechanism shown in Scheme 23 for its decomposition, while acid-catalysed hydrolysis of the same compound has been
found to afford104 the ring-contracted product, 1,3-dihydrobenzo[\text{c}]thiophene-1-carboxylic acid.

The mechanism presented in Scheme 24 is thought105 to accommodate the formation of N-anilino-2,3-diphenylindole (84) from the acid-catalysed rearrangement of 2,3,4-triphenyl-2,3-dihydrocinnoline (83). On treatment with acetic or propionic anhydrides, 2,3-dihydroimidazo[2,1-\text{a}]phthalazin-4-iium-6-olates (85) have been found106 to undergo an interesting ring transformation to afford triazapentalenoindanones (86). On boiling with HCl, N-6-methyl-8-oxoadenine has been shown to rearrange to 9-methyl-8-oxoadenine, presumably through fission and reclosure of the imidazole ring.107 Under similar conditions, 3-methyl-8-hydroxyadenine afforded 1-methyl-8-oxoadenine and, on prolonged treatment with boiling water, 1-alkoxy-7-alkyladenines have been found.
to undergo hydrolytic cleavage at the N(1)—C(2) and the N(1)—C(6) bonds to produce imidazole-5-carboxamidines.\(^{108}\)

An unexpected rearrangement of dihydro-1,4-thiazine has been reported.\(^ {109}\)

A recent attempt to prepare the bis(ethylenedithio)tetrathiafulvalene derivatives fused with a 1,4-dioxane ring, viz. (89), by the Me\(_3\)Al-promoted reaction of organotin thiolate (87) with ester (88) was unsuccessful; instead the reaction resulted\(^ {110}\) in the production of a new tetrathiafulvalene derivative with a 1,3-dioxolane ring (90).

1,2,5-Thiadiazoles have been prepared\(^ {111}\) in a one-pot reaction of trithiazyl trichloride with alkynes (see Scheme 25).

A mechanism involving an azatropilium cation has been discussed\(^ {112}\) as a possibility for the observed ring contraction of 3,6- and 2,5-di-\(t\)-butyl-3\(H\)-azepines when these compounds are treated successively with bromine and aqueous K\(_2\)CO\(_3\).
Sigmatropic Rearrangements

[3,3]-Migrations

Claisen and related rearrangements

The symmetry and the corresponding selection rules of sigmatropic reactions have been studied.\(^{113}\) The response of the Claisen rearrangement to solvents and substituents has been reviewed.\(^{114}\) Transition structures, activation energies, and reaction energies have been calculated\(^{115}\) by \textit{ab initio} quantum mechanical methods for the Claisen rearrangements of a number of hydroxy-substituted allyl vinyl ethers, and an analysis has been carried out\(^{116}\) of the effect of various substituents on the Claisen rearrangement of 2- and 6-substituted allyl vinyl ethers, using \textit{ab initio} and density functional theory. The effect of water on the Claisen rearrangement of allyl vinyl ether has been modelled\(^{117}\) using both \textit{ab initio} continuum and Monte Carlo simulation techniques, while the effect of water on the energetics of the Claisen rearrangement of chorismate to prephenate has been investigated\(^{118}\) by \textit{ab initio} electronic structure and simulation methods. A novel procedure for the synthesis of spiro[4.5]decan-1-ones has been described.\(^{119}\) The key step in the synthesis is a one-pot combination of the Claisen rearrangement of allyl vinyl ethers followed by an intramolecular hydroacylation catalysed by RhCl(cod)(dppe) (see Scheme 26). Fused polycyclic enol ethers (91) have been found\(^{120}\) to undergo a facile Claisen rearrangement leading to good yields of functionalized, bridged bicyclo[4.\(n\).1]ring systems (92). The effect of \(\beta\)-cyclodextrin on

\[
\text{Scheme 26}
\]

the photo-Claisen rearrangement of allyl phenyl ether has been studied,\(^{121}\) as has the effect of solvent on the thermal Claisen rearrangement of cinnamyloxybenzene. The observed formation of diethylene glycol monocinnamyl ether when this reaction is carried out in diethylene glycol has been ascribed\(^{122}\) to the acidic and high dielectric properties of the glycol solvent which allows the generation and capture of a cinnamyl
cationic intermediate. The development of a highly enantioselective aromatic Claisen rearrangement has been achieved123 by the reaction of catechol monoallylic ethers with a chiral boron reagent. This system has the benefit that it avoids the formation of \textit{para} rearrangement and abnormal Claisen rearrangement products. The first synthesis of spiro[2,3-dihydro-2,2-dimethylbenzofuran-3,1′-cyclopropanes] (94) has been achieved124 by way of an Mo(CO)\textsubscript{6}-catalysed, one-pot Claisen rearrangement–cyclization reaction of 2-cyclopropylidenearyloxyalkanes (93), and a convenient, one-pot synthetic method has been established125 for the preparation of benzofuran derivatives (100) and (101) via the reaction of alkylhydroquinones (95) with cycloalkenediols (96), in a process which involves a sequence of acid-catalysed formation of ethers (97), [3,3]-(and/or [1,3]-)sigmatropic rearrangement, and acid-catalysed intramolecular cyclization of (98) and (99) generated as intermediates (see Scheme 27). An extension of this methodology using alkoxyhydroquinones with cycloalkenediols has been used126 to prepare alkoxybenzofurans. A series of crownophanes containing two phenolic moieties within a macrocyclic ring, e.g. (103), have been synthesized127 successfully by a one-step thermal reaction from macrocyclic ethers (102), via a tandem Claisen rearrangement. In addition to yielding hydrolysis products, acid-catalysed hydrolysis of propyl phenyl ethers has been found128 to yield isopropylphenols, resulting from a Claisen rearrangement. 2-Alkenyl 2-bromophenyl ethers have been found to rearrange to 2-(2-alkenyl)phenols by bromine–lithium exchange and further transmetalation with copper(I) cyanide129 (see Scheme 28). Formally, the transformation represents a Claisen rearrangement which proceeds with retention of the regiochemistry of the allyl fragment and without migration to the \textit{para} position.

Reductive Claisen rearrangements of allyloxyanthraquinones have been reviewed130 and a number of new compounds, including doubly rearranged leuco-1,4-dihydroxyanthraquinones in the diketo form, have been produced during a re-investigation131 of the reductive Claisen rearrangement of bis(allyloxy)anthraquinones. At elevated temperatures, 3-(\textit{meta}-substituted arylxymethyl)coumarins have been found to undergo sigmatropic rearrangements to yield hydroxylated 3-benzylcoumarins.132

3-(4-Aryloxybut-2-ynoxy)-1-methylquinolin-2-ones on heating have been found to undergo a sigmatropic rearrangement to yield 1-aryloxyethyl-6-methyl-3H-pyrano-[2,3-c]quinolin-5(6H)-ones and/or 1-aryloxyethyl-2,5-dimethylfuro[2,3-c]quinolin-4(5H)-ones,133 while a number of 1,3-dimethyl-6H-pyran[3,2-d]pyrimidine-2,4(1H)-diones and 1,3-dimethylfuro[3,2-d]pyrimidine-2,4(1H)-diones have been prepared from the thermal [3,3]-sigmatropic rearrangement of 1,3-dimethyl-5-(prop-2-ynoxy)uracils.134
It has been demonstrated135 that the ortho ester Claisen rearrangement of trisubstituted alcohols exhibits significant levels of diastereoselection. Thus, in (E)-allylic alcohols a 1,3-diaxial interaction develops in the chair-like transition structure, leading to the \textit{anti} isomer and rendering the reaction \textit{syn} selective, whereas in (Z)-allylic alcohols, the 1,3-diaxial interaction develops in the transition state, leading to the \textit{syn} isomer and generating a significant \textit{anti}:\textit{syn} selectivity. A three-step synthesis of (\textit{R})-
(--)-baclofen has been described136 in which the key step is an ortho ester Claisen rearrangement of allylic alcohol (104) to produce the γ, δ-unsaturated ester (105) with high stereoselectivity.

The ester enolate Claisen rearrangements of amino acid propargylic esters (106) have been used137 to produce α-allenic amino acids (107), and γ, δ-unsaturated amino acids (109) have been prepared138,139 in a similar manner via the ester enolate Claisen rearrangement of chelated allylic esters (108). Unnatural amino acids, useful precursors of morphine, have been prepared140 via a modified Claisen rearrangement, see (110)\rightarrow(111), and the syntheses of morphine alkaloids involving sigmatropic rearrangements and novel ring closures of aromatic methyl pentenyl ethers have been described141. A detailed study has been made142 of the tandem condensation [3,3]-sigmatropic rearrangement and cyclization reaction sequence outlined in Scheme 29, with a view to extending this methodology to the enantioselective generation of tetracyclic ABCE Strychnos alkaloid precursors. A diastereospecific approach to 2,6-diaryl-3,7-dioxabicyclo[3.3.0]octane lignans using the Ireland–Claisen rearrangement of unsaturated oxamcarolides has been described143 and an enolate Claisen rearrangement of the homoproline allyl ester (112) has been used144 to obtain pyrrolizidine precursors (113). Trifluoromethylated compounds containing four
Scheme 29
consecutive asymmetric centres have been synthesized145,146 via a sequential [3,3]-Ireland–Claisen rearrangement and iodolactonization (see Scheme 30). The asymmetric syntheses of a prostaglandin precursor and (+)-iridomyrmecin have been reported.147

\begin{center}
\includegraphics[width=0.7\textwidth]{scheme30.png}
\end{center}

Scheme 30

The method involves a highly enantioselective rearrangement of an epoxide and a subsequent Ireland–Claisen rearrangement (see Scheme 31). The enolate Claisen rearrangements of [4-7-\(\eta^4\)-4-(1-acyloxy-2,4,6-octatrienyl)]tricarbonyliron complexes have been found to exhibit high diastereofacial selectivity with the developing carbon–carbon bond forming *anti* to the Fe(CO) substituent.148 Spirotetronate (114) has been synthesized149 by a route featuring a Claisen rearrangement and an intramolecular aldol reaction (see Scheme 32), and enantiomerically pure dihydrooxacenes (116) have been prepared150 using the retro-Claisen rearrangement of vinylcyclobutane diesters (115).

Whereas the lithium enolates of acetate and propionate esters of difluorallylic alcohols are known to fragment rapidly, methoxy- and benzylxoy-acetates have been found151 to form chelated enolates which undergo a smooth [3,3]-sigmatropic rearrangement as their silyl ketene acetals to afford highly functionalized difluoro compounds (see Scheme 33). Allenic silyl ketene acetals (117) have been used152 to prepare 2-substituted methyl 3,4-dienoates (118).

The intramolecularity of the thermal rearrangement of 1-aryl-5-allyloxy-1\(H\)-tetrazoles to 1-aryl-4-allyl-1,4-dihydrotetrazol-5-ones has been investigated through
cross-over and kinetic studies. The results153,154 support the hypothesis of a concerted sigmatropic rearrangement occurring through a highly polar transition state, in which a partially positively charged allyl group migrates from oxygen to nitrogen, without leaving the solvent cage. A stereo-controlled synthesis of (E)-alkene dipeptide isosteres using a [3,3]-allylic trichloroacetimidate rearrangement has been described155 (see Scheme 34), and an attempted Pd(II)-catalysed aza-Claisen rearrangement of trichloroacetimidate (119) has provided156 unexpectedly, the diastereoisomerically pure cyclopropane derivative (120). A series of Pd(II) complexes containing chiral diamine ligands have been investigated157 as asymmetric catalysts for the rearrangement of allylic imidates to allylic imides, and the [3,3]-sigmatropic rearrangement of allylic N-acylimidates to the corresponding allylic imides has been demonstrated for the first time.158 Cyclopalladated ferrocenylamine has been used159 to promote the rearrangement of 2-alkenyl imidates to allylically transposed amides in excellent yield and with moderate enantioselectivity, and a highly enantioselective and diastereoselective Claisen rearrangement of N-arylimidates derived from an axially chiral binaphthylamine auxiliary has been reported.160 A highly stereoselective aza-[3,3]-Claisen rearrangement of vinylaziridines (121) has been utilized in a novel approach to
seven-membered lactams (122). A six-membered boat-like transition state has been proposed161 in order to rationalize the process.

An account of [3,3]-sigmatropic reactions involving the cleavage of N–O and N–N bonds and their application to the synthesis of biologically active molecules has appeared.162 A novel, abnormal rearrangement has been observed during the Fischer indole synthesis of \(N\)-methyl-\(N\)-(5,6,7,8-tetrahydro-1-naphthyl)hydrazone. The authors163 invoked a [3,3]-sigmatropic rearrangement at the substituted and more hindered ortho position, and subsequent rearrangement of the fused six-membered ring via a spiro intermediate, to explain the formation of the unexpected product. \(N\)-Acyl-\(N\')-phenylhydrazines (123) have been found to rearrange under basic conditions to afford \(\alpha\)-aminophenylacetamides (124). The reaction has been rationalized164 in terms of [3,3]-sigmatropic shifts of enolized intermediates (see Scheme 35). The Sommelet–Hauser-type and Stevens-type rearrangements of both aromatic and aliphatic acylhydrazines compete with the [3,3]-rearrangement.

![Scheme 35](image)

Various \(\gamma\)-azido-\(\delta\)-hydroxydiazo keto esters, e.g. (125), have been found to undergo smooth Rh(II)-catalysed cyclization to afford 2-carboethoxy substituted 3(2\(H\))-furananones as a single diastereoisomer. The authors165 proposed that the formation of e.g. (128) involves insertion of the rhodium carbenoid into the adjacent O–H bond to
first produce the 4-azido substituted 3(2H)-furanone (126), which rapidly rearranges to afford the observed product. The result strongly suggests that the enol form (127) of the initially generated furanone undergoes a subsequent [3,3]-sigmatropic shift with complete stereospecificity in a suprafacial manner. Moreover, the stereospecific transfer of the azido group to the migration terminus in the rearranged 3(2H)-furanone has provided convincing support for a concerted [3,3]-shift as the mechanism for the interconversion of allylic azides.

An account has appeared166 of [3,3]-(and [2,3]-)sigmatropic rearrangements of propargyl precursors that lead to the synthesis of allenes bearing functional groups with at least two heteroatoms (see Scheme 36). The allyl cyanate to isocyanate rearrangement has been established as a new synthetic method for the construction

![Scheme 36](image)

of an allyl amine moiety at sterically congested positions,167 and as a new approach to the synthesis of amino sugars.168 The key step in the latter methodology involves introduction of the nitrogen substituent into the pyranose framework by way of the [3,3]-sigmatropic rearrangement of an allyl cyanate (see Scheme 37).

Experimental and theoretical studies on the isomerization of allyl thiocyanate to allyl isothiocyanate have indicated169 that the transformation proceeds by a [3,3]-sigmatropic rearrangement involving a cyclic transition state. A novel tandem [3,3]-sigmatropic rearrangement of allylic thiocyanates (129) followed by a stereo-controlled intramolecular addition of the amino function to the developing isothiocyanate group, has
led170 to diastereomERICally pure 1,3-imidazolidin-2-thiones (130), and a stereoselective synthesis of the branched-chain sugar 3(S)-isothiocyanato-3-deoxy-3-C-vinylglucose (132) has been achieved171 via a [3,3]-sigmatropic rearrangement of the allylic thiocyanate (131) prepared from D-glucose.

The stereochemistry of the 2-allylthio-5-acetyl-6-methyl-4-(2-nitrophenyl)-3-cyano-1,4-dihydropyridine [3,3]-sigmatropic rearrangement has been investigated172 A novel type of ketene-Claisen rearrangement has been described173 in which the precursor of the rearrangement is generated \textit{in situ} by reaction of optically active allyl thioethers with dichloroketene (see Scheme 38), and asymmetric induction by an external hydroxy group in the thio-Claisen rearrangement of S-allylic ketene aminothioacetals (133) has been used174 to provide \textit{syn}-\textit{N},\textit{N}-dimethyl β-hydroxy α-allylic thioamides (134). The first example of a Claisen rearrangement of ketene dithioacetals in which the stereochemical course is controlled by a sulfinyl group has been reported,175 see
(135) → (136), and a report has appeared of diastereoselective asymmetric induction in the thio-Claisen rearrangement using zeolites.

The utility of the [3,3]-sigmatropic rearrangement of eight-membered thionocarbonates for the highly stereo-controlled synthesis of Z- or E-double bonds in 10-membered thiolcarbonates has been reviewed.\(^{177}\) 5,5-Disubstituted thiotetronic acids (139) have been synthesized using an allylic xanthate (137) to dithiocarbonate (138) rearrangement which has permitted the introduction of a sulfur at a tertiary centre with concomitant deconjugation of the double bond (see Scheme 39).

A seleno-Claisen rearrangement has been used to synthesise mono-, di-, and triallylated selenothioic and S-alkyl esters with high regio- and stereo-selectivity.

Unusual regioselectivity has been observed during the reductive coupling of alkynes and allenes by hydrozirconation and zinca-Claisen rearrangement.

Cope and related rearrangements

Recent applications of the anionic oxy-Cope rearrangements have been reviewed.\(^{181}\) Acyclic bisallylic ethers (140) have been found to undergo syn or anti stereoselective [2,3]-Wittig rearrangements to give homoallylic alcohols (141), depending on the substituents, and E-selective tandem [2,3]-Wittig–anionic oxy-Cope rearrangement to yield \(\delta, \epsilon\)-unsaturated aldehydes. (142)\(^{182}\) The application of this tandem process to the
synthesis of single isomers of tetrahydropyrans by electrophilic cyclization with various electrophiles and acid-catalysed intramolecular ring opening has been reported183 (see Scheme 40). Similarly, the highly diastereoselective preparation by trisubstituted δ-lactones and also related tetrahydropyrans has been achieved by exploiting the acyclic stereo-control of the above sequence.184 Highly substituted and enantiopure tetrahydropyrans have been prepared185 from chiral 7-hydroxyalk-2-enoic imides and esters using the silyloxy-Cope rearrangement. The ability of squarate ester (143) to undergo sequential pericyclic reactions following mixed addition of allenic and alkenyl anions has been investigated.186 It has been shown (see Scheme 41) that, when \textit{cis}
addition operates, a dianionic oxy-Cope rearrangement ensues, delivering diquinane products. Functionalized, medium-sized, bicyclic, and angularly fused tricyclic compounds have been synthesized\(^{187}\) from bromoethynyl derivatives of cycloalkanes by anionic and thermal oxy-Cope rearrangements (see Scheme 42). In the course of preparing the trimethylsilyl substituted cyclodec-5-enone (145; \(R = \text{Me}\)) via an anionic oxy-Cope rearrangement of trans-1,2-divinylcyclohexanol (144; \(R = \text{Me}\)), Chu et al.\(^{188}\) discovered that the silyl substituent in the substrate was so positioned that it destabilized the [3,3]-sigmatropic rearrangement through the normally observed chair-like transition state. However, in the case of the tri-\(n\)-propylsilyl derivative (144; \(R = \text{Pr}^n\)), an oxy-Cope rearrangement was observed to take place exclusively through a boat-like transition state to yield \((E)\)-5-(tri-\(n\)-propylsilyl)cyclodec-5-enone (145; \(R = \text{Pr}^n\)).
A review has been published189 that discusses the preparation of seven-membered ring compounds from \(\alpha\)-diazocarbonyl compounds via cyclopropanation and Cope rearrangement, and the central core of the squalene inhibitor CP-225,917 has been synthesized190 by a series of rearrangement steps including a divinylcyclopropane [3,3]-sigmatropic rearrangement of the carbenoid insertion product (146) to afford the bridged medium ring (147). It has been proposed191 that the biosynthesis of the 6-substituted cyclohepta-1,4-dienes dictyotene, ectocarpene, desmarestene, vinylcycloheptadiene, and lamoxirene involves a spontaneous Cope rearrangement of thermolabile bisalkenylicyclopropane precursors. The ease with which substrates of the type (148) undergo Cope rearrangement to the eight-membered fused-ring product (149) has been noted.192 A comparative study has been undertaken of the Cope rearrangement of hexa-1,5-diene and barbaralane, and it has been shown193 that the rearrangement of the
latter compound, although belonging to the category of concerted reactions, is not synchronous. It has been established that the photo-induced electron-transfer Cope rearrangement of (E,E)-3,6-bis(4-methoxyphenyl)octa-2,6-diene is kinetically controlled and affords quantitatively the thermodynamically less stable 3,4-dimethyl-2,5-bis(4-methoxyphenyl)hexa-1,5-diene at −80 °C, in sharp contrast to the thermodynamically controlled thermal Cope rearrangement. Enantiomerically pure 1,6-disubstituted 1,5-dienes with an aldol substitution pattern, e.g. (150), have been found to undergo rapid thermal Cope rearrangement with high diastereoselection to yield (151). The kinetics of the racemization of (+)-tetracyclo[7.3.1.02,8.04,12]trideca-5,10-diene by a degenerate Cope rearrangement have been examined. The photo-cycloaddition of furan to 1-naphthalenecarbonitrile (152) has been re-investigated, and it has been proposed that the observed formation of the syn-2 + 2-adduct (154) can be best explained by the facile Cope rearrangement of (153) which was the expected major product in the singlet-state 4 + 4-photo-cycloaddition. Beck et al. have demonstrated that, in the acid-catalysed 4 + 2-cycloaddition between cyclic azines and 1,3-dienes, both partners can play the role of the diene or the dienophile, depending on particular structural features. Moreover, it has been shown that the thermal or acid-catalysed
interconversion of 4 + 4-cycloadducts definitely occurs by a concerted [3,3]-
sigmatropic rearrangement and not by a 4 + 2-cycloreversion.

Computational modelling has shown199 that circumambulatory rearrangements of
allyl and heteroallyl groups in the cyclopropene ring are governed by the [3,3]-
sigmatropic shift mechanism. An aza-Cope rearrangement in transition metal
complexes has been described.200 Unique intramolecular rearrangement product ions
have been observed in the product ion spectra of a number of peptides. The authors201
proposed that the process is driven by the transfer of a proton from the immonium
nitrogen to the more basic primary amine on the N-terminus of the peptide. The proton
transfer leads to a loss of NH\(_3\) and loss of an internal residue by means of an
intramolecular rearrangement that transposes the internal residue to the terminus of the
peptide ion. The thermally induced [3,3]-sigmatropic rearrangement of 3-amino-1,5-
diene substrates has been reported202 to yield the corresponding enamine product with
excellent trans : cis enamine selectivity. The enamine produced during the amino-Cope
rearrangement has been directly derivatized, thus representing the first reported example of
a tandem amino-Cope rearrangement–enamine alkylation reaction (see Scheme 43).

A paper has appeared203 which shows that stereoselectivity in the aza-Cope–Mannich
reaction can be controlled by the nature of the nitrogen substituents.

\textbf{[2,3]-Migrations}

Asymmetric [2,3]-sigmatropic rearrangements have been reviewed204 and recent
advances in the use of the [2,3]-Wittig rearrangement for the asymmetric synthesis of
homoallylic alcohols have been described.205 Transition structures for the [2,3]-Wittig
rearrangement of the dilithium salts of 2-oxa-4-(Z and E)-methylhexene-1-carboxylic
acids have been located using \textit{ab initio} MO calculations, and the origin of the observed
stereoselectivity of the [2,3]-Wittig rearrangement of these substrates has been
clarified.206 \textit{Ab initio} MO calculations have also been used to optimize the transition
structures for the [2,3]-Wittig rearrangement of (allyloxy)methylithium.207 An
efficient, diastereoselective [2,3]-Wittig rearrangement of \(\alpha\)-allyloxyamide enolates
has been developed208 using (1S,2R)-1-aminoindan-2-ol as a chiral auxiliary and
polycyclic functional ketones containing neighbouring quaternary and tertiary
stereogenic centres have been synthesized209 diastereo- and enantio-selectively by
way of the [2,3]-Wittig rearrangement of chiral hydrazones (see Scheme 44). The first
enantioselective [2,3]-sigmatropic rearrangements of alkenyl benzyl ethers and acyclic
diprop-2-ynyl ethers, mediated by a butyllithium–chiral ligand complex, have been
reported,210 and it has been shown211 that the [2,3]-Wittig rearrangement of the
enantiomerically defined α-propargyloxystannane (155) with butyllithium proceeds with complete inversion of configuration at the lithium-bearing terminus; see (156).

A review which describes recent developments of the aza-Wittig rearrangement and its application in alkaloid synthesis has appeared.212 The aza-[2,3]-Wittig rearrangement (157) → (158) has been shown to be accelerated by the incorporation of certain anion-stabilizing substituents at the central vinyl carbon atom.213 It has also been shown214 that the phosphoramide group effectively assists the rearrangement regardless of the substitution pattern of the alkenes. The aza-[2,3]-Wittig rearrangement of a vinylaziridine (159) into a tetrahydropyridine (160) has been used215 as a key step in
novel and highly efficient syntheses of monomorine and indolizidine 195B, and a
strategy based upon an ‘azoxy’ version of the [2,3]-Wittig rearrangement [see
(161) → (162)] has been investigated\(^\text{216}\) as a means of synthesizing the aglycone
component of the enediyne antibiotics esperamicin A and calicheamicin-g\(_1\). The first
examples of silicon analogues of the [2,3]-Wittig rearrangement, namely [2,3]-sila-
Wittig and aza-sila-Wittig rearrangements, have been reported\(^\text{217}\) in [(allyloxy)silyl]-
lithium and [(allylamino)silyl]lithium, respectively; see (163) → (164).

\[
\begin{align*}
\text{(161)} & \quad \rightarrow \\
\text{(162)}
\end{align*}
\]

X = O, NR’

It has been reported that treatment of methyl 1-methylsulfanylvinyl sulfoxides with
sodium thionenolate in methanol affords 1-methylsulfanylalk-1-en-3-ols. A sequence
has been proposed\(^\text{218}\) (see Scheme 45) in which the thiophilic base first causes an in situ
isomerization of the vinyl sulfoxide moiety into an allylic sulfoxide which then
undergoes a [2,3]-sigmatropic rearrangement and subsequent thiophilic cleavage of the
intermediate sulfenic ester.

Several new chiral rhodium(II) catalysts have been synthesized for evaluation as
catalysts in the asymmetric oxonium ylide-[2,3]-sigmatropic rearrangements of
diazocarbonyl substrates\(^\text{219}\) (see Scheme 46). The formation of 13-membered ring
oxonium ylides (165) and their stereo-controlled [2,3]-sigmatropic rearrangement to 10-
membered ring lactones (166) have been described.\(^\text{220}\)

\[
\begin{align*}
\text{(165)} & \quad \rightarrow \\
\text{(166)}
\end{align*}
\]
Studies have been carried out of the reactions of various benzylammonium \(N\)-methylides\(^{221}\) and 2-benzocycloammonium \(N\)-methylides.\(^{222}\) Some ylides were found to yield [2,3]-sigmatropic rearrangement products, while others gave Stevens rearrangement products via radical cleavage and recombination pathways. The [2,3]-sigmatropic rearrangement of cyclic ammonium ylides has been examined\(^{223}\) with a view to optimizing the rearrangement at the expense of the competing elimination reaction. \(N,N\)-Dialkylated allylglycine derivatives (168) have been prepared\(^{224}\) by a one-pot process involving \(N\)-alkylation of the \(N\)-allyl \(\alpha\)-amino ester (167) and [2,3]-

\[
\begin{align*}
R & \quad \text{DBU} \\
\text{R}^1 & \quad \text{R}^2X \\
\text{CO}_2\text{Me} & \quad \text{CO}_2\text{Me}
\end{align*}
\]

\[
\text{R}^1 \quad \text{R}^2 \\
\text{CO}_2\text{Me} \quad \text{CO}_2\text{Me}
\]

\[
\text{R}^1 \quad \text{R}^2
\]

\[
\begin{align*}
\text{R} & \quad \text{N} \\
\text{R}^1 & \quad \text{R}^2
\end{align*}
\]

The sigmatropic rearrangement of the corresponding ylide. On treatment with solid NaHCO\(_3\) in DMF, \(N\)-(\(\alpha\)-cyano)allyl-\(N\)-cyanomethyl-\(N\),\(N\)-dimethylammonium perchlorates (169) have been found\(^{225}\) to afford \(\alpha\)-aminonitriles (171) by a [2,3]-shift of the cyano methylides, (170) although, when treated with solid K\(_2\)CO\(_3\) in DMSO, the substrates yielded \(\alpha\)-cyanoenamines (173) by a [1,4]-shift of the \(\alpha\)-cyano allylides (172). \(cis\)-1-Methyl-2-(2-thienyl)pyrroolidinium 1-methylide (174) generated in a non-basic medium was found to isomerize to a mixture of (\(E\))- and (\(Z\))-5-methyl-3\(a\),4,5,6,7,8-hexahydrothien[3,2-\(c\)]azocine (175) and (176), respectively. In the case of \(\text{trans}\)-(174), carbon–carbon bond cleavage was found to occur instead of sigmatropic migration, presumably as a direct result of the increased distance between the ylide anion and the thiethyl ring.\(^{226}\)

Substituted 3,4,6,7-tetrahydro-1\(H\)-5,2-benzoxathionines (179) have been synthesized\(^{227}\) by a sequence which involves [2,3]-sigmatropic rearrangement and
aromatization of the sulfur ylides of 1,3,4,11a-tetrahydro-6\(H\)-5,2-benzoxathionines (178) which were generated by the reaction of trans-3-(substituted phenyl)-4-(trimethylsilyl)methyl-1,4-oxathianium perchlorates (177) with caesium fluoride. Allyl
aryl sulfides and diazoacetic acetic ester have been reported228 to react in the presence of optically active Co(III)--salen complex with good enantioselectivity to afford 2-arylthio-3-arylpent-4-enoic acid esters, via the corresponding sulfur ylides (see Scheme 47). The [2,3]-Wittig rearrangements of \(\alpha \)-phosphonylated ammonium and sulfonium ylides have been reviewed.229
Several derivatives of the hitherto unreported pyrrolo[3,2-f]quinolin-7-one tricyclic system (182) have been prepared from 6-nitroquinolone (180). The authors230 proposed that a key step in the transformation involves a Meisenheimer-type [2,3]-sigmatropic rearrangement of the N-oxide (181) (see Scheme 48). Chiral tertiary amine oxides, prepared from the oxidation of chiral camphidin-based allylic tertiary amines, have been found to undergo the [2,3]-Meisenheimer rearrangement with high levels of stereoselectivity.231 A recent study232 has shown that the Meisenheimer rearrangement products (184) of certain amine oxides (183) frequently undergo [1,3]-shifts of the oxygen heteroatom to carbon on further heating (see Scheme 49).

2-Phenylseleno-1-trichloromethylalkanes, generated by free-radical addition of trichloromethyl selenide to alkenes, have been converted into \(\alpha, \beta \)-unsaturated carboxylic acids or amides, by base-promoted dehydrochlorination, followed by [2,3]-sigmatropic rearrangement of the corresponding selenoxides in the presence of water or diethylamine, respectively233 (see Scheme 50). The [2,3]-sigmatropic rearrangement of allylic selenium ylides (185) has been found to afford homoallylic selenides (186) with high diastereoselectivity.234 The reaction has also provided an excellent method for carbon–carbon bond formation with chiral induction at a C(3) stereocentre. An extension of this strategy involving the [2,3]-sigmatropic rearrangement of allylic selenoxides (187) to the corresponding allylic alcohols (188) has been reported.235 in this case the absolute configuration of the resulting allylic alcohols has indicated that the rearrangement of the selenoxide progresses predominantly via the endo transition state (see Scheme 51).
[1,3]-Migrations

Ab initio MO calculations of the [1,3]-sigmatropic silyl shift in allylsilane\(^{236}\) and in related allylmetallic compounds\(^{237}\) have been carried out and have shown that the shift proceeds with retention of the silicon configuration at the migrating centre. An NMR study of the sigmatropic [1,3]-boron shift in 7,8-dipropyl-7-borabicyclo[4.2.2]decadiene has been undertaken,\(^{238}\) and it has been reported\(^{239}\) that, in solution, 1,2-dihydroborinines Me\(_2\)EC\(_2\)H\(_2\)BMe (E=Si, Ge, Sn, Pb) are fluxional and undergo [1,3]-sigmatropic migrations of the Me\(_3\)E group from C(2) to C(6). A theoretical study\(^{240}\) has shown that the formation of silylketenes (190) from silyloxyacetylenes (189) via a [1,3]-silyl shift should occur through a concerted closed-shell mechanism involving retention of configuration at the silicon centre. 2-Phospha-1,3-disilaallyl fluorides (191)
have been found to undergo a [1,3]-sigmatropic shift of fluorine. *Ab initio* calculations on \(H_2Si=PSiH_2F \) were in agreement with this.\(^{241}\) The influence of the \(t \)-amino moiety on the decomposition pathways followed during the thermal decomposition of \(\alpha \)-diazobet-ketophosphonates (192) has been studied. The study has established\(^{242}\) that if the amino moiety was acyclic or bore a substituent of strong migratory aptitude, then indolinones (194) resulting from [1,3]-sigmatropic rearrangement of intermediate 2-oxoindolinium enolate derivatives (193) are the major products.

![Diagram](image)

Alkoxyvinylketenes (195) have been found to undergo thermal [1,3]-shifts of the alkoxy groups, interconverting them with allene-carboxylic acid esters (196). Similar [1,3]-migrations of dimethylamino groups and of chlorine atoms have been described.\(^{243}\) Isomerization of allyl alcohols has been carried out very rapidly in the presence of \(ReO_3OSiR_3 \) catalysts. Kinetic studies have indicated\(^{244}\) that the rearrangement takes place via a cyclic transition state involving an Re=O group (see Scheme 52). Mulzer *et al.*\(^{245}\) have reported that the non-racemic \(O \)-protected
homoallylic alcohols (197) (and amines) undergo an intramolecular [1,3]-hydrogen shift under aprotic basic conditions to afford the trisubstituted (E)-alkenes (198), and diquinane structures (200) have been prepared successfully from bicyclo[3.2.1]oct-6-en-2-ones (199) by way of an anionic [1,3]-sigmatropic migration within the oxy-Cope system.246 Florisil has been found to be effective in promoting the [1,3]-sigmatropic shift of allyl phenyl ethers, thus opening up a route to mycophenolic acid analogues;247 see (201) \rightarrow (202).
Donor–acceptor-substituted vinylcyclopropanes such as (203) have been shown to undergo thermal ring enlargement to functionalized cyclopentene derivatives (204) at relatively low temperatures.248 Theoretical evidence has been produced249 to account for the lack of intermediates in the thermal unimolecular vinylcyclopropane to cyclopentene [1,3]-sigmatropic shift, and a prototype thermal vinyl cyclopropane–cyclopentene rearrangement involving competing diradical concerted and stepwise mechanisms has been studied.250 The kinetics of the thermal isomerization of gaseous vinylcyclopropane have been examined251 and triplet 4-methylenepent-2-ene-1,5-diy1 (206) has been generated and characterized252 upon irradiation of 2-vinylmethylene-cyclopropane (205) in a bromine-doped xenon matrix. The first example of an oxyanion-accelerated vinylcyclopropane–cyclopentene rearrangement, which proceeds at unprecedentedly low temperatures, has been reported.253 It involves the reaction of 2-[2-(trimethylsilyl)ethenyl]cyclopropane acetates (207) with methyl lithium to provide a single cyclopentenol (208), irrespective of the vinylsilane geometry.

\[\text{[1,5]-Migrations} \]

It has been reported254 that conjugated (Z,E)-dienic structures in various ethyl octadecatrienoates undergo a [1,5]-hydrogen shift [see (209) \(\rightarrow \) (210)] much more readily than isomerization to the conjugated (E,E)-dienic structure. It has been suggested255 that the cyclization of bis(2,4,6-trialkylphenyl)ketenes to isochromenes is
a stepwise reaction involving a [1,5]-sigmatropic hydrogen shift to yield a conjugated tetraenal which rapidly cyclizes to the isochromene. Recent work has shown256 that trimethylsilyllindene exists as a pair of enantiomers which interconvert by successive [1,5]-suprafacial sigmatropic shifts of the trimethylsilyl group via the corresponding isoindene. The same group257 has shown that strategically incorporating aromatic rings on to indenyltrimethylsilane lowers the barrier for [1,5]-silatropic shifts around the five-membered ring through retention of aromatic character in the transition state and in the intermediate isoindene. \textit{cis-} and \textit{trans-}N-acyl-2-alkylcyclopropylimines (212), obtained for the first time during thermolysis of diacylated hydroxylamines (211), have been found to undergo a symmetry-allowed homodiene [1,5]-hydrogen shift rather than ring opening.258

![Diagram showing the reaction](image)

Prolonged heating has been shown to convert 3\textit{H}-pyrrole-3-carboxylic esters quantitatively into their isomeric 1\textit{H}-pyrrole-4-carboxylic esters.259 The [1,5]-sigmatropic rearrangements of hydrogen and other groups in pyroles (furans and thiophenes) have been studied by semiempirical and \textit{ab initio} methods. Such systems have been used as models to explain the ring D inversion in the biosynthesis of uroporphyrinogen III and the stereoselective shift of a methyl group in the biosynthesis of vitamin B\textsubscript{12}.260 Results obtained for the nitration of a series of dimethylpyridines with dinitrogen pentoxide have been shown to support a [1,5]-sigmatropic shift migration for the mechanism of the process.261 The rearrangement of the indole alkaloid strictamine under flow thermolysis conditions has been found to produce akuammicine and indolenine resulting from [1,5]-sigmatropic shifts within the structure.262

\textit{Miscellaneous}

Semiempirical MO theory has been used263 to study the effect of solvation by acetonitrile on the Stevens rearrangement of methylammonium formylmethylide to 2-aminopropanal. The Stevens rearrangement of bisammonium salts containing a common \textit{p}-xylylenyl group has been examined,264 while a study of the mechanism of the Stevens rearrangement of ammonium ylides has shown265 that the rearrangement of trimethylammonium \textit{N}-benzylide to \textit{N},\textit{N}-dimethyl-1-phenylethylamine only takes place in the presence of butyllithium when the temperature is raised to room
temperature. Photolysis of \(S\)-naphthylmethyl-\(N\)-\(p\)-tosylsulfimides (213) has been shown\(^{266}\) to lead unexpectedly to the Stevens rearrangement products (214), and Stevens rearrangement products (217) have been isolated\(^{267}\) with high chemoselectivity and high enantioselectivity from the oxonium ylides (216) generated by chiral dirhodium(II) carboxamidate treatment of 1,3-dioxan-5-yl diazoacetates (215). It appears that diastereotopic association of the metal carbene at one of the two ether oxygens is the source of the enantio-control (see Scheme 53). Rhodium(II)-catalysed reaction of 2-(3'-diazo-2'-oxopropyl)-2-methyldioxolane (218) in the presence of a protic nucleophile has been shown to result in effective ring enlargement to yield dioxocanones (220). This transformation has been explained\(^{268}\) by assuming that protonation of the intermediate bicyclooxonium ylide (219) takes place faster than its rearrangement to the Stevens product (see Scheme 54). The highly functionalized 2,9-dioxabicyclo[3.3.1]nonane skeleton (222) has been rapidly assembled\(^{269}\) by rearrangement of oxonium ylide intermediates (221) generated from the exposure of cyclic acetals to metal carbenoids. The dyotropic ring enlargement of \(\beta\)-lactones (223) to \(\gamma\)-lactones (225) has been shown to proceed\(^{270}\) via the zwitterionic intermediate (224). Kinetic studies have been undertaken\(^{271}\) on the [1,2]-sigmatropic hydrogen shift in the photo-rearranged intermediate of \(N\)-acetylpyrrole. Both [1,2]- and [3,2]-phosphatoyx
15 Molecular Rearrangements

Scheme 54

\[
\begin{align*}
\text{(218)} & \xrightarrow{\text{Rh(II)}} \begin{cases}
\text{(219)} & \text{fast} \\
\text{(220)} & \text{NuH}
\end{cases} \\
\end{align*}
\]

\[
\begin{align*}
\text{(221)} & \xrightarrow{\text{Cu(hfacac)}_2} \text{(222)}
\end{align*}
\]

\[
\begin{align*}
\text{(223)} & \xrightarrow{\text{MgBr}_2} \text{(224)} \xrightarrow{\text{Br}^-} \text{(225)}
\end{align*}
\]
rearrangements have been studied272 in 2-(phosphatooxy)ethyl, 2-(dimethylphosphatooxy)ethyl, and 2-(phosphatooxy)propyl radicals, and it has been found that in contrast to acyloxy rearrangements in otherwise identical systems, these compounds prefer the [1,2]-shift pathway.

Synthetic aspects of the di-\(\pi\)-methane rearrangement have been reviewed.273 An aryl version of the cyclopropyl-\(\pi\)-methane rearrangement has been reported;274 see (226) \(\rightarrow\) (227). A model study of the mechanism of the di-\(\pi\)-methane and lumiketone

![Diagram](image)

rearrangement in rotationally constrained \(\alpha, \beta\)-enones has been undertaken.275 An application of an oxa-di-\(\pi\)-methane photo-isomerization of bicyclo[4.4.1]undecadiene (228) to the cyclopropyl ketone (229), which on selective reductive cleavage yielded bicyclo[5.3.1]undecene (230), has been examined276 and a series of tricyclic ketones have been obtained by utilizing the photochemical oxa-di-\(\pi\)-methane rearrangement of chiral bicyclic[2.2.2]oct-5-en-2-ones.277

![Diagram](image)

The generation of 2-methylstyrylalkynes (231) and their thermal cyclization to 2-alkenylnaphthalenes (232) have been reported.278 The mechanism is considered to proceed via an initial \([1,7]\)-hydrogen shift followed by a 6\(\pi\) electrocyclization (see Scheme 55). The rapid and reversible migrations of the phenylsulfany group around the seven-membered ring of 7-phenylsulfanylcyclohepta-1,3,5-triene have been proved to proceed through successive \([1,7]\)-sigmatropic shifts.279 Bicyclic iminophosphoranes (234), obtained by the treatment of 1,2-dihydro-1,3,2-diazaphosphinines (233) with dimethyl acetylenedicarboxylate, have been reported280 to undergo a formal \([1,7]\)-rearrangement to (235) at room temperature.
Erdén et al.281 have reported that endoperoxides (236) react at 60 °C via the allene oxides (237) and their ring-opened products (238) by a [3,4]-shift to afford 5-oxo-6-pentenal derivatives (239).

Thionation reactions of 2,3-diaroylbicyclo[2.2.1]hepta-5-enes with boron sulfide have been reported282 to yield [3,4]- and [3,5]-sigmatropic rearrangement products. The release of ring strain in the norbornene system and formation of the thiophene ring system are thought to be the driving force behind these rearrangements (see Scheme 56). A [3,5]-charge-accelerated rearrangement has been invoked283 to account for the formation of the two isomeric 2,2-dimethyl-4H-dihydropyrano[\(b\)]benzenes (241) and (242), on treatment of dihydricochalcone A (240) with acid, while a [3,5]-sigmatropic rearrangement of an \(N\)-pyrrolenamide (243) has been proposed284 to account for its
Scheme 57
observed photochemical conversion into enantiomerically pure ring A,B synthons of linear tetrapyrroles (244).

The reaction of N-arylbenzamidoximes (245) with nitrile oxides in refluxing toluene has been reported to lead mainly to benzotriazines (247), the formation of which has been explained\(^{285}\) by postulating the occurrence of an unusual [3,5]-rearrangement of the non-isolated 1:1 adduct (246) (see Scheme 57).

Electrocyclic Reactions

Enone cycloadditions and rearrangements that occur during the photo-reactions of dienones and quinones have been reviewed.\(^{286}\) A review has appeared\(^{287}\) which discusses computational studies for electrocyclic reactions, cycloadditions, and sigmatropic shifts, and this has been followed by a paper\(^{288}\) which describes how computational results have contributed to an understanding of transition structures and the mechanisms of electrocyclic ring opening of cyclobutenes and Diels–Alder cycloaddition reactions. A method for estimating the activation energies of concerted, yet non-synchronous, thermal pericyclic reactions has been described,\(^{289}\) and a recently proposed similarity index has been applied\(^{290}\) to the quantitative justification of the empirical Hammond postulate for a series of selected pericyclic reactions.

The formation of cis-di-\(t\)-butylcyclopropanone (250) from the acyclic precursor (248) on treatment with Cr(CO)\(_4\)NO\(^-\) has provided evidence both for the existence of oxallyl intermediates (249) in the mechanism of this reaction and for the integrity with which oxallyls ring close to cyclopropanones by a disrotatory route.\(^{291}\)

Computational studies of the electrocyclic ring closures of cycloheptatetraene to bicyclo[3.2.0]hepta-1,3,6-triene and bicyclo[3.2.0]hepta-2,3,6-triene have been reported,\(^{292}\) and the reaction of P-chloroiminophosphine with 1-(dialkylamino)alkynes has been shown to yield 1,2-azaphosphetines via the (\(E\))-1-aza-2-phosphabuta-1,3-diienes.\(^{293}\)
Ab initio MO calculations have been used to examine the conformational preferences, transition structures, and products of the 2 + 2-electrocyclization reaction of the penta-1,4-dienyl system bearing various substituents on C(3); see (251) → (252). The results have been explained by a combination of steric and electronic interactions.\(^{294}\) Ab initio calculations of the superacid-catalysed electrocyclization of 1-phenylprop-2-en-1-ones to indan-1-ones have highlighted\(^{295}\) the energetic favourability of these dicaticonic electrocyclizations over the monocationic mechanism. Divinylallene acetics (253) have been found to undergo facile acid-induced rearrangement to alkylidene cyclpentenes (254) by a mechanism which is consistent with electrocyclic ring closure of a pentadienyl carbocation\(^{296}\) (see Scheme 58). A synthesis of \(\beta\)-cedrene featuring a chromium(0)-promoted, intramolecular \(6\pi + 2\pi\)-cycloaddition as the key ring-forming process has been described.\(^{297}\) The basic strategy for this synthesis is depicted in Scheme 59. A methodology has been devised\(^{298}\) with the potential for preparing enantiopure \(\alpha,\beta\)-dihydroxy acids from achiral aldehydes using a novel chirally templated highly selective isomünchnone cycloaddition procedure in which the original chiral template can be recovered (see Scheme 60). It has been predicted\(^{299}\) that, in the thermal transformation of the ring-opened 2 + 2 \(C_{60}\) dimer into a wide-bridged \(C_{120}\) isomer, the fulvalene bridge of the former rearranges into a naphthalene partial structure.
by a concerted in-plane mechanism to form a C$_{120}$ intermediate having 20 five-membered rings and two ten-membered rings. It has also been shown300 that the photochemical step in the thermal rearrangement of [6,5] open fullerenes to [6,6] closed fullerenes is the one responsible for the zero-order kinetics of the rearrangement.

Although a number of competing pathways have been shown to be involved301 in the thermal cycloisomerization of hexa-1,3-dien-5-yne (255), isobenzens (256) have been established302 as intermediates in their thermal rearrangement to arenes. On solvolysis, the diethylphosphate ester of 1-(2-ethynylphenyl)-4-trimethylsilyl-4-(trimethylsilyloxy)pent-2-yn-1-ol has been found303 to afford 5-(2-ethynylphenyl)-3-trimethylsilyl-
penta-3,4-dien-2-one, which cyclizes in situ to 1-(2-naphthyl)-1-trimethylsilylpropan-2-one. Pyrolysis of the ethylene acetal of bicyclo[4.2.0]octa-4,7-diene-2,3-dione (257) at 400 °C has been found to yield α-(2-hydroxyphenyl)-γ-butyrolactone (260). A proposed mechanism for the transformation is outlined in Scheme 61, where the formation of (260) is initiated by retro-Diels–Alder reaction of the six-membered ring of (257) to afford the ketene intermediate (258), which then undergoes electrocyclization and enolization to give the phenol derivative (259). Finally, a formal 1,3-shift of the ethylene portion of (259) gives (260). (2Z)-Divinylallenals (261) have been found to undergo electrocyclization to alkylidene-2H-pyrans (262), even though the product is
not stabilized by a conjugated-aryl or electron-withdrawing substituent.305 1-Alkynyl-1,2-dihydrophosphetes (263) have been shown to rearrange to the corresponding phosphinines (264) via a 4π cycloreversion–6π electrocyclization mechanism.306

\[
\begin{array}{c}
R \quad \text{Scheme 62}
\end{array}
\]

enhanced by increasing the size of the protecting group on the homoallylic hydroxyl group. Aryl and methyl isothiocyanates have been found to react with 1,2-dithiocarbonyl compounds (268) to give a mixture of 2,3-dihydro-2-thioxothiazoles (270) and 2-iminothiazoles (272). The formation of these products has been explained309 by invoking $4 + 2$- and $2 + 2$-addition to the C=N bond of the heterocumulene followed by ring contraction of the 2,3-dihydro-1,4,2-dithiazine

\[
\begin{array}{c}
\text{P = protecting group}
\end{array}
\]
(269) with sulfur extrusion to give (270), or cycloreversion of the 2-thioxothiazetidine (271) and carbon disulfide elimination to give eventually (272) (see Scheme 63).

Azepine derivatives have been prepared in excellent yields by heating α,β-unsaturated aldehydes having a 2-alkenylamino moiety at the β-position. PM3 calculations of model reactions have indicated310 that the azepine ring formation is constituted of two consecutive orbital-allowed reactions, a 1,6-hydrogen shift leading to conjugated azomethine ylides, and their electrocyclization. A study of the effective formation of benzoxepines (274) and (275) by the 1,7-electrocyclization of diene-conjugated carbonyl ylides (273) has shown that the rate of the 1,7-carbonyl ylide cyclizations is virtually unaffected by either the olefinic/aromatic character of the γ, δ-bond, or whether it is electron-rich or electron-poor.311

A direct dynamics technique has been employed312 to study the thermal isomerization of (S,S)-trans-cyclopropane-1,2-d\textsubscript{2} and cyclopropane-1,2,3-d\textsubscript{3} in an attempt to examine the possibility of stereochemical control in the isomerization. The stereochemistry of the ring expansion of various 2-isopropenylcyclopropane-1-carbonyl compounds (276) to the corresponding methylhydroxepins (277) has been studied,313 and the rearrangement of cyclopropylsilylene to silacyclobutene has been examined314 by \emph{ab initio} MO theory.

Substituted hydroazulenic derivatives have been constructed315 using a photochemical ring-expansion reaction of readily available electrophilic cyclobutenes. Labelling
studies have supported316 a mechanism involving the formation of a 4 + 2-dimer (279), followed by its ring opening to afford the cyclooctatetraene (280), which closes to the final dimer (281), to account for the dimerization of benzocyclobutadiene (278). Work seeking to prepare the tetraphenoxy radical (283) from oxidation of tetrphenol (282) failed to produce (283) but supported the conclusion that (283), or an intermediate on the path to it, closed to a bicyclobutane such as (284), which then underwent a surprisingly facile rearrangement to produce ultimately the observed butadiene derivative (285).317 1,2-Dihydro-1,3-diphosphetes (286), prepared from reaction of perfluoro-2-phosphapropene with phosphaalkynes, have been found to undergo an interesting rearrangement to the thermodynamically more stable 1,2-dihydro-1,2-diphosphetes (288) via a 1,2-fluorine shift, an electrocyclic ring opening to a 1,4-diphosphabutadiene intermediate (287), and an intramolecular 2 + 2-cycloaddition. This mechanism, shown in Scheme 64, has been supported by high-level \textit{ab initio} calculations.318

A sequence involving electrocyclic ring opening, \textit{E}–\textit{Z} isomerization, and ring closure (see Scheme 65) has been invoked319 to account for the thermal rearrangement of 2-oxopyran-5-carbaldehyde derivatives of the type (289) to 2-pyridones (290). Structural and energetic aspects of the ene reaction have been investigated320 using a variety of computational methods incorporating different ways of accounting for electron configuration, and the mechanistic course of Lewis acid-catalysed cycloaddi-
SCHEME 64
tions and ene reactions has been determined321 using high-pressure kinetics. The transition structures for the ene reactions of cyclopropene with ethylene, propene, and cyclopropyne have been located322 with \textit{ab initio} calculations. The ene reaction between maleimides and allyl-substituted aromatics has been investigated,323 and the influence of a protected alcohol group adjacent to the ene or enophile component on diastereoselectivity in both thermal and Lewis acid-catalysed ene reactions of a series of 1,6-dienes has been studied.324 The results have indicated that the effect can be considerable, and this new finding has been exploited in a synthesis of epijasmonoid natural products. It has been reported325 that propargylic-\textit{p}-toulenesulfenates (291), \textit{\alpha}-substituted by a 4,5-unsaturated side-chain, rearrange thermally to 1-tosylmethylcyclopentene derivatives (293) with prior isomerization into the corresponding allenic sulfones (292).

A new approach to spirolactams involving the thermal reaction of \textit{N}-unsaturated alkyl \textit{\beta}-carboxamidoenamines in which the enamine is the hetero-ene component has been reported.326 \textit{N}-Alkynitrilium salts have been shown to undergo ene reactions with electron-rich alkenes to afford either 2-azoniaallene salts (where the nitrilium salt acts
as ene and the alkene as enophile) or 1-azoniapenta-1,4-diene salts (where the alkene reacts as the ene and the nitrilium salt as the enophile).327 A previously unknown ene reaction of iminium ions and alkynes has been found to occur when complex anions with low nucleophilicity328 are used as counterions. This new reaction has provided stereo- and regio-selective access to substituted allylamines (see Scheme 66). Another new type of thermal intramolecular concerted ene reaction involving allenylsilane imines has been developed329 [see (294)\rightarrow(295)] and has proved to be useful in the

![Scheme 66](image)

enantioselective syntheses of a number of pentacyclic 5,11-methanomorphanthridine Amaryllidaceae alkaloids. Diastereoselective syntheses of 1-hydroxy-substituted benzo[b]quinolines and 11-hydroxy-substituted azepino[1,2-b]isoquinolines via hetero-ene cyclization processes have been described330 and an enantioselective synthesis of the potential substance P antagonist 4-isopropyl-3-(2-methoxybenzylamino)-2-phenylpiperidine (297) has been reported331 in which the key reaction is a diastereoselective Lewis acid-catalysed hetero-ene reaction of aldehyde (296).
A logically derived mechanistic model has been presented332 for the enantioselective ene reaction between glyoxylic (and related) aldehydes and terminal olefins under the influence of chiral Lewis acids, and a study has been made333 of the asymmetric ene reaction of \(N\)-glyoxylyl-(2R)-bornane-10,2-sultam with pent-1-ene and hex-1-ene. \(\text{Yb(O Tf)}_3\) has been used successfully to catalyse the glyoxylate-ene reaction,334 while a number of metal cation exchanged montmorillonite-catalysed carbonyl ene reactions have been reported.335 \(\alpha,\beta\)-Unsaturated amides have been shown to undergo cyclocondensation with \(s\)-trioxane to give \(2H\)-3,6-dihydropyrans in an oxo-ene reaction,336 while benzazocenones have been assembled efficiently337 using an ene-type reaction of an azidoaldehyde with 2-methoxypropene, in tandem with a 1,3-dipolar azide cycloaddition and photolysis of the resulting triazoline (see Scheme 67).

A stepwise mechanism involving an aziridinium imide has been predicted338 from \textit{ab initio} studies for the transition structure of triazolinedione ene reactions. A mechanistic comparison in the regioselectivities of the ene reactions of 4-phenyl-1,2,4-triazolinedione-3,5-dione and singlet oxygen with a series of symmetrical tetrasubstituted alkenes has been made.339 The results of the communication have indicated a significant difference in the structure of the product-forming transition states which is responsible for the distribution of the ene product. Electronic repulsions between a perepoxide intermediate and the allylic functionality in the product-forming transition state have been put forward as being responsible for directing regioselectivity in the photooxygenation of trisubstituted alkenes bearing an electron-withdrawing group at the \(\beta\)-position of the alkene.340 Convenient syntheses of proto-quercitol (298) and gala-quercitol (299) have been accomplished341 via the ene reaction of singlet oxygen combined with 2 + 4-cycloaddition to cyclohexadiene (see Scheme 68).

Phosphaalkynes have been found to participate readily in ene reactions, both with alkylidene cyclopropanes and with alkenes, to form phosphaalkenes and phosphanes,
respectively.342 The same group343 has shown that phospha-ene reactions between methyldiene phosphanes (300) as enophiles and \textit{C}-aminophosphaalkenes (301) possessing allylic hydrogen atoms proceed by P–P bond formation to furnish the corresponding functionalized diphosphanes (302), which undergo a subsequent intramolecular ring closure to afford the previously unknown 3-amino-1,2-dihydro-1,2-diphosphetes (303).

The synthesis of polysubstituted pyrrolidines has been achieved344 in a diastereo-selective and enantioselective manner via the zinca-ene–allene cyclization. In an extension of this work,345 the zinca-ene–allene reaction of polysubstituted enynes lithiated on the propargylic position has been used to prepare polysubstituted
tetrahydrofurans and pyrrolidines of defined geometry. New ethylzinc reagents that show remarkable properties in palladium-catalysed zinc-ene reactions have been unearthed. The palladium-catalysed metallo-ene step in a cyclization-β-elimination sequence has been shown to be suprafacial with respect to the olefinic component, and as a consequence the reaction has been applied with great effect to the synthesis of a trisubstituted exocyclic alkenylpyrrolidine with complete stereocontrol; see (304) → (305). A study of the enantioselective-catalysed metallo-ene reaction has shown clearly that ligands with closely related structures can have totally different behaviour.

\[
\begin{align*}
\text{NTs} & \quad \text{Pd(dba)}_2 \\
\text{AcO} & \quad \text{Ph} \\
\text{Ph} & \quad \text{H} \\
\text{(E)} & \quad \text{(Z)} \\
\end{align*}
\]

The parent methanimine, H₂C=NH, and N-dimethylsilylmethanimine have been generated conveniently by using a retro-ene reaction of the easily accessible allylic and propargylic precursors. The reactive, unsubstituted cyclohex-2-enethione and cyclopent-2-enethione have also been synthesized using as a key step a retro-ene reaction under FVT conditions (see Scheme 69). A new route to 4,5-dihydrooxazoles and 5,6-dihydro-4H-1,3-oxazines using a retro-ene reaction has been reported, while mixtures of (E,E)-2-methyl-1-silyloxypenta-1,3-dienes (306), enoxilanes (307), SO₂, and t-BuMe₂SiOTf as catalyst have been used to generate (Z)-5-alkyl-1,3-dimethyl-6-oxo-4-silyloxalk-2-enesulfinic acids (308) that undergo a stereoselective retro-ene elimination of SO₂, thus forming the corresponding (E)-3-hydroxy-2-alkyl-4-methylalk-5-en-1-ones (309) with 2,3-syn and 3,4-anti diastereoselectivity.
Anionic Rearrangements

The stereochemical features and synthetic potential of the [1,2]-Wittig rearrangement have been reviewed353 as has its application to the conversion of O-glycosides into C-glycosides.354 Recent developments in the [1,2]-Wittig rearrangement have been reviewed355 and a new imino-Wittig rearrangement of benzyl and allyl hydroximates (see Scheme 70) has been reported.356 Theoretical studies of Wittig-type anionic migrations of alkyl, silyl, and germyl groups have shown357 that such rearrangements involve cyclic pentavalent carbanionic species.

In the presence of a catalytic amount of palladium(0), silylated vinylxiranes (310) have been found to rearrange into \(\alpha \)-silylated-\(\beta \), \(\gamma \)-unsaturated aldehydes (312), not only with complete chirality transfer, but also with total retention of the double bond stereochemistry. A mechanism involving a [1,2]-silicon shift from carbon to carbon via a \(\pi \)-allylic palladium complex (311) has been invoked358 for the transformation. New silicotropic rearrangements which involve [1,3]-trimethylsilyl, and possibly [1,5]-silatropic, shifts from carbon to carbon and carbon to nitrogen have been reviewed.359 An \textit{ab initio} study into [1,2]-homolytic translocation reactions of silyl, germyl, and stanny groups between carbon, oxygen, and nitrogen centres has indicated360 that transfers involving Group IV element-containing substituents proceed via a front-side mechanism in preference over the back-side (Walden inversion) mechanism. A report has appeared361 of the one-pot coupling of 2-(trialkylsilyl)-1,3-dithianes with two different electrophiles via a solvent-controlled Brook rearrangement (see Scheme 71). The first example of a retro-[1,6]-Brook rearrangement has been observed which, in
tandem with a [1,2]-Brook rearrangement, has been used362 to transform a 1-(tri-
methylsilyl)penta-2,4-dien-1-ol anion into a 5-(trimethylsilyl)pent-2-enal (see Scheme
72). It has been reported363 that reactions of the lithium enolates of trimethylsilyl esters
(313) with Et\textsubscript{3}SiCl or Bu'\textsubscript{2}Me\textsubscript{2}SiCl resulted in \(\alpha\)-trimethylsilyl esters by O \(\rightarrow\) C
migration of Me\textsubscript{3}Si (see Scheme 73). The retro-[1,4]-Brook rearrangements of \(\gamma\)-
siloxyalted organolithium compounds have been investigated364,365 as an approach to
the stereoselective access to \(\alpha\)-chiral allylsilanes with variable substitution patterns, and
the first retro-[1,4]-Brook rearrangements of siloxyalted propargyllithium compounds
under the influence of a 1,3-asymmetric induction have been carried out.366 Although \(\gamma\)-
sulfonyloxybenzylselenides have been found to produce arylcyclopropanes stereo-
specifically on reaction with butyllithium, the corresponding \(\gamma\)-silyloxybenzylselenides
under the same reaction conditions have been found to afford a stereomeric mixture of

\[\begin{align*}
\text{OBn} & \quad \rightarrow \quad \text{OBn} \\
\text{OBn} & \quad \rightarrow \quad \text{OBn} \\
\text{OBn} & \quad \rightarrow \quad \text{OBn} \\
\text{SiMe}_3 & \quad \text{retro-Brook} \\
\text{H}^+ & \quad \rightarrow \quad \text{CHO} \\
\text{BnO} & \quad \rightarrow \quad \text{SiMe}_3
\end{align*}\]
\[
\text{MeOSiMe}_3 + \text{base} \rightarrow \text{Me}_3\text{Si} + \text{OSiMe}_3 \quad (313)
\]

SCHEME 73

\(\gamma\)-hydroxy-\(\alpha\)-silylbenzylselenides via a retro-[1,4]-Brook rearrangement. Apparently in the former instance the intermediate benzylithium is alkylated before epimerization takes place, whereas in the latter case, epimerization occurs prior to the silyl group migration.\(^{367}\) An examination of the desilylation of (Z)-\(\alpha\)-dimethylphenylsilyl vinyl sulfides of the type (314) has been made and the observed migration of the phenyl group from the silicon to the adjacent carbon atom has been rationalized\(^ {368}\) in the manner shown in Scheme 74.

A theoretical study of the Favorzuskii rearrangement of \(\alpha\)-chlorocyclobutanone has been undertaken.\(^ {369}\) 3-Bromo-2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl has been found\(^ {370}\) to react with aqueous ammonia to yield 3-carbamoyl-2,2,5,5-tetramethylpyrrole-1-oxyl, the product of a Favorzuskii rearrangement. The rearrangement of 11,13-dibromo-9,10-dimethoxy-9,10-propanoanthracen-12-one to the corresponding Favorzuskii products has been studied,\(^ {371}\) and an unusual variant of the Favorzuskii rearrangement has been reported.\(^ {372}\) A new general method for the regiospecific synthesis of angular triquinanes (318) via a novel retro-aldol rearrangement of the corresponding linear isomers (315) has been described. It is envisaged\(^ {373}\) that this rearrangement involves formation and equilibration of the enolates (316) and (317) followed by an intramolecular Michael addition of the enolate anion in (317) to the enone moiety.

\[
\text{SCHEME 74}
\]
A novel tandem process has been reported for the preparation of allylic amines, ethers, and sulfides from \(\alpha\)-bromo-\(\alpha\), \(\beta\)-unsaturated sulfones. The process is believed to proceed via an initial conjugate addition followed by proton exchange and Ramberg–Bäcklund rearrangement (see Scheme 75). A new variant of the Ramberg–Bäcklund reaction has been described in which \(\alpha\), \(\beta\)-epoxy sulfones, on treatment with base, are converted into a range of mono-, di-, and tri-substituted allylic alcohols.

Allylthiols and unsaturated lithio sulfones have been found to react as nucleophiles with nitrones to yield intermediate hydroxylamines which undergo reverse-Cope cyclization to provide 1,3-thiazolidine \(N\)-oxides and pyrrolidine \(N\)-oxides, respectively. In the case of derivatives of \(C\)-phenyl nitrone (321; \(R^2 = Ph\)), thermolysis was found to result in smooth Meisenheimer rearrangement leading to 1,5,2-oxathiazinanone (322) (see Scheme 76).

It has been shown that benzils (323) react with Michael addition acceptors (324) in the presence of a catalytic amount of cyanide ion to yield 1,4-diketones (325). The authors proposed that (325) are produced through the formation of the \(O\)-arylmethyldenonitrile anion, followed by Michael addition and rearrangement of the aryl group with decyanation (see Scheme 77). The mechanism of the base-catalysed ring fission of 2,2-dihydroxyindane-1,3-diones has been investigated and the pathway set out in Scheme 78 has been proposed for the transformation. The base-catalysed ring
fission of benzocyclobutenediones has been shown to result in the formation of 2-formylbenzoic acid, a fact which clearly indicates fission of the carbonyl carbon-carbonyl carbon bond in the cyclobutenedione ring.380 On the other hand, a detailed study381 of the base-catalysed ring fission of a series of substituted 3,4-diphenylcyclobut-3-ene-1,2-diones (326) has shown that this reaction probably proceeds by the pathway shown in Scheme 79, where the rate-determining step is the formation of the cyclopropene intermediate (327). A study of the squarate ester cascade has established382 that the initially formed trans-cyclobutene dianions, represented by (328), undergo relatively rapid conrotatory ring opening with a strong kinetic preference for positioning the oxido substituents outside, as in (329).

Unusual triethylamine-catalysed rearrangements of bicyclic endoperoxides derived from substituted cycloheptatrienes have produced383 a variety of products (see, e.g., Scheme 80). \textit{Ab initio} calculations have shown that energised 2,3-epoxypropoxide anions undergo a degenerate Payne rearrangement in the gas phase via a three-centre mechanism.384 It has been reported385 that treatment of isonitrile epoxides (330) with
KOBu'–Bu'OH results only in the formation of the \(\alpha,\beta\)-unsaturated ketones (332), thought to arise by rearrangement of the initially formed oxyanions (331), as outlined in Scheme 81. The rearrangement of epoxides with lithium diethylamide and with LDA in conjunction with lithium \(t\)-butoxide has been studied in different solvents.\(^{386}\) Previously unreported base-induced transformations of rigid bicycloalkene-derived epoxides\(^{387}\) and simple deuteriated cycloalkene-derived epoxides\(^{388}\) have been described, thus providing an insight into the rearrangement mechanisms which operate following \(\alpha\)-lithiation in such systems.

The tricyclic undecatrienyl anion (333), generated from the corresponding hydrocarbon with \(n\)-BuLi, has been found to undergo a cyclopropane ring circumambulation at \(-78^\circ C\) to afford the anion (334), which undergoes a further rearrangement to the cyclopentadienyl anion derivative (335) at elevated temperatures.\(^{389}\) A high-level \textit{ab initio} study\(^{390}\) has been shown that the rearrangement of the fulminate anion (CNO\(^-\)) to the cyanate anion (OCN\(^-\)) proceeds via an oxazirinyll anion intermediate. Studies of a model of the vitamin B\(_{12}\)-catalysed methylmalonyl–succinyl rearrangement have established\(^{391}\) the influence of the non-covalent association of vitamin B\(_{12}\) and the substrate on the ratio of reduced and rearranged products.
Cationic and Related Rearrangements

Various aspects of carbocation rearrangements have been reviewed. A theoretical study of the mechanism of the branching rearrangement of carbocations has been undertaken, while a study of the interconversions of t-2-methylbutyl cations in the gas phase has shown that two stable conformers with the structure of a t-pentyl cation exist as energy minima. A systematic *ab initio* study has been carried out on the rearrangement of the isoformyl cation (HOC+) to the formyl cation (HCO+), and kinetic studies have been undertaken for the first time on the solvolytic generation of antiaromatic cyclopentadienyl cations. Substantive evidence has been obtained to suggest that there is a build up of positive charge adjacent to the carbonyl carbon during the nitration of α,β-unsaturated esters. Electrophilic 5-endo-trig cyclizations of 2-silylalk-3-enols have been carried out leading to tri- and tetra-substituted tetrahydrofurans with excellent diastereoselectivities.

A 1,2-hydride shift has been invoked to account for the formation of p-methoxyphenylbutyraldehyde derivatives (337) during the treatment of p-methoxybenzyl-protected allylic alcohols (336) with zeolites. A similar C-glycosidation procedure involving Lewis acid-catalysed anomeric oxygen to carbon rearrangement of tetrahydropyranyl ether derivatives has been reported (see Scheme 82). It has been
shown that reduction of the cis-1-bromoindane (338) with LiAlD₄ does not follow the predicted pathway, but instead gives 2-amino-2-\(d\)-indane (339) in which the deuterium atom is incorporated adjacent to the amino group. The authors showed that (339) arises from a stereospecific 1,2-hydride rearrangement (see Scheme 83). A mechanism
involving a series of consecutive 1,2-hydride transfers, rather than a direct 1,4-hydride transfer, has been invoked402 to account for the AlCl\textsubscript{3}-induced rearrangement of 1,1'-dideutero-3-butylphthalide to 1-methyl-5-carboxy-3,4-dideuteriotetrahydrophthalene. An asymmetric 1,7-hydride shift has been observed403 for the first time, during the reduction of α,β-unsaturated ketones to saturated secondary alcohols via a novel Michael addition–Meerwein–Pondorf–Verley reduction. An unusual rearrangement of N,N-dibenzyl-2-aminopropanol (340) to N,N-dibenzyl-1-aminopropanone (341) upon its exposure to either silica gel or pyridinium acetate has been recorded. One mechanistic explanation that has been proposed404 for the rearrangement involves a facile 1,2-methyl shift followed by a 1,2-hydride shift.

The MNDO method has been employed405 to study the reaction pathway and to optimize the structures of reactant, product, and transition state of the acid-catalysed rearrangement of 1,2-propylene glycol, and the unimolecular dehydration of protonated α,ω-diols in the gas phase has been examined406 by tandem mass spectrometric experiments. It has been shown that the reaction of 1,2-diarylerythrophane-1,2-diols (342) with acids yields primarily the α,β-unsaturated ketones (343) in which the aryl substituent attached to the double bond is that which is best able to stabilize a benzylic cation. The authors407 proposed that the reaction proceeds by O-protonation of the 1,2-diol followed by loss of water, opening of the resulting cyclopropyl cation and final deprotonation. The pinacol rearrangement of various diols (344) with a catalytic amount of Lewis acid in the presence of trimethyl orthoformate has been shown408 to proceed via a cyclic ortho ester intermediate (345). A study of the pinacol–pinacolone rearrangement in \textit{vic}-dihydroxychlorins and bacteriochlorins has shown409 that the migratory behaviour of the substituents depends largely upon the position and the number of electron-withdrawing substituents present, while it has been observed that the trifluoromethyl group imparts specific orientation to the course of the semipinacol rearrangement of trifluoromethyl-substituted \textit{vic}-diol monomethyl ethers410.

The mechanism outlined in Scheme 84 has been proposed411 to account for the isomerization of trimethyl α-keto trithioorthocarboxylates (346) into α,α-bis-
(methylthio)thiocarboxylates (347) in the presence of trityl perchlorate. It has been reported that dimethoxycarbene generated from the thermolysis of 2,2-dimethoxy-5,5-dimethyl-1H-1,3,4-oxadiazoline reacts with the carbonyl group of 9-fluorenone to yield 9-(dimethoxymethylene)fluorene oxide (348). The authors subsequently found that (348) rearranges thermally to methyl 9-methoxyfluorene-9-carboxylate (349) by a process which involves ring opening and intramolecular methoxy transfer (see Scheme 85). Aryl- and ethenyl-substituted oxiranes have been shown to rearrange readily to optically active alcohols in the presence of triethylsilane and boron trifluoride. This study also showed that a vinyl group migrates to a benzylic cation faster than a phenyl group migrates to an allyl cation. The successful rearrangement of acyclic α,β-epoxy

\[
\begin{align*}
\text{(346)} & : \text{RCC(SMe)₃ + Ph₃C⁺ ClO₄⁻} \\
\rightarrow & : \left[\text{RCC(SMe)₂} \right]⁺ ClO₄⁻ + \text{Ph₃CSMe}
\end{align*}
\]

\[
\begin{align*}
\text{Ph₃CSMe + RCCSMe ClO₄⁻} & \rightarrow \left[\text{RCC(SMe)₂} \right]⁺ ClO₄⁻ + \text{Ph₃CSMe}
\end{align*}
\]

\[
\begin{align*}
\text{MeS O} & : \text{RC CSMe + Ph₃C⁺ ClO₄⁻} \rightarrow \text{Ph₃COH}
\end{align*}
\]
Acylates (350) has been achieved\(^{414}\) (see Scheme 86) by using a combination of an acyl group and a Lewis acid, which can suppress the neighbouring-group participation of the acyloxy group. A detailed description of the Lewis acid-catalysed rearrangement reactions of \(\alpha,\beta\)-epoxy acylates in cyclic systems has also appeared.\(^{415}\) Corey and Roberts\(^{416}\) described some extraordinary results from a study of the cyclization and rearrangement reaction of cations derived from unsaturated oxiranes; see (351) \(\rightarrow\) (352) and (353) \(\rightarrow\) (354). On treatment with Lewis acids in anhydrous medium, \(\text{syn}\)- and \(\text{anti}\)-anthracenic and naphthalenic \(\text{vic}\)-diepoxides have been found to rearrange into 1-acynaphtho[2,3-c]- or benzo[c]-pyrans, presumably by way of a Grob-type fragmentation followed by recyclization\(^{417}\) (Scheme 87).

Stereochemical aspects of the thallium trinitrate-mediated ring contraction of 3- and 4-alkycyclohexanones to alkylcyclopentanecarboxylic acids have been investigated.\(^{418}\) TMSOTf-promoted cyclization of several methylene-cyclohexanesiloxyl acetics of the
type (355) have been found to proceed with exclusive pinacol rearrangement of the C(1) bond of the original three-carbon acetal side-chain419 to afford spiro[5.4]decan-

ones (356). Incorporation studies with 13C-labelled acetates and methionine in \textit{Acremonium strictum} have unearthed a remarkable and unprecedented pathway in which the cyclopentenone moiety of xenovulene A is formed from a C-methylated precursor which undergoes ring expansion to a tropolone followed by two successive ring contractions resulting in incorporation of the C-methyl carbon into the five-membered ring.420 A new entry to the bicyclo[4.3.0]nonane carbon skeleton (359) has
been established421 via a tandem Nazarov cyclization–skeletal rearrangement of \(\alpha\)-(trimethylsilylmethyl)divinyl ketone (357) via 1-methylenespiro[4.4]nonan-2-one (358) as an intermediate. The stereoselectivity of the acid-promoted rearrangement of dihydrofuranyl and dihydropyrranyl carbinols to spirocyclic ketones has been examined.422 The study has shown that the kinetically controlled isomerization results in the ring expansion of the hydroxyl-substituted ring with generation of a new stereogenic spirocyclic carbon atom. The same group of workers described423 the synthesis of spirocyclic bis-C\(_1\),C\(_2\)-glycosides by a similar acid-catalysed ring expansion of glycal-derived carbinols. This efficient process resulted in the generation of a new stereogenic centre by means of a controlled pinacol-like 1,2-migration to a cyclic oxonium ion (see Scheme 88). A novel and facile route to the benzo-1,3-dioxane ring system of averufin has been developed424 by way of an acid-catalysed rearrangement of cyclobutachromanols (see Scheme 89), and the acid-catalysed rearrangement of cyclobutane derivatives of the type (360) has opened up425 a general route for the direct synthesis of highly functionalized cyclopentenones (361). In this latter transformation, it appears that the stability of the carbocation formed after cyclobutane bond migration dictates the course of the reaction.
The ethoxycarbocation intermediate (363) produced by the action of acid on the
cyclobutenedione monoacetel (362) has been found to react with bis(trimethylsilyl)-
acetylene to afford a 2-methylenecyclopent-4-ene-1,3-dione derivative (365). The
authors\(^4\) proposed that the rearrangement results from an unprecedented cationic 1,2-
silyl migration on the alkynylsilane, subsequent ring expansion via a vinyl cation
intermediate (364), and re-closure by intramolecular addition of an acyl cation to a
silyllallene in a 5-\textit{exo-trig} mode (see Scheme 90).

In the presence of strong acids, 1-hydroxyalkyltris(trimethylsilyl)silanes (366) have
been found to undergo rearrangement with the formation of bis(trimethylsilyl)-1-
trimethylsilylalkylsilanols (368). The conversion has been interpreted\(^4\) as proceeding
through a silylium ion intermediate (367) (see Scheme 91). Mechanistic implications
of the 1,3-migration of a methyl group in the reactions of (Me\(_3\)Si\(_3\))\(_2\)CSi(CD\(_3\))\(_2\)I with silver
salts in alcohols have been discussed. It is now thought that the mechanism probably
involves initially the formation of an unbridged cation which can sometimes be
captured before conversion into the bridged form.\(^4\)

It has been suggested\(^4\) that the observed acid-catalysed isomerization of
perhydro[2.2]paracyclophane (369) to (370) is initiated by protonation of a bridgehead
C–H bond in (369). It has been shown that treatment of (+)-fenchone with ortho-
lithiated protected anilines and phenols provides adducts which under acidic conditions
generate carbocations (371) that rearrange to yield new enantiomerically pure five-
membered heterocycles fused to a benzene ring and a terpenic carbocycle. The nature
of the rearrangement has been shown to be dependent on the donor group and its ability
to stabilize a positive charge. With an amino donor group a product due to a
Wagner–Meerwein rearrangement is formed [see (371) → (372)], whereas with a
methoxy donor group Nametkin rearrangement [(371) → (373)] is the preferred

pathway. Construction of the tricyclo[5.3.1.01,5]undecane skeleton (376) has been
accomplished by utilizing a novel tandem pinacol rearrangement–ene strategy on a
Diels–Alder-derived bicyclo[2.2.2]octene (374) via the intermediacy of a bicyclo-
[3.2.1]octene derivative (375) (see Scheme 92). Successive processes involving
demethylation or desilylation and acyloin rearrangement have been proposed to
account for the formation of 1-hydroxy- or 1,8-dihydroxy-bicyclo[3.2.1]oct-3-en-2-
one on treatment of 1-methoxy- or 1-t-butyldimethylsilyloxybicyclo[2.2.2]oct-5-en-2-
one with acids or tetrabutylammonium fluoride, respectively. It has been reported
that treatment of the bicyclo[3.1.1]heptanol (377) under Mitsunobu conditions affords,
after hydrolysis, the rearranged bicyclo[2.2.1]heptanol (378). A likely pathway for the conversion is outlined in Scheme 93. A mixture of bicyclo[3.2.1]oct-3-en-2-ones (380) and bicyclo[2.2.2]oct-5-en-2-ones (381), the ratio of which is influenced by the substituent R, have been found434 to result from acid treatment of bicyclo[3.2.1]oct-6-en-2-ones (379). The pathway outlined in Scheme 94 has been invoked435 to explain the unexpected acid-catalysed rearrangement of 13-methoxy-1,6,8-trioxadispiro[4.1.5.3]-
pentadecane (382) to 3-chroman-5-ylpropan-1-ol (383), while a remarkable effect of the C–O–C bond angle strain on the regioselective double-nucleophilic substitution of the acetal group of tetraacetal tetraoxa cages has been reported, and a novel regioselective and stereoselective hydride rearrangement of the acetal group has been discovered; see (384) → (388). A mechanism involving coordination of the Lewis acid to the oxygen atom of (384) followed by cleavage of the C(8)–O(13) bond to give the
oxonium ion (385), fragmentation of (385) to a monocyclic species (386), followed by zipping back up to the stereoisomer (387) and subsequent intramolecular hydride transfer to (388), has been proposed for the rearrangement.437

A study of the preparation and solvolysis of syn- and anti-1-methyltricyclo-[4.1.0.04.6]heptan-2-ol derivatives has shown that the syn-mesylate (389) yields the product of a solvent-trapped cyclopropyl cation, viz. (391), thus suggesting the

intermediacy of a novel trihomocyclopropenyl cation (390) in the transformation.438

The rearrangements of carbocation sulfinate ion pairs have been studied in some detail,439 and the mechanisms of solvolysis and rearrangement of 2,2-dimethyl-3-pentyl and 1-(1-adamantyl)propyl sulfonates have been compared.440 It has been shown441 that aqueous ethanolation of an unstrained homoallylic secondary adamantyl toluene-p-sulfonate proceeds through a solvent-equilibrated allylic carbocation to afford rearranged protoadamantyl-substituted products. The highly diastereoselective, acid-catalysed addition of acetic acid and methanol to the vinylcyclopropane moiety of tetracyclo[5.3.2.02.10]dodeca-4,8,11-triene (392) has been rationalized442 on the basis of a two-step process which involves proton attack to the homotropyliene moiety of (392) with formation of a cyclopropylcarbinyl carbocation, followed by opening of the cyclopropane ring under tight assistance by the nucleophilic solvent to give the products with high β-diastereoselectivity (see Scheme 95).

A number of reviews of different aspects of the Pummerer reaction have been published.443,444 Chiral non-racemic α-substituted sulfoxides have been shown to react

![Scheme 95](image-url)
with O-silylated ketene acetals in the presence of a catalytic amount of ZnI₂ to yield non-racemic z-siloxy sulfides with high enantioselectivity. The highly stereospecific tandem Pummerer reaction–z-hydroximine rearrangement of (R)-z-(fluoroalkyl)-β-sulfinylenamines to yield (R)-fluoropyruvaldehyde N,S-acetals has been described. The reaction of γ,γ,γ-trifluoro-β-(p-methoxyphenylamino)sulfoxide (393) with trifluoroacetic anhydride, under Pummerer conditions, has been found to occur in an abnormal fashion, providing the six-membered cyclic sulfonium salt (394).

\[
\text{MeO} \quad \text{NH} \\
\text{CF₃CO²⁻}
\]

(394)

which is thought to arise from intramolecular interception of the expected trifluoroacetoxy sulfonium intermediate by the electron-rich p-methoxyphenyl group. Direct conversion of various thermally labile n,n-dihalobicylo[n-3.1.0]alkanes to 2-halo-2-cycloalkenols has been achieved by heating the dihalo compound in DMSO. Nucleophilic attack by DMSO followed by a Pummerer rearrangement and hydrolytic decomposition has been proposed as a possible mechanism for the conversion. Treatment of 1-(1'-benzenesulfonyl-3'-indolinyl)-3-benzenesulfinylmethylpropan-2-ol (395) with trifluoroacetic anhydride has been found to initiate rearrangement to (1-benzenesulfonyl-3-indolinyl)methyl benzenethiomethyl ketone. However, when the acetylated derivative (396) was treated with trifluoroacetic anhydride in the presence of a Lewis acid, two cis-cyclized conformers of 1-benzenesulfonyl-4-acetoxy-5-benzene-thio-1,2,2a,3,4,5-hexahydrobenz[c]indole (398) were produced, presumably by way of the intermediate (397). The ethoxy group migration of 1-(methylene sulfonyloxy)-9-(methylthio)dibenzothiophene, viz. (399) \(\Leftrightarrow \) (400), has been identified by ¹H NMR spectroscopy.

Ab initio calculations have been carried out on the isomerization of the dimethylenecyclobutene and 1,2,4,5-hexatetraene radical cations to the benzene structure. Similar calculations have indicated that the hexa-1,5-diyne radical cation is not stable but isomerizes to the 1,2,4,5-hexatetraene radical cation without a barrier. High-level ab initio theory has been used to investigate the effect of the neutral bases HF, H₂O, and NH₃ on the mechanism for isomerization of the conventional radical cations CH₃X⁺ (X=F, OH, NH₂) to their corresponding distonic isomers ‘CH₂X⁺H. Ab initio and density functional theory have been used to investigate the quadracyclane to norbornadiene radical cation rearrangement, and the electron-transfer photosensitized reaction of 7-(spirocyclopropane)quadracyclane with methanol has been shown to produce two rearranged monomethanol adducts and a bismethanol adduct. It has been proposed that the products arising from the photo-induced electron transfer and electrochemical oxidations of 1,4-bis(methylene)cyclohexane in the
presence and absence of nucleophiles are consistent with the initial formation of a radical cation. Radical cations of vinyl cyclopropane have been found to rearrange in CF₂ClCFCI₂ with ring opening to afford different distorted radical cations\(^\text{458}\).

The ground-state vinylidene–acycylene isomerization has been investigated\(^\text{459}\) by \textit{ab initio} molecular electronic structure theory, and absolute rate constants have been determined\(^\text{460}\) for [1,2]-acetyl, -carbon and -hydride shifts in cyclobutylacetoxyl and isopropylacetoxyl-carbenes. A detailed theoretical study\(^\text{461}\) has shown that, in simple acyclic dialkylcarbenes, the [1,2]-hydrogen migration pathway is the preferred intramolecular reaction. However, for cyclic carbenes, the study has shown that [1,2]-hydrogen migration is generally higher in energy, owing to the rigid carbon framework which does not always allow the ideal orientation of the migrating hydrogen, and also due to the formation of a double bond in the ring. Evidence has been presented\(^\text{462}\) for the thiacyclohexatriene–thiophenylcarbene rearrangement, the sulfur analogue of the cyclohepta[4+1]cyclopropane–phenylcarbene rearrangement.
A density functional study of the competition between the Wolff rearrangement and the [1,2]-hydrogen shift in β-oxy-α-diazocarbonyl compounds has been presented, and substituent effects in the gas-phase Wolff rearrangement of α-ketocarbenes has been investigated using the AM1 method. The Wolff rearrangement of diazoketones from amino acids has been used as a synthetic method for the preparation of oligonucleopeptides, while diazo ketones derived from suitably protected amino acids have been photochemically rearranged to the corresponding ketene intermediates which have been trapped with N-benzylbenzaldimine to give aminoalkyl-substituted β-lactams (see Scheme 96).

Rearrangements in Natural-product Systems

Evidence has been obtained for the involvement of a tertiary cyclopropylcarbinyl cationic intermediate in the rearrangement of presqualene diphosphate to squalene. 16-Oximino-17β-benzyl-17β-hydroxy derivatives in the androstane and estrane series have been converted into 16-oxo-17β-benzyl-17β-hydroxy derivatives with inverted configuration at C(17), on treatment with titanium trichloride. It has been suggested that the rearrangement occurs through the key intermediate (401) (see Scheme 97).

The rearrangements of perezone have been studied in some detail. A boron trifluoride–acetic anhydride-catalysed rearrangement of dihydroartannuin B has been reported, and a concise annulation fragmentation strategy has been elaborated for the construction of the bridged nine-membered ring ether moiety of the eunicelline diterpenes. It has been shown that LiAlH₄ reduction of artemisin results in an unexpected rearrangement yielding a novel tertiary hydroperoxide (see Scheme 98). Homologation of the taxol side-chain via an Arndt–Eistert reaction has been achieved, and biological rearrangement reactions of taxoids have been reported. Methanolyis of taxicin I esters has been found to afford a 1,15-secotaxane as the result of a vinylogous retro-aldol reaction followed by acetalization and a transannular hydride

![Scheme 96 Diagram](image1)

![Scheme 97 Diagram](image2)
Treatment of 13-oxo-7-triethylsilyl baccatin III with bifluoroacetic anhydride in the presence of pyridine has been reported to yield both A- and B-ring contraction products in reasonable yields. The sequence of reactions involved in the acid-catalysed rearrangement of 9-dihydro-13-acetylbaccatin III has been described.

Acetic acid-catalysed cleavage of proanthocyanidins in the presence of phloroglucinol has been reported to afford a series of 2R procyanidin- and prodelphinidin–phloroglucinol adducts together with a novel 2S all-cis derivative, thus implicating cleavage of the pyran ring and subsequent inversion of stereochemistry at C(2).

Treatment of the neolignan aurein with trifluoroacetic acid has been found to furnish the rearranged product 2-(2-allyl-4-hydroxy-3,5-dimethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)propane.

It has been shown that terpenoid biosynthesis in higher plants arises from 1-deoxy-D-xylulose by an intramolecular skeletal rearrangement. A novel glycosylation of 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid via an in situ pyranose to furanose rearrangement has been described, and an unusual rearrangement involving the formation of an α-(1 → 2)-linked disaccharide has been observed during the treatment of 3,4,6-tri-O-acetyl-1,2-O-(allyloxyethylidene)-β-D-mannopyranose with TMS-triflate. A simple method for the preparation of 1-fluoro- and/or 5-fluoro-3-branched-chain sugar derivatives by reaction of diethylamino sulfuryl trifluoride (DAST) with methyl 3-C-methyl-3-nitro-α-D-hexopyranosides has been presented. The reaction involves rearrangement without or with (see Scheme 99) ring contraction depending on a large extent on the 1,2-relative configuration. It has been reported that 4-C-substituted α-erythro- and β-threo-hex-2-enopyranosides of the type (402) readily undergo a reductive rearrangement to the respective 3-deoxy glycals when
treated with LiAlH₄ (see Scheme 100). A convenient and apparently general entry to 1-aminodeoxyketopyranoses has been achieved⁴⁸⁵ via Amadori rearrangement of 5-azido-5-deoxy-d-glucofuranose (403) with dibenzylamine and subsequent catalytic hydrogenation of the resulting 5-azido-1-dibenzylamino-1,5-dideoxy-d-fructopyranose (404). An intramolecular phosphorylation–elimination sequence (see Scheme 101) has been proposed⁴⁸⁶ to account for the unusual stereospecificity and 3-O-phosphorylation observed when olefination reactions under Horner–Wadsworth–Emmons conditions were performed on methyl 2-deoxy-α-D-glycero-hex-2-enopyranosid-4-ulos. A pancreatistatin C-ring precursor has been synthesized from methyl α-D-glucopyranoside utilizing a Ferrier rearrangement and a β-hydroxy-ketone transposition.⁴⁸⁷

It has been demonstrated⁴⁸⁸ that appropriate modification of the tryptamine chain of aspidosperma alkaloids can afford deep-seated skeletal rearrangement under relatively...
mild conditions. The rearrangement reactions of denudatine have been examined, and a single aldehydic compound has been obtained from the acid-catalysed rearrangement of dihydroveatchine. Modifications have been made to the structure of the antileukaemic alkaloid homoharringtonine through unusual skeletal rearrangements of the parent compound. In the presence of disopropylethylamine, the methoxymethyl-protected 6β-hydroxytropinone (405) has been found to undergo a ring-opening rearrangement to yield the novel bicyclic oxazolidine (407). An oxazolidinium (406) has been postulated as a key intermediate in this transformation (see Scheme 102).

Rearrangements Involving Electron-deficient Heteroatoms

Ab initio calculations have been performed to probe the mechanism of the Beckmann rearrangement of formaldehyde oxime in concentrated sulfuric acid, and substituent and solvent effects on the reaction pathway of the Beckmann rearrangement have been studied. The results of this study have indicated that the solvent molecules act as homogeneous catalysts in the rearrangement. Several vapour-phase Beckmann rearrangements have been carried out on zeolite catalysts, and the catalytic properties of mesoporous silica for the vapour-phase Beckmann rearrangement of cyclohexanone oxime have been compared with those of other typical solid acid catalysts. Montmorillonite K10 impregnated with iron(III) chloride has been found to be an effective catalyst for the Beckmann rearrangement of substituted diaryl ketoximes, giving selective *anti* migration. A study of the Beckmann rearrangement of *syn-* and *anti*-3,4-diphenylcyclohexenone oximes in polyphosphoric acid has supported earlier work that suggests alkyl migration is preferred over vinyl...
migration in the Beckmann rearrangement of unsaturated cyclic ketoximes. A systematic study has been made of the Beckmann rearrangement of aldonitrone using sodium iodide–trifluoroacetic anhydride, and mechanistic proposals on the transformation have been presented.501 A novel synthesis of 1,2-dehydro-1-aminophosphonates via a Beckmann rearrangement has been applied to the synthesis of \(\alpha \)-aminophosphonic acid derivatives.502 The fact that methyl \(\alpha \)-hydroxyiminobenzyl-\(N \)-\(t \)-butylphosphonamidate (408) has been found to undergo Beckmann rearrangement when heated in toluene, but fragmentation to a phosphoramidate (410) and phenyl cyanide when heated in butanol, has supported503 the assumption that a common intermediate (409) participates in the rearrangement and in the fragmentation (see Scheme 103). An asymmetric route to benzophenone frameworks utilizing a Beckmann rearrangement–allylsilane cyclization via planar chiral \(\eta^6 \)-chromium arene complexes has been described.504 17-Oximino-3\(\beta \)-pyrrolidinoandrost-5-ene has been found to afford the unusual lactam, 3\(\beta \)-pyrrolidino-17-aza-d-homoandrost-5-en-17a-one,505 and treatment of 4-methylidihydrofuro[2,3-\(h \)]-coumarin-9-one oxime under Beckmann conditions (HOAc–HCl or POCl\(_3\)) has been found to produce the corresponding 8-halo-4-methylidihydrofuro[2,3-\(h \)]coumarin-9-ones.506 The pathway outlined in Scheme 104 has been presented507 as a possible route for the rearrangement of \(\alpha \)-hydroxylamino oximes to cyclic amidoximes by the action of sodium borohydride. A variety of new heterocyclic systems have been formed508 via novel Beckmann-type rearrangements from cyclobutanone oximes and a mixture of disulfur dichloride, \(N \)-chlorosuccinimide, and Hünig’s base. Efficient synthetic routes to piperidine alkaloids such as (\(+\))-pinidine (412), starting from (\(+\))-benzyl 2-ethyl-3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate
(411), have been devised509 using a tandem Beckmann and Huisgen–White rearrangement as an alternative to the Baeyer–Villiger oxidation.

\textit{Ab initio} and semiempirical studies on the transition structure of the Baeyer–Villiger rearrangement of acetone with performic acid have been undertaken,510 and a theoretical investigation has been made511 of the mechanism of the Baeyer–Villiger reaction in non-polar solvents. The effect of fluoromethyl groups on the Baeyer–
Villiger rearrangement of di- and tri-fluoromethyl ketones has been investigated. The Baeyer–Villiger oxidation of 4-formyl β-lactams has been found to represent one of the few examples of a reaction in which the preferred migration of the carbon moiety involves an aliphatic aldehyde function. The process has led to an efficient and totally stereoselective entry to 4-(formyloxy)-β-lactams. The Baeyer–Villiger oxidation (and Beckman rearrangement) of N-benzyl-2-C:1-N-carbonyl-2-deoxy-5,6-O-isopropylidene-3-keto-α-D-ribofuranosylamine have been studied.

A mild and efficient Hofmann rearrangement has been developed using N-bromosuccinimide and sodium methoxide in methanol and/or N-bromosuccinimide and DBU in methanol, and a general synthetic method for the Hofmann rearrangement of N-α-protected L-asparagines has been described. This latter reaction involves reaction of the asparagine derivative with iodosobenzene diacetate in mixed solvents and has produced β-amino-L-alanines in good yield. A new solvent system has been described for the electrochemically induced Hofmann rearrangement of primary carboxamides. This methodology has made it possible to prepare alkyl carbamates possessing various alkoxy moieties under mild conditions. A chemoselective Curtius rearrangement of 1-(2-azidocarbonyl-3-furylmethyl)-5-pyrrolidone-2-carboxylic acid has been reported and Curtius rearrangements have been utilized as key steps in syntheses of (+)-preussin and (−)-normalindine. The formation of the disopropylphosphoramidate (415) from the reaction of (disopropylphosphono)thiolformate (413) with hydroxylamine in pyridine has been interpreted in terms of a spontaneous Losson rearrangement of disopropoxyphosphinylformylhydroxamic acid (414) formed in the reaction. A number of mechanistic studies have been undertaken aimed at determining the mechanism of the base-induced rearrangements of suitably activated N-phosphinoylhydroxylamines.

Rearrangements Involving Organometallic Compounds

Rearrangement processes of alkyltitanocene dichlorides that occur under electron impact have been investigated using deuterium labelling. A novel type of zirconium-mediated coupling reaction of alkynes with vinyl bromide to afford 2,3-disubstituted dienes has been reported (see Scheme 105), and an inter–intramolecular reaction sequence has been proposed for the observed formation of vinylcyclohexadienes and/or methylenecycloheptadienes from the copper-catalysed reaction of zirconacyclopentadienes with allylic dichlorides. The essential step in these processes appears to be transmetallation of the zirconium–carbon bond of the zirconacyclopentadiene to produce a more reactive copper–carbon bond. New phosphorus heterocycles, e.g. (417), have been constructed by the thermal rearrangement of a [1,4-bis(trimethylsilyl)-η⁸-cyclooctatetraene]-1,3,5-triphospha-7-hafnanorborendiene complex (416).
A study has been made of the reactivity of high-oxidation state tantalum–alkylidene complexes stabilized by the aryldiamine ligand \([\text{C}_6\text{H}_3(\text{CH}_2\text{NMe}_2)_2-2,6]^–\), and an unusual rearrangement involving the unique activation of an aryl C–H bond by the alkylidenetantalum moiety has been observed.\(^{531}\)

The rearrangement of a tungsten carbonyl-complexed 7-phosphanorbornadiene to its 7-phosphaalcylo[3.2.0\(^4.6\)]hept-2-ene complex has been analysed\(^{532}\) by ab initio MO calculations, and it has been shown that the reactions of molybdenum and tungsten metallates of the type \([\text{CpM(CO)}_2\text{CNR}]^–\) with methyl iodide yield methyl complexes of the composition \([\text{CpM(CO)}_2(\text{CNR})]\), which subsequently rearrange to \(\eta^2\)-iminocyls and \(\eta^3\)-1-azaallyls depending on the nature of the metal, the isocyanide R substituent, and the solvent used.\(^{533}\)

The use of single-enantiomer chiral ligands as a mechanistic probe for dynamic structural rearrangements in organo-transition metal complexes has been ably demonstrated in a study of the tricarbonylhalogenorhenium(I) and halogenotrimethylplatinum(IV) complexes of 2,6-bis[4-(S)-methyloxazolin-2-yl]pyridine.\(^{534}\) Rhenium hydroxide and amide complexes of the type Re(\(X\)(\(\text{EtC}≡\text{C}\))\(_3\)), where \(X = \text{OH}\) or \(\text{NH}_2\), respectively, have been found to rearrange with migration of a hydrogen from oxygen or nitrogen to the rhenium centre,\(^{535}\) while it has been suggested\(^{536}\) that the
isomerization of the parallel–perpendicular rhenium–allyl vinyl ketone complex (418) to the diastereomeric perpendicular–parallel complex (420) occurs by migration of the rhenium from one enantioface of the vinyl double bond to the other to produce the parallel–parallel diastereoisomer (419). In a second step, rhenium is suggested to migrate from one enantioface of the allyl double bond to the other.

Acetylene–vinylidene rearrangements of silylacetylene–iron carbonyl complexes have been observed, while iron–acetylide hydride complexes of the type $[Fe(H)(C≡CR)(dmpe)_2]$, where dmpe=1,2-bis(dimethylphosphino)ethane, have been found to react with anions to afford substituted alkenyl complexes. It has been proposed that a likely reaction course for this latter rearrangement involves initial protonation of the σ-bound acetylide ligand at the carbon β to the metal centre to form a vinylidene complex. Metal-to-carbon hydride migration in this vinylidene complex with attack by the anion would then lead to the neutral complex (see Scheme 106). A detailed mechanistic investigation has been carried out on the novel metathetical

\[X^- = N_3^-, Cl^-, SCN^- \]
reaction (421) → (422) observed between intramolecular Si–Si and Fe–Fe bonds when the disilane-bridged bis(cyclopentadienyl)tetracarbonyldiiron complex (421) is heated in boiling xylene, and the reaction specificity has been examined in more detail by studying the reaction of the related indenyl analogues.540,541 A number of novel structural rearrangements induced by metal–metal interactions in ruthenium(II) ruthenoceny1- and (pentamethylruthenoceny1)-acetylide complexes have been unearthed,542 and alternative mechanisms have been presented543 for the alkyne to vinylidene isomerization promoted by half-sandwich ruthenium complexes. A new, efficient method for the transformation of prop-2-yn-1-ols into α,β-unsaturated aldehydes catalysed by a (diphosphine)ruthenium(II) complex in the presence of benzoic acid has been reported. The authors544 showed that the key step involves the regioselective catalytic addition of the carboxylate to the terminal carbon atom of the C≡C triple bond, giving a (Z)-3-hydroxyprop-1-en-1-yl benzoate intermediate, followed by thermal elimination of the acid (Scheme 107). An enantioselective synthesis of chromenes from styrenyl ethers has been achieved545 by way of a ruthenium-catalysed rearrangement which can be represented by the pathway outlines in Scheme 108. A cascade of four metathesis reactions (see Scheme 109) has been
SCHEME 108

SCHEME 109
proposed546 as a mechanistic explanation for the ruthenium-catalysed isomerization of triynes into benzene derivatives. The rearrangement of the uncoordinated allyl fragment of the carboxamide ligand in the complex (\(\mu\)-H)Os\(_3\)(CO)\(_{10}\)(\(\mu\)-OCNHCH\(_2\)CH=CH\(_2\)) has been observed547 at room temperature.

The reduction behaviour of the alkylidene adduct of a cobalt–dithiolene complex (423) has been examined548 and the study has shown that, when the alkylidene-bridged structure (423) is reduced by one electron, it isomerizes rapidly and quantitatively to the ylide form (424). This represents the first example of reversible isomerization of the metal–carbon bond in a cobaltdithiolene complex. A surprising \textit{cis}- to \textit{trans}-dihydride isomerization which is unprecedented for 18-electron six-coordinate complexes has been observed549 in an octahedral iridium–\textit{cis}-dihydride complex.

\[
\text{Co} \quad \xrightarrow{\text{MeO2C}} \quad \text{S} \quad \xrightarrow{\text{CO2Me}} \quad \text{S} \quad \xrightarrow{\text{CO2Me}} \quad \text{S} \quad \xrightarrow{\text{MeO2C}} \quad \text{Co}
\]

(423) \quad (424)

A cyclic species involving the palladium moiety is thought to be involved550 as the reaction intermediate in the palladium-catalysed transformation of 2-alkynyl sulfinates, HC≡CH(R)OS(O)Tol, into sulfonyllallenes, RHC≡C=CHSO\(_2\)Tol. The reversibility of the rearrangement between hydrazo and azo tautomers in palladium metallocycles has been shown for the first time,551 and several (\(\eta^1–\eta^2\)-enyl)palladium derivatives have been detected552 as intermediates during a study of palladium insertion and migration along the chain of a number of linear terminal dienes. Mechanistic aspects of the unprecedented rearrangement of \textit{cis}-platinum(II)(alkyl,alkyne) complexes to \(\pi\)-allyl derivatives have been discussed553 and evidence has been provided554 for the intramolecular platinum migration from a kinetically favoured methionine residue to a thermodynamically preferred histidine side-chain in peptides.

Manoalide, a marine anti-inflammatory sesterterpenoid, has been synthesized555 using a 1,2-metallate rearrangement of a higher order cuprate and a Pd(0)-catalysed carbynylation of an iodoalkene to generate the central dihydropyranone ring.

The \(\pi\)-type \textit{endo}-cyclization of metal acetylides (425) to form strained cyclohexynes (426) has been observed556 for the first time in the reaction of alkynylzincates derived from 5-hexynyl tosylates.
15 Molecular Rearrangements

A chiral Lewis acid-catalysed method for the 1,2-migration of (dichloromethyl)borate complexes to provide synthetically useful (z-chloroalkyl)boronates has been developed, and the diastereoselective rearrangement of the z,z-dichloromethylboronate derivatives of 1,2-diols, (427) → (429), has been explained on the basis of a bidentate interaction between the catalytic Lewis acid and the substrate, leading to a favoured transition state (428).

\[\text{Cl}_2\text{HCB} \longrightarrow \text{RLi} \]

\[\text{Me} \]

A detailed examination of the reactivity of organo-aluminium derivatives of O, O'-bifunctional ligands has been undertaken, and the effect of substituents on the reversible rearrangements of chlorophosphane–dichlorogermene ylides to trichlorogermylphosphanes has been investigated.

Rearrangements Involving Ring Opening

MO calculations have been carried out on the isomerization of cyclopropane to propene, and the MNDO method has been used to study the reaction pathway and to optimize the structure of reactant, transition structure, and product of the ring opening reaction of bicyclo[1.1.0]butane. Various methods have been employed to estimate the rate constants for ring opening of the 2-cyclopropyl-2-propyl radical. 1-Acceptor-1-sulfenyl-substituted 2-vinylcyclopropanes of the type (430) have been found to afford 6-sulfenyl-z,β : γ,δ-unsaturated carboxylic esters and nitriles (431) upon treatment with acid, by a process which involves C(1)–C(2) bond fission and a novel 1,5-sulfenyl rearrangement (see Scheme 110). It has been shown that the benzophenone-sensitized photolysis of vinyl norcaradiene derivatives, such as 5-(2-methylprop-1-enyl)-3-oxatricyclo[4.4.0.01,5]deca-7,9-dien-4-ones (432), results in the regioselective cleavage of only one of the cyclopropyl σ-bonds to afford isochroman-3-one derivatives (433). It has been reported that the major product obtained from the reaction of structurally diverse z-diazo ketones with an electron-rich alkene in the
presence of rhodium(II)acetate is a dihydrofuran. The authors566 proposed that the transformation involves a cyclopropanation–ring opening–cyclization pathway (see Scheme 111). Evidence has been produced567 to support the hypothesized mechanism (see Scheme 112) as a possible pathway for the monoamine oxidase-catalysed oxidative
rearrangement of trans,trans-1-(aminomethyl)-2-methoxy-3-phenylcyclopropane to trans,trans-2-methoxy-3-phenyl-1-N-pyrrrolyl)methyl)cyclopropane. An unprecedented photochemical ring opening to yield 2-phenyl-3-[N-(pentafluorophenyl)amino]acrylic acid has been observed during the flash photolysis of 2-[N-(pentafluorophenyl)-amino]-3-phenylcyclopropenone. It has been shown that the remarkable interconversion of cyclopropenes upon heating takes place via unsaturated carbenes that are also involved in the ring opening of these compounds. A theoretical investigation of the syn–anti interconversion of cyclopropenone carbonyl oxide (434) and its isomerization to formyl ketene (435) has been carried out.
Ab initio calculations of the potential-energy surfaces for the unimolecular dissociation reaction of ethylene oxide have been made,571 while MO calculations have shown572 that there are concerted asynchronous pathways connecting the rearrangement of protonated propene oxide to protonated propanal. The regioselective ring-opening isomerization of epoxides to carbonyl compounds has been effectively catalysed by iron(III) tetraphenylporphyrin,573 and aryl-substituted epoxides (436) have been found to isomerize in the presence of \(\text{Pd(OAc)}_2-\text{PR}_3 \) to produce the corresponding benzylic aldehyde or ketone (437) with complete regioselectivity.574 The selective rearrangement of epoxysilanes (438) to \(\alpha \)-silylaldehydes (439) has been achieved575 with high efficiency by using the exceptionally bulky methylaluminium bis(4-bromo-2,6-di-\(t \)-butylphenoxide) as a stoichiometric reagent. Isotopic labelling has been used576 as a probe in the study of a degenerate Payne rearrangement in a \(t \)-epoxide system. 2-Amino-3-phenylpropan-1-ols have been identified as the products from the reaction of various 1-phenyloxiranemethamines with sodium cyanoborohydride in the presence of boron trifluoride. The authors577 proposed that the products are derived from Lewis acid-mediated ring opening of the epoxide in an aza-Payne manner, followed by benzylic reduction of the intermediate aziridinium species. Both 2,3-epoxy sulfides and 2,3-epoxyamines have been found to undergo Lewis acid-induced rearrangement578 via the corresponding thiiranium and aziridinium ions respectively (see Scheme 113), and an extension of this work in which \(3 \)-trimethylsilyloxy-1,2-aziridinium triflates are ring opened regiospecifically, using \(\alpha \)-aminoesters, has opened up a route579 to products that are structurally related to the aminopeptidase inhibitor pesatin. The stereoselective ring opening of a bromoxirane (440) to a tetrahydropranylacrylate (441) has been reported580 (see Scheme 114), and the novel diepoxide
(442) has been shown\(^{581}\) to undergo a novel rearrangement on heating to afford the 1,4-dioxine derivative (443). A kinetic study has been made\(^{582}\) of the oxiranylcarbiny radical rearrangement, and it has been proposed\(^{583}\) that the radical conversion of epoxydecalin thiocarbonylimidazolide (444) into bicyclo[6.3.0]undecanone (445) and bicyclo[5.3.1]undecanone (446) proceeds via a \(\beta\)-cleavage reaction of alkoxy radicals (see Scheme 115).

\[
\text{(440) CH}_2\text{Br} \xrightarrow{\text{AgNO}_3/\text{KPF}_6} \text{NO}_3^- \xrightarrow{\text{NO}_3^-} \text{CO}_2\text{Me} \\
\]

\[
\text{SCHEME 114}
\]

\[
(442) \quad \xrightarrow{} \quad (443)
\]

\[
\text{(444)} \quad \text{P = TBDMS}
\]

\[
\text{SCHEME 115}
\]
Details of the regioselective preparation of a variety of new 2,4-disubstituted oxazoles, using both iodide- and acid-promoted rearrangements of N-acylaziridines, have been presented. It has been shown that two plausible mechanisms (SNi and/or two SN2 reactions) can account for the acid-catalysed transformation of 1-acylaziridines (447) to oxazolines (448), while the regioselective rearrangement of N-acylaziridine-2-imides to oxazoline-4-imides, followed by hydrolysis of these latter compounds, has been used to afford chiral β-hydroxy-α-amino acid precursors. It has been suggested that the observed thermal rearrangement of cis-aziridinyl ketone tosylhydrazones (449) to 5-alkylamino-3,5-diphenyl-1-tosyl-2-pyrazolines (450) is initiated by ionic cleavage of the bond between the ring nitrogen and the C(2) carbon, while it has been shown that aziridinylbenzaldehydes undergo ring opening to yield (Z)-N-hydroxy-N′-(2-chloro-2-methylpropyl)benzenecarboximidamides on treatment with HCl. Pd(0)-catalysed isomerization of a number of 4,5-epimino 2-enoates has been shown to afford mixtures of four possible stereoisomers in which the cis-E-isomers predominate. 1,2,5-Thiadiazepin-6-one 1,1-dioxides of the type (453) have been obtained in good yield from the reaction of 2,2-disubstituted 3-amino-2H-azirines (451) and 4,4-disubstituted 1,2-thiazetidin-3-one 1,1-dioxides (452) at 0 °C in MeCN (see Scheme 116).

Evidence has been presented that favours the involvement of thirane intermediates in the formation of (E,E)-divinyl sulfides (455) from the reaction of thiocarbonyl ylides (454) with activated alkenes, while the reaction of 1-alkynyl-2,3-epithio alcohols (456) with a catalytic amount of Hg(II) has been shown to afford substituted thiophenes (457) (see Scheme 117).
15 Molecular Rearrangements

$$\text{(451)} + \text{(452)} \rightarrow \text{(453)}$$

Scheme 116

$$\text{Ph} \text{+ NMe}_2 \text{C} \text{SPh H}^+ \rightarrow \text{(455)}$$

R = COPh, CO$_2$Me, etc.

Z = COPh, CO$_2$Me

Scheme 117

$$\text{(456)} \xrightarrow{\text{Hg(II)/H}_2\text{O}^+} \text{(457)}$$

$$\text{H}_2\text{O} \rightarrow \text{H}_2\text{O}$$
SCHEME 118

A computational study has been carried out\(^{593}\) on the rearrangement reactions of methylsilacyclopropane, and the pathway shown in Scheme 118 has been put forward\(^{594}\) to account for the formation of product (459) from the reaction of Me\(_2\)AlCl with the (2 + 2)-cycloadduct (458) between naphthoquinone and allyl trimethylsilylane.

Results obtained with semiempirical MO methods have supported\(^{595}\) a mechanism for the pyrolysis of vinylphosphirane to phosphapropyne, in which extrusion of ethylene leads to a vinylphosphinidene intermediate.

Applications of oxaziridine rearrangements in asymmetric syntheses have been reviewed\(^{596}\) and the formation of N,N-disubstituted formamides (462) on sodium perborate oxidation of alkyl N-arylaldimines (460) has been rationalized\(^{597}\) in terms of an intermediate oxaziridine (461) that rearranges via acid-catalysed O–N cleavage.

\[\text{trans-3-(2-t-Butylcyclopropyl-3H-diazirine)}\]

\[\text{Scheme 118}\]

\[\begin{array}{c}
\text{R} \\
\text{H} \\
\text{N} \\
\text{Ar}
\end{array} \xrightarrow{\text{NaBO}_3} \left[\begin{array}{c}
\text{R} \\
\text{O} \\
\text{N} \\
\text{Ar}
\end{array} \right] \xrightarrow{\text{H}^+} \left[\begin{array}{c}
\text{R} \\
\text{H} \\
\text{N} \\
\text{Ar}
\end{array} \right]
\]

\[\text{(460)} \xrightarrow{\text{NaBO}_3} \left[\begin{array}{c}
\text{R} \\
\text{O} \\
\text{N} \\
\text{Ar}
\end{array} \right] \xrightarrow{\text{H}^+} \left[\begin{array}{c}
\text{R} \\
\text{H} \\
\text{N} \\
\text{Ar}
\end{array} \right]
\]

\[\text{(461)} \xrightarrow{\text{H}^+} \left[\begin{array}{c}
\text{R} \\
\text{H} \\
\text{N} \\
\text{Ar}
\end{array} \right]
\]

\[\text{(462)}
\]

\(\text{trans-3-(2-t-Butylcyclopropyl-3H-diazirine)}\) has been found to decompose both thermally and photochemically to yield the anticipated ring-expanded 3-t-butylcyclobutene product along with azine and products of trapping by solvent\(^{598}\) A stereochemical study of the methoxide-catalysed rearrangement of methyl α-bromomethylphosphonamidate has produced evidence\(^{599}\) for the intermediacy of an azaphosphiridine oxide in the reaction. A mechanism involving homolysis of the S−S bond at the rate-controlling step has been proposed\(^{600}\) to account for the isomerization of dithirane 1-oxides.

The structural and stereochemical requisites for the base-catalysed C\(_4\), C\(_4\)-bis-β-lactam to fused bis-γ-lactam rearrangement have been studied\(^{601}\) and a pathway involving opening of the 2-azetidinone (see Scheme 119) has been proposed for the transformation. Acid-catalysed elimination of methanethiol to yield an azetinone intermediate (464) which, by nucleophilic addition of the eliminated agent, is converted into the isomeric thioesters (465) has been proposed\(^{602}\) to account for the formation of these bicyclic thioesters on reaction of tricyclic azetidinone (463) with trifluoroacetic acid. A new base-catalysed rearrangement of N-substituted 4,4-dimethyl-1,2-thiazet-
idin-3-one 1,1-dioxides (466) to thiazolidin-4-one 1,1-dioxides (467) has been reported603 (see Scheme 120).

Evidence has been provided604 for intramolecular nucleophilic catalysis by the carbonyl group during methanolation of o- and p-formylbenzenesulfonates in basic media (see Scheme 121). A theoretical study of the zwittazo cleavage of 4-azido-2-pyrroloinones has been undertaken,605 and \textit{ab initio} calculations have been carried out to examine the possibility of the existence of a hexacoordinate phosphorus intermediate (469) in the migration reaction (468) \(\rightarrow\) (470) of dimethoxyphosphorylthreonine.606

A novel approach to the synthesis of dipyridinyls (472) and terpyridinyls with phenyl and 1,3-terphenyl spacers has been delineated607 by the base-induced ring transformations of 6-pyridyl-3-carbomethoxy-4-methylthio-2H-pyran-2-ones (471) (see Scheme 122).

The dehydration of aldoximes with 2-methylene-1,3-dioxepane has been found to proceed smoothly in the presence of a catalytic amount of scandium(III) triflate to give the corresponding nitriles. The authors608 proposed that coordination of Sc(OTf)\textsubscript{3} to the oxygen atom of the 1,3-dioxepane ring induces C–O bond cleavage to form a cationic
intermediate. Subsequent elimination of the hydrogen atom of the oxime and the orthoester moiety leads to production of the nitrile (see Scheme 123).

Isomerizations

CaY zeolite has been found either to act as a reagent to reduce stilbenes to 1,2-diarylethanes or to act as a catalyst and isomerize (Z)-stilbenes to the more stable E-form, depending on the number of Bronsted acid sites present in the zeolite.\(^{609}\) It has also been suggested\(^{610}\) that Z-to-E one-way isomerization of (Z)-stilbene through proton addition–elimination and electron-transfer processes occurs in acidic zeolite cavities. The isomerization reaction of (E)- and (Z)-\(\alpha\)-phenylcinnamic acid molecules has been studied\(^{611}\) at the level of semiempirical quantum chemical methods. The calculations revealed that the (Z)-\(\alpha\)-phenylcinnamic acid is slightly more stable than the E-isomer. Kinetic studies have been made on the thermal \(Z\to E\) isomerization of C(40)-carotenoids,\(^{612}\) and the rotational barriers for \(Z\to E\) isomerization of different proline analogues have been investigated\(^{613}\) by dynamic \(^1\)H NMR spectroscopy. The effects of
solvent viscosity on the thermal Z-E isomerization of three substituted N-benzylideneanilines have been studied614 in a non-polar aprotic solvent. 2-[2-(Pyrrolyl)ethenyl]quinoxaline has been found to undergo one-way E-Z isomerization in benzene615 whereas preparation of (Z)-1-methyl-4-(2'-methylthiovinyl)pyridinium iodide (473) from the corresponding pyridine was found616 to result in irreversible isomerization to the E-isomer (474). Calculation of the activation parameters for the

![chemical structure](image)

process showed one of the lowest barriers to an irreversible isomerization ever determined. The E-Z isomerization of 9,10-di-t-butyl-9,10-dihydro-9,10-disilaanthracenes has been shown to proceed via the inversion of the silyl radical centre, indicating the considerable stability of the intermediate silyl radicals.617 A report has appeared on the Z-E isomerization of an ozonide.618

An \textit{ab initio} method has been employed to study the mechanism of the thermal isomerization of buta-1,2-diene to buta-1,3-diene. The results of the study have indicated619 that the transformation proceeds in a stepwise manner via a radical intermediate. Experimental free energies of activation for the bond shift in halocyclooctatetraenes have been reported and analyzed by using \textit{ab initio} MO calculations.620 The isomerization of hexene using a dihydridorhodium complex in dimethyl sulfoxide has been reported,621 and it has been suggested622 that the Pd(II)-catalysed homogeneous isomerization of hexenes proceeds by way of π-allylic intermediates. A study has been made623 of alkene isomerization catalysed by the rhodium t-phosphine–tin dichloride dimeric complex, and the double-bond isomerization of olefinic amines over potassium amide loaded on alumina has been described.624

It has been demonstrated625 that ytterbium–aromatic imine dianion complexes can act as effective catalysts for the isomerization of terminal alkynes to internal alk-2-ynes. Isomerization of acetylenic pentafluorophenyl esters in the presence of phosphines has been found to give rise to activated dienoic acids, which have been coupled directly with amines (and alcohols) in a simple one-pot procedure626 (see Scheme 124).

\textit{Tautomerism}

The hydronium ion-catalysed vinyl alcohol–acetaldehyde isomerization has been investigated627 via \textit{ab initio} MO calculations, and the results have supported the stepwise mechanism shown in Scheme 125. A theoretical study of the tautomeric rearrangements in mono- and di-chalcogenide analogues of formic acid, [HC(X)YH;
X,Y=O,S,Se,Te], has been undertaken. The stabilities of different tautomeric forms of 4-hydroxycoumarins have been evaluated by MNDO calculations, and the four lowest-energy oxo–hydroxy tautomers of 5-fluorouracil have been studied using density functional methods. Semiempirical calculations have been carried out on the keto–enol tautomerism of triazolopyrimidines. A base-catalysed keto–enol tautomerism has been proposed to be responsible for the observed deuterium exchange of the hydrogens at the 3-position of diazepam when the molecule is treated with alkaline deuteriated methanol.

AM1 semiempirical calculations have shown that, as far as tautomerism is concerned, there is a structural relationship between β-dicarbonyl compounds and NH-pyrazoles, and in a wide variety of NH-pyrazoles studied the most stable tautomer was found to be that having the largest single-bond character between the C(3)–C(4) bond. The problem of proton transfer in NH-pyrazole crystals has been subjected to a detailed theoretical study, while a study of the tautomerism of 2-aryl and 2-heteroaryl derivatives of benzimidazole has indicated that tautomerism takes place by the intermolecular relay of protons between stacked molecules. The first report of the stable co-existence of two different histidine tautomers in one peptide crystal structure has appeared. Ab initio calculations have been used to study the tautomerism of both histamine and pyrazolo[3,4-d]pyridazine in the gas phase and in aqueous solution, and a theoretical study of the NH tautomerism in free-base porphyrin has been undertaken.

The N-acylimine–enamide tautomerism of methyl 2-acetamidoacrylate has been studied by means of ab initio calculations. A 13C NMR investigation has been undertaken to study the tautomerism between the hydrazone imine and diazenyleneamine forms of 3-(arylhydrazono)methyl-2-oxo-1,2-dihydroquinolines, and the effects of temperature and side-chain on the imine–enamine tautomerism in quinoxalinone and pyridopyrazinone systems have been studied. A detailed
theoretical study644 of the tautomerism of neutral 9-acridinamine in gaseous and condensed media failed to conclude definitively in which tautomer form the molecule exists. Treatment of several heteroaromatic amines with trifromymethane (475) afforded 1:1 condensation products which have been assigned645 as \(N\)-substituted aminomethyleneumaldehyde, strongly preferring the amino–keto form (476) over the imino–enol tautomer (477). With cytosine, unequivocal evidence for ring–chain tautomerism was additionally obtained.

\[
\begin{array}{c}
\text{H} \cdots \text{O} \cdots \text{H} + \text{RNH}_2 \\
\text{H} \cdots \text{O} \cdots \text{H} \\
\text{H} \cdots \text{O} \cdots \text{H}
\end{array}
\xrightarrow{\text{RNH}_2} \begin{array}{c}
\text{R} \cdots \text{N} \cdots \text{O} \cdots \text{H}
\end{array}
\xrightarrow{\text{H}_2\text{O}} \begin{array}{c}
\text{R} \cdots \text{N} \cdots \text{H}
\end{array}
\xrightarrow{\text{H}_2\text{O}} \begin{array}{c}
\text{H} \cdots \text{O} \cdots \text{N}
\end{array}
\xrightarrow{\text{RNH}_2} \begin{array}{c}
\text{H} \cdots \text{O} \cdots \text{H}
\end{array}
\]

(475) (476) (477)

Rate constants and activation parameters for ring–chain tautomerism in five-, six- and seven-membered ring 1,3-dinitrogen heterocycles (478) have been calculated646 and \(\sigma^+\)

\[
\begin{array}{c}
\text{D}_2 \\
\text{H}
\end{array} \xrightarrow{\text{N}} \begin{array}{c}
\text{D}_2 \\
\text{H}
\end{array}
\xrightarrow{\text{N}} \begin{array}{c}
\text{D}_2 \\
\text{H}
\end{array}
\xrightarrow{\text{N}} \begin{array}{c}
\text{D}_2 \\
\text{H}
\end{array}
\xrightarrow{\text{N}} \begin{array}{c}
\text{D}_2 \\
\text{H}
\end{array}
\]

(478)

values for a number of heteroaryl-substituted phenyl groups have been estimated647 via the ring–chain tautomeric equilibria of oxazolidines and 1,3-oxazines in deuteriochloroform solution. A study of the tautomerism of 1,2-diaminoethyl and 1,3-diaminopropyl derivatives of aldoximes has shown that in some cases ring–chain interconversion between pyranose and piperimidine tautomers can take place.648 Finally, it has been reported that the ring–chain tautomerism of the Schiff bases of \(l\)-p-nitrophenylserinol can be accurately depicted as at least one distinct nucleophilic equilibrium involving largely the secondary hydroxyl group.649

\section*{References}

15 Molecular Rearrangements

15 Molecular Rearrangements

278 11099 (1997).
293 He, G., Huaxue Yanyun Yu Yingyong, 8, 430 (1996); Chem. Abs., 125, 327773 (1997).
304 (1997).
322 70, 2215 (1997).
15 Molecular Rearrangements

15 Molecular Rearrangements

15 Molecular Rearrangements

15 Molecular Rearrangements

Author Index

In this index bold figures relate to chapter numbers, roman figures are reference numbers

Aaltonen, M., 8, 18, 15, 128
Abaee, M.S., 14, 219
Abbas, K.A., 2, 21
Abboud, J.-L., 9, 158
Aboud, K., 15, 140
Abdel-Wahab, A.-M.A., 6, 18
Abe, M., 5, 287
Abe, S., 6, 29
Abe, T., 4, 67
Abedinzadeh, Z., 3, 75
Abel, U., 15, 504
Abiko, A., 1, 58
About-Jaudet, E., 11, 71; 15, 229
Abraham, M.H., 14, 140
Abramski, W., 15, 514
Abronin, L.A., 8, 6
Abu-El-Halawa, R., 15, 86
Abu-Hasanayn, F., 10, 87
Abukshima, D.E., 2, 90
Acero-Alarcón, A., 12, 95
Achmatowicz, O., 11, 96; 13, 109; 15, 484
Adachi, T., 2, 98
Adam, C., 7, 20
Adam, M., 11, 12
Adam, W., 2; 60; 4, 43, 218–222, 244, 291–294; 5, 172, 194; 10, 26, 156; 13, 57
Adamo, C., 8, 25
Adams, H., 1, 117; 11, 79, 80
Adams, N.G., 13, 36
Adamson, A.J., 7, 45
Adcock, W., 9, 148
Adia, M., 15, 404
Adinarayana, M., 5, 21
Admasu, A., 6, 22, 26
Adschiri, T., 1, 191
Afaniyeva, L.V., 8, 44
Afarkinia, K., 14, 131
Agami, C., 10, 35
Agarwal, G.L., 5, 3, 11
Aggarwal, V.K., 1, 65b, 116, 117; 2, 188; 11, 66, 79, 80, 82; 13, 8; 15, 204
Agnihotri, K., 2, 54, 55
Agranat, I., 7, 89
Agrawal, G.L., 5, 66
Aguilar, M.A., 14, 115
Aguilar-Parrilla, F., 15, 635
Ahamed, K.A.B., 1, 178; 5, 124
Ahlgberg, P., 2, 166; 9, 157
Ahlgren, M., 2, 90
Ahmad, S., 7, 12; 12, 59
Ahmadian, M., 14, 189
Ahman, J., 7, 65, 71
Ahmed, A., 11, 119
Ahmed, G., 6, 97
Aikawa, K., 12, 37
Aitken, D.J., 1, 181; 11, 47
Aitken, R.A., 6, 42; 15, 94, 278
Aizpuru, J.M., 14, 33, 34
Akaba, R., 4, 64
Akabori, S., 15, 542
Akai, S., 15, 47, 415
Akaji, M., 15, 589
Akao, M., 12, 54
Akasaka, T., 11, 10
Akbaran-Tafti, H., 10, 24
Akhoon, K.M., 1, 10; 11, 114
Akhrem, I.S., 8, 44
Akhmoumshmina, I.M., 5, 230; 231
Akiba, K., 10, 54; 14, 232
Akiba, K.-Y., 14, 7
Akimoto, S., 14, 222
Akinuye, E.T., 1, 48b
Akiha, H., 15, 18
Akiyama, K., 4, 22
Akiyama, T., 15, 548
Akizuki, M., 11, 56
Alajarin, M., 14, 40
Alam, M., 13, 59
Alami, M., 7, 83
Alanon, M.R.L., 3, 220
Al-Awadi, N., 2, 83; 12, 55, 56
Al-Awadi, N.A., 12, 49, 50, 92
Alayrac, C., 15, 175
Al Badri, A., 4, 213
Albar, H.A., 8, 43
Albeniz, A.C., 15, 552
Albers, R., 6, 84, 85; 15, 59
Albert, J., 15, 551
Alberti, A., 4, 32, 100
Albini, A., 6, 30, 39
Alby, D., 8, 67
Alcaide, B., 5, 168; 15, 513, 601
Alcantara, A.R., 2, 26
Alcudia Cruz, A., 1, 31
Alder, R.W., 6, 98
Alderman, R., 15, 588
Aldertete, J.B., 15, 639
Al Dulewav, A.R., 6, 40; 15, 80
Alekandrov, G.G., 9, 41
Alekseyev, V.V., 15, 648
Aleksis, O., 1, 20
Alencar, K.G., 8, 57
Alex, G., 2, 156
Alexander, R., 1, 117; 11, 79
Alferov, V.A., 3, 129
Alföldi, J., 13, 83
Alhaji, N.M.I., 5, 31
Ali, M., 5, 42
Ali, Sk.A., 14, 80
Alifanova, E.N., 5, 230, 231; 7, 121
Al-Jaroudi, S.S., 14, 80
Alkorta, I., 1, 135; 11, 13; 15, 633, 634
Allan, R.D., 3, 128
Allen, A.D., 9, 89, 130; 10, 131; 15, 396
Allen, J.W., 15, 135
Allert, M., 2, 166
Allin, S.M., 15, 202
Al-Mamun, M.R., 10, 129
Almlof, J.E., 1, 130
Al-Naja, A., 1, 108
Al-Najjar, A., 2, 2; 11, 173; 15, 381
Alonso, R., 14, 70
Alper, H., 7, 91
Al-Thabitai, S., 2, 126
Altmann, K.-H., 14, 275; 15, 156
Alvarez-Ibarra, C., 5, 146; 11, 86
Alvarezldaboy, J.R., 4, 135
Alvarez-Larena, A., 2, 316; 14, 74
Alvaro, C.E.S., 7, 22
Alvarezz Larena, A., 14, 78
Aly, M.F., 5, 168; 15, 513
Amade, M.S., 13, 39; 14, 98; 15, 442
Amat, L., 10, 91
Amels, P., 5, 207
Ammenn, J., 14, 275; 15, 156
Amyes, T.L., 9, 94; 10, 128; 12, 20
Author Index

Behrens, T., 4, 213
Bekarek, V., 10, 108, 109
Belissaoui, A., 14, 61
Belakhov, V., 2, 268
Belbruno, J.J., 15, 571
Belénkii, L.I., 8, 12
Beletskaya, I.P., 7, 70; 10, 5, 13, 74; 15, 293
Belevskii, VN., 4, 142, 300; 15, 458
Bell, N.V., 7, 43
Bellassoued, M., 1, 23
Beller, M., 7, 67
Bellucci, G., 9, 100; 13, 21, 24
Bellus, D., 14, 275; 15, 156, 173
Belokon, Y.N., 3, 183
Belopushkin, S.I., 4, 142
Beloso, PH., 2, 301; 5, 281
Belousov, I.A., 2, 233, 285
Belov, A.P., 5, 79
Belozerov, VE., 5, 79
Bembi, R., 1, 2, 129
Benaglia, M., 4, 100
Benakli, K., 3, 156
Benassi, R., 4, 208
Ben-David, Y., 15, 549
Bendikov, M., 9, 73
Bennet, A.J., 2, 103; 9, 146; 10, 20; 15, 441
Beno, B.R., 14, 149
Bensassan, C.S., 3, 151
Benschop, H.P., 9, 30
Bentley, P.A., 5, 166
Bentley, T.W., 9, 163
Bentrude, W.G., 3, 163
Benzon, S.W., 3, 88
Bera, A.K., 1, 177; 5, 45
Béerces, T., 3, 113
Berg, D.J., 14, 191
Berg, F.J., 2, 251
Berger, D.J., 15, 595
Berger, H., 15, 302
Bergeron, S., 5, 166
Bergmeier, S.C., 10, 47
Bergsträsser, U., 9, 103; 15, 342, 343, 530
Berinstein, A.B., 4, 230
Berke, H., 15, 537
Berlin, A.A., 5, 26
Berlin, Ad.A., 5, 82
Berliner, M.A., 15, 135
Bernard, A.M., 15, 124
Bernardi, A., 1, 39
Bernardi, F., 3, 83; 14, 283; 15, 275
Bernasconi, C.F., 2, 318; 6, 5, 11, 144, 145
Bernath, G., 15, 647
Berndt, T., 3, 148; 5, 118
Bernet, B., 6, 50
Bernhard, M.J., 3, 103
Berry, R.J., 3, 224
Berson, J.A., 4, 230
Bertani, R., 14, 36
Bertarini, C., 4, 208
Berthe, M.C., 1, 65a
Bertoncin, F., 14, 138
Bertrand, G., 4, 19, 14, 101, 102
Bertrand, M.P., 3, 173
Besalu, E., 10, 91
Besemer, A.C., 4, 42; 5, 111
Beslin, P., 15, 174
Bessmertnykh, A.G., 7, 70
Besson, B., 8, 17
Betancor, C., 15, 435
Bettinetti, G., 6, 30
Beugelmans, R., 7, 49, 50
Bezzerganidou-Baloutseti, C., 14, 203
Bezrodnyi, V.P., 2, 272, 273
Bezsonova, K.V.Y., 15, 30–32
Bezsonova, K.V., 2, 169
Bezudnova, E.Yu., 2, 33
Bhaduri, A.P., 8, 22
Bhandari, K., 15, 505
Bharathy, J.B., 5, 14
Bhargava, N., 5, 67
Bhatia, B., 5, 61
Bhatt, M.V., 2, 141; 15, 604
Bhattarchajee, G., 7, 21
Bhattarchajee, S., 4, 35, 36
Bhattarcharya, A.K., 15, 470
Bhattarcharya, S., 5, 43
Bhattarcharya, S., 7, 74
Bhatti, I.A., 15, 71
Bhavani, N., 5, 145
Bhosale, D.K., 14, 81
Bhuniya, D., 15, 386
Bial, S.E., 1, 20
Bianchini, C., 13, 67
Bianchini, R., 4, 58; 5, 264; 13, 22
Bibas, H., 15, 243
Bickelhaup, F., 15, 57
Biedermann, P.U., 7, 89
Bieber, K., 15, 280
Biehlmann, J.F., 15, 616
Bierbaum, V.M., 9, 122; 11, 185
Bieseimer, F., 14, 75
Bietti, M., 4, 139
Biggs, P., 3, 57, 165, 213, 220
Bigi, F., 13, 46
Biginelli, P., 1, 44a
Bilde, M., 3, 111, 223, 223
Billi, R., 15, 78
Bilow, J., 15, 245
Binnigge, N., 3, 65
Binger, P., 14, 177; 15, 530
Bini, A., 15, 79
bin Mohamed, M., 15, 71
Binmore, G., 3, 89
Bintz-Giudicelli, C., 15, 325
Birney, D.M., 1, 19; 12, 34, 35; 14, 59
Bishop, B.M., 15, 201
Biskupic, S., 4, 264
Biswas, K.M., 5, 261
Biswas, P., 15, 230
Bit, C., 5, 246; 15, 401
Bjelakovic, M., 4, 277
Bjornestad, R., 2, 203
Björsvik, H.-F., 3, 191
Black, H.S., 4, 49
Black, J.R., 15, 428
Black, W.C., 11, 157
Blackburn, M.G., 2, 223
Blackman, B., 9, 135
Blagg, B.S.J., 15, 467
Blagoeva, I.B., 2, 5, 81
Blain, I., 5, 246; 15, 401
Blake, A.J., 6, 69
Blake, J.F., 5, 258; 11, 46
Blake, M.E., 6, 98
Blakemore, D.C., 1, 97; 13, 93
Blanchfart, L., 2, 60; 15, 156; 13, 57
Blanchette, P.E., 5, 183
Blanco, S.E., 13, 96
Blandamer, M.J., 1, 3; 2, 162; 10, 124
Blankespoor, R.L., 4, 237
Blanksby, S.J., 11, 1; 12, 97
Blasig, I.E., 4, 27
Blasko, A., 2, 253; 5, 116
Blazerowski, J., 1, 27; 15, 644
Bleasdale, C., 2, 19
Blechert, S., 4, 173; 14, 245, 273; 15, 546
Blesa, M.A., 5, 206
Bliokhin, I.V., 7, 201
Bliokhina, N.I., 7, 121
Blundell, P., 15, 492
Bobyleva, M.S., 7, 111
Boccardo, G., 11, 177; 11, 79
Bochikarev, V.N., 6, 106
Bock, C.W., 9, 29; 12, 75
Bockman, T.M., 3, 160; 4, 62; 7, 3, 6; 8, 82, 83
Böckskei, Z., 15, 106
Bodajla, M., 13, 50; 15, 11
Boden, N., 10, 38
Bodnar, P.M., 1, 82
Bodrikov, I.V., 13, 26
Bodwell, G.J., 14, 257
Boeckman, R.K., 14, 233, 242; 15, 150
Boehme, C., 14, 50
Boelrijk, A.E.M., 5, 96
Boen, L., 5, 175
Cha, O.K., 2, 36
Chabinye, M.L., 4, 233
Chahoua, L., 2, 120
Chai, C.L.L., 3, 184
Chaimovich, H., 2, 16, 111
Chajara, K., 4, 111
Chajewska, K., 15, 333
Chajora, K., 10, 103
Chakravorty, S., 4, 10
Chalk, A.J., 9, 52; 15, 395
Chambers, M.S., 15, 178
Chambers, R.D., 11, 179; 15, 581
Chambournier, G., 3, 47
Chan, C., 13, 66
Chan, M.S.W., 4, 149; 7, 52, 53; 9, 164; 11, 8
Chan, W.C., 5, 271
Chand, U., 3, 116; 4, 23
Chande, M.S., 15, 82
Chandra, A.K., 3, 139; 14, 47
Chandra, H., 4, 35, 36
Chandrasekhar, J., 1, 96; 4, 182; 14, 96, 180
Chang, B.-D., 10, 154
Chang, F.-C., 3, 174
Chang, H.C., 3, 208
Chang, N.-Y., 6, 71; 15, 459
Chang, R., 3, 201; 7, 5
Chang, Y.-T., 10, 66
Chanon, M., 4, 111; 10, 103
Chantegrel, B., 15, 242
Chao, I., 12, 36
Chao, L., 14, 174
Chapat, J.-P., 8, 40
Chapman, R.D., 13, 27
Chapyshev, S.V., 10, 7
Charalambis, T.A., 14, 68
Charney, D.J., 15, 251
Charonnet, E., 15, 120
Charrier, C., 15, 306
Chatgilialoglu, C., 3, 1, 7, 28
Chatrousse, A.-P., 7, 119
Chattpadhyay, S., 15, 6
Chauhan, J.S., 2, 243, 244
Chauhan, P.M.S., 8, 22
Chauhan, S.M.S., 5, 35
Chedru, C., 15, 519
Chellamani, A., 5, 31
Chen, C., 7, 90
Chen, C.-J., 4, 48
Chen, C.-Y., 1, 122
Chen, D., 15, 385
Chen, G.-F., 4, 291, 292
Chen, G.S., 4, 129; 9, 67
Chen, H.-C., 15, 258
Chen, J., 5, 266
Chen, J.-S., 13, 54; 15, 338, 562
Chen, K., 5, 257
Chen, K.-X., 2, 262
Chen, M., 7, 107; 15, 337
Chen, M.G., 8, 26
Chen, Q., 4, 78
Chen, R.-T., 2, 153, 174
Chen, R.-Y., 2, 249, 255
Chen, S.-F., 1, 111
Chen, X., 2, 30, 252, 266
Chen, X.-Y., 3, 144
Chen, Y.S., 8, 71
Chen, Y.-X., 10, 160
Chen, Z., 14, 58
Chen, Z.M., 15, 492
Cheng, J., 11, 57
Cheng, J.-P., 4, 21, 110; 5, 284; 6, 54, 91; 9, 64
Cheng, M., 9, 38
Cheng, P.Y., 7, 12
Chentit, M., 4, 146, 213
Cheong, B.S., 4, 14
Cheong, D.-Y., 2, 276, 277, 279
Chelip, L.M., 10, 14
Cherkasov, R.A., 10, 6, 134; 12, 87
Cherkinsky, M., 12, 90
Cherkosov, A., 10, 134
Chern, J.-H., 10, 21; 15, 436, 437
Cherneva, D., 5, 163
Chernyshev, E.A., 6, 106
Cherysheva, A.V., 3, 211
Cheung, K.-K., 5, 247; 15, 472
Cheung, Y.S., 15, 390
Chew, A.A., 3, 229
Chiang, M.Y.N., 14, 88
Chiang, Y., 1, 140a; 6, 101; 15, 568
Chiappe, C., 9, 100; 13, 21, 22, 24
Chiaroni, A., 15, 216
Chiba, T., 11, 163
Chibisova, T.A., 15, 506
Chicarelli-Robinson, M.L., 15, 420
Chin, C.-P., 9, 39; 10, 117
Chin, W.S., 2, 197
Chino, M., 15, 180
Chirkov, Y.u.N., 2, 117
Chiu, C.C., 5, 280
Chlebicki, J., 10, 30
Chmielewski, M., 14, 23; 15, 514
Cho, B.R., 12, 3, 15
Cho, H.G., 4, 14
Cho, I.H., 2, 281
Cho, N.S., 12, 15
Cho, S.J., 2, 95; 10, 66
Choi, J.W., 14, 250
Choi, N., 15, 68
Choi, S.Y., 2, 225
Choret, N., 15, 406
Choti, K.Yu., 2, 27
Chou, P.K., 4, 125, 148
Chou, T-s., 12, 36; 14, 174
Chouerey, D., 13, 4
Chougale, R.B., 5, 108
Chourey, V.R., 2, 202; 12, 104
Chovancová, J., 1, 128
Chow, T.J., 1, 122
Chow, T.J., 9, 151
Choy, A.L., 14, 29
Choy, G.S.-C., 10, 87
Chrisman, W., 5, 115
Christe, K.O., 2, 302
Christensen, J., 3, 223
Christensen, J.B., 4, 267; 12, 57
Christensen, L.K., 3, 223
Christensen, S.B., 15, 283
Christie, R., 11, 117
Christl, M., 9, 163; 14, 48
Christofers, J., 13, 85
Christos, T.E., 6, 62
Chrostowska-Senio, A., 15, 349
Chu, S.-Y., 3, 32
Chu, Y.L., 15, 188
Chubarov, G.A., 1, 4
Chuchani, G., 2, 62; 12, 44, 45, 51, 69
Chung, A., 5, 280
Chung, D.I., 1, 37, 38
Chung, D.S., 2, 278
Chung, E.-K., 2, 39, 47
Chung, S., 15, 135
Chung, S.-K., 10, 66
Chung, W.-S., 4, 230; 14, 49, 88
Chupakhin, O.N., 7, 102, 105
Chuvylkin, N.D., 8, 12
Ciancosi, S.J., 15, 251
Cinquini, E., 14, 98
Cintas, P., 14, 115, 116
Cirelli, A.F., 15, 486
Ciufolini, M.A., 15, 337
Curla, H., 3, 11, 5, 262
Claney, S.F., 12, 79
Claridge, T.D.W., 2, 107
Clark, A.J., 3, 193
Clark, B.A.J., 6, 69
Clark, B.K., 4, 257
Clark, D.T., 9, 4
Clark, G.R., 9, 104
Clark, J.H., 8, 20
Clark, T., 4, 156; 9, 13, 113; 15, 455
Clary, D.C., 10, 85, 86
Clauss, R., 3, 175
Clegg, W., 6, 40; 15, 80
Cleland, W.W., 2, 48, 186
Clemirthaw, K.C., 3, 220
Clenan, E.L., 2, 299
Clouston, L.L., 14, 191
Clouthier, D.J., 6, 105
Coates, R.M., 12, 80
Cobas, A., 7, 126
Cobos, C.J., 3, 53
Jain, A.K., 1, 48a; 2, 121
Jain, D.C., 15, 470
Jain, R., 5, 11
Jakubik, T., 13, 87
Jaky, M., 5, 23
Jameel, A.A., 5, 57
James, L.A., 12, 2
James, T.L., 1, 156; 11, 139
Jana, G.H., 15, 132, 230, 232
Janaway, G.A., 11, 3
Janda, K.D., 2, 221, 222, 227; 13, 10
Jang, D.J., 15, 102
Jang, S.-B., 7, 76
Janin, R., 8, 60
Jankowski, S., 12, 39
Janoschek, R., 15, 241
Janssen, E., 1, 66c
Janssen, R.A.J., 4, 168
Janzen, E.G., 4, 29
Jaraczewski, A., 11, 17, 18, 147
Jarek, R.L., 9, 76
Jarevang, T., 15, 215
Jarstfer, M.B., 15, 467
Jarvis, A.N., 1, 77
Jastrzebski, J.T.B.H., 15, 531
Jaszay, Z.M., 3, 42
Javahery, G., 9, 133
Jaworski, J.S., 7, 8
Jaworski, S.J., 4, 197
Jayat, F., 15, 2
Jay-Gerin, J.P., 4, 290
Jean, P., 5, 240
Jeevarajan, A.S., 4, 158
Jeevarajan, J.A., 4, 158
Jeffers, P.M., 10, 157, 158
Jefferson, E.A., 2, 133; 6, 75; 15, 103, 104
Jemmis, E.D., 9, 128; 14, 169; 15, 628
Jenkins, W.P., 2, 311; 9, 102
Jenkins, I.D., 3, 62, 63; 4, 37
Jenks, W.S., 4, 278
Jenner, G., 14, 256; 15, 321
Jennieskeins, L.W., 12, 53; 15, 49–53
Jensen, A.W., 14, 18
Jensen, C., 13, 44
Jensen, F., 9, 116; 10, 69; 12, 9
Jensen, K.B., 14, 63
Jensen, N.R., 1, 182
Jensen, V., 13, 34
Jenson, C., 9, 26
Jeong, S., 2, 225
Jeoung, E.H., 15, 636
Jeschke, R., 15, 173
Jeske, J., 15, 560
Jeter, D.Y., 4, 224
Jewsbury, P., 2, 271
Jeyaraj, A., 1, 104
Jezewski, A., 15, 333
Jeziorek, D., 5, 217
Ji, G.-Z., 3, 138
Ji, J., 3, 178
Ji, R.-Y., 2, 262
Jia, X.Q., 4, 119
Jiang, H.-L., 2, 262
Jiang, N., 12, 77
Jiang, Q., 14, 58
Jiang, X.-K., 3, 131, 138, 166
Jiang, Z., 9, 92
Jiao, H., 9, 129
Jiao, X.-Y., 3, 14
Jimenez, H.A., 14, 226
Jimenez, J.L., 14, 115, 116
Jiménez, M.C., 15, 8
Jiménez-Vázquez, H.A., 9, 153
Jin, J., 15, 329
Jin, Y.Z., 14, 229
Jinli, O., 15, 110
Jnaneshwara, G.K., 8, 66
Jo, D.-S., 2, 280; 10, 140
Joanteguy, S., 15, 349
Jochims, J.C., 15, 86, 327
Jödicke, K., 1, 79
Joglar, J., 14, 184
Johannsen, M., 14, 142, 192, 196
Johnson, A.J., 2, 49
Johnson, C.D., 8, 2
Johnson, J.E., 15, 588
Johnson, J.S., 14, 150
Johnson, M., 13, 117
Johnson, P., 5, 197
Johnson, R.P., 14, 148
Johnston, G.A.R., 3, 128
Johnston, J.N., 15, 422
Johnston, L.J., 4, 122, 177, 192; 9, 46, 106; 14, 10; 15, 26
Johnstone, R.A.W., 15, 153, 154
Jolivet-Fouchet, S., 15, 69
Jollie, D.M., 4, 272
Jonas, R.T., 2, 219
Jonczyk, A., 15, 225
Jones, B.P., 2, 138
Jones, C., 15, 534
Jones, D.E., 9, 63, 111; 14, 279, 281
Jones, D.W., 10, 52; 14, 220
Jones, G.R., 11, 193; 13, 50; 15, 11
Jones, J., 3, 73; 4, 265
Jones, K., 3, 31
Jones, M., 6, 3, 59
Jones, M.F., 14, 183
Jones, M.T., 4, 66
Jones, P.G., 14, 27; 15, 302, 504, 560
Jonsson, M., 4, 6, 183
Jordan, F., 5, 280; 11, 151
Jørgensen, K.A., 1, 28; 6, 46; 14, 62, 63, 142, 192, 196
Jørgensen, W.L., 9, 26; 13, 44; 14, 24
Joseph-Nathan, P., 15, 469
Joshi, P.R., 5, 49
Joshi, R., 5, 148
Joshi, R.M., 15, 82
Joshi, S., 14, 131
Jost, R., 9, 19
Jouaiti, A., 4, 146, 213
Jouve, K., 14, 236
Jouvret, C., 7, 13
Joy, A., 15, 609
Jóźwiak, L., 1, 27; 15, 644
Juaristi, E., 13, 5
Juliette, J.J., 13, 73
Jumbam, D.N., 1, 66b
Jun, K., 4, 175
Jun, Y.M., 11, 161
Jung, I.-C., 10, 15
Jung, K.H., 4, 287
Jung, M.E., 3, 34, 52; 14, 221; 15, 362, 413
Jungkamp, T.P.W., 3, 209; 4, 52
Jurczak, J., 1, 91; 15, 333
Jursic, B., 4, 263
Jursic, B.S., 3, 8, 6, 72; 12, 71; 14, 82, 156, 167, 175
Justyniak, I., 15, 559
Jutand, A., 7, 82
Kaaafari, M., 3, 156
Kaambre, T., 2, 213
Kabachnic, M.I., 11, 72
Kabal'nova, N.N., 3, 77; 5, 188
Kabir, M., 10, 129
Kabir-ud-din, 2, 82
Kabuto, C., 12, 37
Kabyemela, B.M., 1, 191
Kad, G.L., 15, 1
Kadish, K.M., 4, 66
Kadota, I., 1, 85
Kaga, S., 14, 90
Kahl, S., 15, 346
Kahraman, M., 14, 280
Kahya, D., 5, 98
Kai, T., 15, 481
Kajiokaa, T., 11, 170; 15, 389
Kajitan, M., 15, 548
Kakami, K., 15, 179
Kakesu, M., 3, 219
Kakimoto, Y.-I., 3, 153; 15, 583
Kakiuchi, K., 14, 25
Kako, M., 4, 69, 70
Kakuma, S., 4, 69
Kalinin, A.V., 15, 6
Kalpana, M., 4, 182
Kalra, B.L., 15, 251
Lucero, M.J., 13, 105
Luchkevich, E.P., 8, 84
Luco, J.M., 13, 96
Ludwig, R., 11, 44
Ludwig, R.T., 9, 43, 68; 11, 2, 148
Luis, J.M., 10, 91
Lukach, A.E., 4, 285; 10, 18, 11, 26
Lukashev, N.V., 15, 293
Lukasiewicz, A., 4, 59
Lukesova, M., 10, 109
Lukin, K.A., 11, 183
Luk’yanov, S.M., 9, 53
Lumen, R., 8, 85, 9, 80
Lund, E.A., 15, 566
Lund, H., 4, 203
Lund, T., 4, 203
Lunell, S., 4, 134, 135
Luo, N., 3, 236
Lunque, A., 14, 33
Lustinetz, H., 6, 49
Lusztyk, J., 3, 21, 80; 4, 183; 9, 46; 15, 563
Luth, B., 15, 318
Lutsyuk, A.F., 2, 305; 12, 105
Luzikov, Y.N., 7, 124
Lyashchuk, S.N., 2, 75; 6, 14
Lyga, J.W., 15, 500
Lynch, V., 15, 588
Lynch, V.M., 1, 15
Lysenko, Z., 7, 41
Ma, D., 15, 363
Ma, F.-P., 2, 257
Ma, H., 6, 83
Ma, H.R., 15, 460
Ma, J., 6, 75; 14, 6, 208, 264; 15, 103
Ma, J.-M., 2, 163
Ma, S., 3, 85
Ma, W., 6, 83; 15, 460
Ma, Y., 6, 18
Maas, W., 4, 219, 221
Maat, L., 14, 128
Macciantelli, D., 4, 100
MacCullough, J.J., 4, 31
MacDonald, I., 15, 409
MacDougall, J.M., 15, 373
MacFaul, P.A., 5, 204
Machacek, V., 2, 296
Machadu, V.G., 2, 231
Machiguichi, T., 4, 169
Macias-Sanchez, A.J., 5, 64
Maciejewski, M.W., 12, 76
Mackay, M.F., 10, 34
Mackewitz, T.W., 15, 342, 343
Mackie, J.C., 3, 73; 4, 265
Mackie, R.K., 2, 131
Macknet, K.D., 8, 47
MacKnight, E., 9, 123; 15, 9
MacLagan, R.G.A.R., 13, 37; 15, 572
Macquarrie, D.J., 8, 20
Madariaga, S.T., 15, 639
Maddaluno, J., 14, 179
Maddaluno, J., 14, 221
Madden, L.K., 3, 71; 6, 74; 15, 47
Madder, A., 2, 147
Made Gowda, N.M., 5, 121, 140, 141
Mader, M.M., 2, 220
Madison, S.A., 5, 175
Makdour, A.E., 5, 270
Madrid-Diaz, F., 15, 483
Maeda, K., 3, 194
Maeda, M., 15, 179
Maeda, Y., 3, 219; 15, 221, 265, 615
Maeder, M., 1, 74
Maerker, C., 9, 78, 152
Maestro, M.C., 1, 57; 11, 43
Magallanes, J.F., 5, 206
Magdalinos, P., 14, 252
Magedov, I.V., 15, 591
Mager, S., 15, 649
Maggi, R., 13, 46
Maggini, M., 4, 24
Magnaterra, F., 3, 169
Magnus, N., 1, 119; 11, 58
Magnus, P., 1, 119; 11, 58
Mah, H., 15, 109
Mahadevan, V., 5, 92
Mahadevappa, D.A., 5, 122, 123
Mahadevappa, D.S., 5, 121, 139, 143
Mahajan, M.P., 14, 83
Mahal, L.K., 3, 58
Mahanti, M.K., 5, 5
Mahmoud, G., 3, 215
Mahmke, J., 15, 560
Mahon, M.F., 1, 43; 4, 103
Maier, A.H., 8, 59
Maier, G., 4, 241; 6, 12; 13, 25; 15, 252
Maikap, G.C., 5, 61
Mainar, A.M., 14, 140
Maj, K., 1, 18
Majetic, G., 8, 21
Majima, T., 4, 72, 121
Majitra, R.G., 2, 283
Makarov, M.G., 10, 30
Makarova, R.A., 2, 27
Maki, T., 15, 518
Maki, Y., 1, 189
Makino, K., 4, 28
Makino, M., 4, 200
Makioka, Y., 15, 625
Makita, S., 4, 281
Makitra, R.G., 2, 293; 10, 121
Makogon, O., 4, 295
Makorno, H., 11, 71; 15, 229
Makosza, M., 7, 36, 39; 11, 59, 177
Maksakov, V.A., 15, 547
Maksic, Z.B., 8, 7, 16
Maksimovic, L., 4, 230; 6, 80; 15, 46
Mal, J., 15, 424
Malacria, M., 3, 93; 15, 358
Malaluan, R., 1, 191
Malamidou-Xenikaki, E., 14, 68
Malhotra, S.V., 5, 255
Mali, V.P., 15, 22
Maligres, P.E., 10, 46
Malinakova, H.C., 8, 76
Maliverney, C., 8, 70
Mall, T., 4, 217
Mallik, H., 5, 261
Malm, B., 1, 43; 4, 103
Malouf, E.Y., 15, 538
Malykhin, E.V., 7, 30, 31, 42
Mamer, O., 15, 477
Man, H.-W., 15, 557
Manabe, S., 15, 210, 214
Mancini, P.M.E., 7, 20
Mandahl, A.H., 14, 226
Manderville, R.A., 2, 130, 7, 116, 117; 13, 118
Mandolini, L., 2, 184
Manera, C., 8, 41
Mangalagi, I.I., 11, 88
Mangalam, G., 5, 2, 25
Manikyamba, P., 5, 6
Manion, J.A., 3, 70, 158; 12, 70
Mann, G., 7, 81, 87
Manoharan, M., 5, 192; 14, 153
Mantashyan, A.A., 4, 39
Maran, U., 10, 90
Marata, M., 7, 77
Marc, G., 13, 104
Marcaccio, M., 4, 100
Marchand, A., 10, 25; 14, 193
Marchand, C.M., 9, 96
Marchand, E., 14, 195, 266; 15, 309
Marchand-Brynaert, J., 14, 35
Marchand-Brynaert, J., 14, 253
Marchington, A.P., 10, 38; 15, 579
Marcinek, A., 6, 22
Marco, J.J., 13, 106
Marco-Conteles, J., 3, 46
Marcoux, J.-F., 7, 72
Marcual, A., 14, 179
Author Index

McSherry, M., 15, 89
Mead, K.T., 2, 59
Mebel, A.M., 4, 11; 6, 74; 15, 47
Médebielle, M., 11, 179
Medforth, C.J., 15, 409
Medien, H.A.A., 1, 127
Meek, G., 1, 167; 5, 272
Meekel, A.A.P., 14, 199
Meekhof, A.E., 9, 43; 11, 2
Meenak, K., 10, 50
Mehrabani, F., 14, 246
Mehta, G., 1, 96
Mehta, L.K., 4, 201
Mehta, S.P.S., 5, 83, 84
Meier, H., 11, 12; 14, 292
Meier, K.-R., 14, 106
Meille, S.V., 14, 87
Meinardi, S., 2, 185
Mekonnen, B., 8, 13
Mele, A., 3, 167
Melius, C.F., 3, 56; 6, 74; 15, 47
Mella, M., 6, 39
Mello, R., 3, 90; 5, 184, 185
Melloni, G., 4, 57
Mellor, J.M., 8, 34
Mellouki, A., 3, 222, 233, 237
Mellroy, S., 4, 74
Meltzer, P.C., 15, 492
Memarian, H.R., 14, 13
Memb, R., 2, 142
Mencarelli, P., 4, 16; 10, 127
Mendez, F., 14, 226
Mendez, M.I., 13, 35
Mendiara, S., 5, 267
Meng, Q., 7, 44; 9, 47; 10, 142, 143; 12, 4, 16, 17
Meng, X., 2, 151
Merchan, F.L., 14, 76
Merchan, M., 4, 190
Merendi, G., 3, 240
Merino, P., 14, 76
Merino, S., 1, 143, 144
Merlet, D., 4, 111; 10, 103
Merli, A., 14, 87
Merrer, D.C., 6, 19, 80; 15, 46
Merrigan, S.R., 5, 178
Merrill, G.N., 12, 11
Mesic, M., 2, 120
Messmer, A., 3, 199; 15, 92
Mestres, J., 10, 91; 14, 163
Metivier, P., 8, 30
Metsala, A., 2, 213
Metz, F., 8, 64
Metz, P., 15, 160
Metzner, P., 11, 98; 15, 175
Meunier, B., 5, 91
Mewett, K.N., 3, 128
Mewweer, I.D., 2, 89
Meyer, A.G., 14, 94
Meyer, S., 5, 154
Meyers, A.L., 11, 46
Meyers, S., 3, 239
Meyer-Stork, M.A., 1, 161; 5, 276
Mezyk, M.P., 3, 121
Mezyk, S.P., 1, 186c, 187b
Miah, A.S., 10, 129
Miah, M.A.J., 15, 6
Miao, W.S., 2, 248
Miaszkiewicz, K., 4, 130; 5, 193
Micalef, A.S., 3, 116; 4, 23
Miceli, M., 8, 41
Michael, J.V., 4, 275; 12, 61, 62
Michalak, J., 6, 22
Michalik, M., 15, 427
Micha-Screttas, M., 4, 96
Michelys, P.-V., 11, 41
Michl, J., 4, 223
Middleton, M.L., 15, 224
Miello, A., 14, 34
Miesch, M., 15, 315
Mihailovic, M., 4, 277
Mihara, S., 9, 66; 15, 408, 414, 415
Mihov, T.R., 15, 590
Mihovilovic, M.D., 11, 109
 Mikами, K., 4, 65
Mikhailov, L.E., 15, 279
Mikhailov, V.A., 7, 99
Mikina, M., 6, 68
Miljak, M., 6, 68
Milbank, J.B.I., 15, 130, 131
Milina, L.T., 3, 223
Militsin, I.A., 2, 64
Miljovic, D., 15, 468
Miljković, M., 1, 14; 9, 59
Millar, R., 1, 24
Millar, R.W., 8, 34
Miller, D.O., 14, 212
Miller, J., 2, 77; 7, 106; 10, 130
Miller, N.D., 15, 190
Milllet, A., 8, 8
Mills, J.F., 2, 15
Milne, P.E.Y., 6, 42; 15, 94
Milsden, D., 15, 549
Mimura, N., 15, 589
Mimura, T., 14, 264
Min, J-S., 2, 46
Minato, T., 5, 180
Mindl, J., 2, 87; 119; 12, 6
Minisci, F., 3, 127, 132, 167, 191
Minkin, V.I., 9, 61, 71; 15, 199, 279
Minkszty, K., 15, 233
Minoli, G., 6, 30
Minor, K.P., 15, 419
Minowa, T., 15, 502
Minyaev, R.M., 15, 199
Mioskowski, C., 11, 192
Miranda, M.A., 9, 108; 15, 8
Mironov, G.S., 8, 31
Mish, M.R., 14, 60
Mishima, M., 1, 69, 70; 9, 34, 86, 87; 10, 136; 11, 28, 29
Mishima, S., 15, 498
Mishra, S., 2, 149
Mishra, S.K., 5, 47
Mishra, S.P., 4, 303
Miskolczi, L., 15, 647
Mislin, G., 15, 315
Mismash, B., 15, 89
Misra, G.P., 5, 130
Mitas, P., 2, 98
Mitchell, J.B.A., 10, 86
Mitchell, R.H., 9, 131
Mitchkeno, E.S., 7, 108, 109
Mithani, S., 10, 48
Mitrokhine, A.A., 5, 246; 15, 401
Mittal, J.P., 4, 299; 5, 221
Miwa, Y., 15, 589
Miyabe, H., 3, 181
Miyabo, A., 4, 305
Miyajima, H., 4, 231
Miyajima, S., 15, 351
Miyake, H., 9, 62
Miyake, Y., 4, 33; 7, 35
Miyama, S., 2, 189
Miyamoto, M., 14, 173
Miyano, S., 7, 55–57
Miyashita, T., 4, 68; 15, 194
Miyashita, A., 1, 76; 11, 55; 13, 82; 15, 378
Miyashita, K., 5, 285
Miyata, O., 11, 169; 15, 356
Miyatake, R., 1, 11, 102; 9, 140; 11, 170; 15, 304, 389
Miyaura, N., 7, 78, 80
Miyawaki, K., 4, 238
Mizerski, T., 1, 60b
Mizouchi, H., 6, 9
Mizukami, Y., 1, 102; 9, 140
Mizumura, M., 2, 96
Mizuno, H., 6, 24
Mizusuna, A., 15, 163
Mlinaric-Majerski, K., 13, 40
Mlochowski, J., 5, 165
Mloston, G., 14, 84–86, 106
Mo, Y., 9, 129
Mobashery, S., 2, 260
Modena, G., 13, 32
Modro, A.M., 2, 239; 10, 44
Modro, T.A., 2, 239; 10, 44
Møgelberg, T., 3, 215
Mogi, K.I., 4, 64
Mogliani, A.G., 14, 182
Mohamed, O.S., 6, 18
Mohammed, N., 9, 89
Mohan, H., 4, 299
Nishide, K., 1, 160; 5, 274; 14, 181; 15, 403
Nishiguchi, T., 10, 43; 15, 585
Nishi, S., 15, 304
Nishi, Y., 8, 52
Nishijima, M., 15, 491
Nishimura, J., 1, 189; 14, 145, 197
Nishinaga, A., 5, 219; 11, 21
Nishino, M., 4, 46; 5, 214, 219; 11, 20
Nishiyama, T., 5, 285
Nishiyama, Y., 1, 165
Nishizawa, K., 2, 212
Nishizawa, M., 11, 74; 12, 85; 14, 51
Nitti, P., 13, 104
Niwayama, S., 14, 129
Nixdorf, A., 4, 198
Nixey, T.E., 14, 219
Nizar, P.N.H., 5, 35
Noble, D.R., 8, 80
Noda, K., 9, 36
Noda, M., 15, 426
Node, M., 1, 160; 5, 274; 14, 181; 15, 403
Noe, M.C., 5, 104, 107; 13, 69
Noguchi, M., 15, 310
Noguchi, Y., 11, 74; 12, 85; 14, 51
Noh, T., 14, 285; 15, 197
Noheda, P., 7, 85
Nojima, M., 5, 287
Nojima, T., 5, 198, 210
Noltemeyer, M., 9, 73; 15, 364, 366
Nome, F., 2, 16, 231
Nonaka, H., 2, 115
Nongkunsorn, P., 1, 42; 15, 597
Norberto, F., 2, 294; 11, 190
Norcross, B.E., 5, 88
Noremsaure, I.M.W., 3, 147
Norkus, E., 1, 12
Norman, R.E., 11, 81; 13, 108
Norman, S.J., 9, 163
Normant, J.F., 11, 99; 15, 344, 345
Noro, T., 4, 178
Norbry, P.O., 5, 105; 13, 70
Norriss, R.K., 1, 49a
Norskian, S., 11, 99
North, S.W., 3, 130
Norton, S.H., 9, 21; 15, 394
Notario, R., 9, 158
Noto, R., 1, 95; 7, 95
Nougrier, R., 3, 173
Noureldin, N.A., 5, 88
Novak, I., 9, 98
Novak, L., 15, 125, 126
Novi, M., 1, 95; 11, 50
Novikov, M.S., 6, 4, 94, 95; 14, 108
Nowacka, M., 5, 217
Nowakowski, M., 15, 471
Noya, B., 14, 70
Nozawa, Y., 1, 102; 9, 140
Rubbemeyer, U., 15, 173
Nübling, C., 1, 50; 11, 105
Nuchter, U., 15, 301, 302
Nudelman, N.S., 5, 267; 7, 22, 8, 19; 10, 161
Nugent, T.C., 5, 166; 10, 34
Numata, A., 1, 76; 11, 55; 13, 82; 15, 378
Nunez, A., 2, 242
Nunez, O., 2, 242
Nutter, D.E., 4, 29
Nwoko, D., 15, 588
Nwokogu, G.C., 4, 117; 7, 9; 11, 27
Nyerges, L., 15, 611
Nzigienni, R., 3, 168
Oakley, R.T., 4, 224
Obata, K., 1, 160; 5, 274; 15, 403
Obika, S., 5, 285
Obinata, T., 10, 55; 15, 451
Oblin, M., 14, 37; 15, 240
Ocampo, R., 2, 198; 12, 48
Ocando-Mavarez, E., 12, 66, 72
Occhialini, D., 4, 203
Occhiucci, G., 1, 95
Ocillowitz, J.L., 2, 112, 113
Ochaa, M., 5, 149–151; 10, 3, 4; 11, 24
Oda, J., 11, 188
Oda, M., 1, 11; 102; 9, 140; 11, 170; 15, 304, 304, 389
Odaira, Y., 14, 25
O'Donnell, M.J., 10, 125
Oehme, H., 15, 427
Oei, Y., 12, 78
Oexler, E.V., 3, 159
O’Ferrall, R.A., 12, 22
Ofial, A.R., 1, 44b; 13, 48; 15, 328
Ogasawara, Y., 3, 153; 15, 583
Ogasawara, K., 2, 28
Ogata, T., 15, 587
Ogden, J.S., 12, 52
Oglobin, K.A., 10, 42
Oh, H.K., 2, 8, 278, 280, 281; 10, 115, 140
Oh, K.S., 10, 66
Oh, S.-J., 2, 38
Oh, S.W., 4, 175
Ohtag, M., 2, 44
O’Hair, R.A.J., 1, 173; 9, 65, 101
Ohashi, O., 12, 63
Ohba, M., 15, 521
Ohba, S., 5, 33
Ohe, M., 9, 34; 10, 136
Ohta, Y., 9, 93, 150; 10, 111–113
Ogami, Y., 2, 212
Ohtaka, K., 14, 7; 15, 580
Ohkita, M., 15, 56
Ohno, A., 10, 138
Ohno, H., 15, 589
Ohno, M., 3, 39; 15, 426
Ohita, M., 10, 138
Ohtaka, K., 1, 78
Ohtani, I.I., 15, 168
Oh-tani, S., 7, 80
Ohwada, T., 9, 54, 90; 13, 13, 19; 15, 295
Oi, S., 1, 114
Oishi, S., 15, 610
Oivainen, M., 2, 261
Ojka, V., 13, 107
Oka, M., 3, 64
Oka, N., 15, 495
Okada, C.R., 15, 135
Okada, H., 6, 23
Okada, K., 12, 54
Okada, M., 11, 48
Okada, T., 4, 281
Okada, Y., 15, 122
Okaishi, Y., 7, 56
Okajima, T., 11, 49; 14, 268; 15, 206, 207
Okamoto, H., 15, 112
Okamoto, I., 13, 19
Okamoto, S., 15, 415
Okamoto, Y., 15, 642
Okamura, M., 10, 138
Okana, T., 14, 67
Okano, T., 13, 102
Okazaki, M., 4, 154
Okazaki, T., 4, 305
Okazaki, Y., 11, 170; 15, 389
Oki, M., 15, 169
Oku, A., 10, 58; 15, 268, 556
Oku, H., 5, 71
Okubo, M., 2, 115
Okuda, K., 14, 90
Okuda, T., 3, 161
Okumura, S., 15, 509
Okuno, Y., 5, 169; 10, 70, 96; 15, 511
Okuro, K., 7, 91
Okuyama, M., 15, 56
Okuyama, T., 2, 286; 10, 3, 4
Olab, J.A., 5, 206
Olah, G.A., 2, 302; 9, 7, 16, 31, 84, 85, 97, 136, 137, 15, 21
Olah, G.O., 9, 3
Oldershaw, G.A., 3, 235
Oldroyd, R.D., 5, 204, 205
Author Index

Olekhnovich, E.P., 9, 61, 71
Olekhnovich, L.P., 9, 61, 71
Oliva, A., 14, 168, 182
Oliva, J.M., 10, 91
Oliva, M., 15, 369
Oliveira, A.M.S., 12, 52
Olivucci, M., 14, 283; 15, 275
Olmeda, A., 4, 100
Olsen, C.E., 15, 283
Olson, D.R., 6, 100
Olssø, B.E.R., 3, 101
Olsson, B.E.R., 3, 104
Olteanu, E., 4, 262
Olzmann, M., 3, 78
Omoto, K., 1, 92
Onami, T., 5, 114
Ondrus, V., 14, 69
O’Neill, M., 4, 289; 9, 107
Oniscu, C., 8, 77
Onishi, S., 1, 56
Ono, M., 15, 18
Ono, S., 15, 266
Ono, T., 1, 26
Ono, Y., 15, 624
Ono, Y.S., 4, 279
Onouha, G.N., 1, 48b
Onyido, I., 1, 48b
Ooi, H.C., 15, 68
Ooi, T., 3, 171; 15, 575
Ooms, F., 15, 367
Opatz, T., 15, 141
Opeida, I.A., 3, 216; 5, 128
Oppenheimer, N.J., 10, 150
Oppolzer, W., 1, 63a; 15, 346–348
Ora, M., 2, 261
Orabona, I., 15, 553
Orchin, M., 5, 273
Orendtlich, A., 9, 30
Orfanopoulos, M., 5, 212
Orfanopoulos, M., 5, 181; 14, 16, 17; 15, 339, 340
Oritz, M.J., 15, 83
Orkin, V.L., 3, 226
Orlandi, M., 2, 185
Orlando, J.J., 3, 212
Orlinkov, A.V., 8, 44
Ornstein, R.L., 7, 15
Ornum, S.G.V., 11, 39
Orosz, A., 5, 288
Orsag, M., 14, 69
Orti, E., 14, 165; 15, 640
Ortiz, J.V., 13, 115
Ortuno, R.M., 14, 182
Osada, M., 15, 168
Osaki, Y., 1, 158
Osawa, E., 15, 299
Osborn, H.M.I., 1, 77
Osborn, J.A., 15, 244
O’Shea, D.F., 7, 47; 15, 311
Oshima, K., 3, 188
Os’kima, I.A., 7, 19
Osman, R., 3, 236
Osowska-Pacewicka, K., 10, 45
Osowski, T., 5, 217
Ostercamp, D.P., 15, 135
Ostermark, K., 4, 214
Ostrovskii, V.A., 12, 67
O’Sullivan, B., 8, 80
O’Sullivan, T.J., 2, 57
O’Sullivan, W.L., 5, 189
Oswald, R., 10, 84
Otani, T., 2, 309; 10, 58, 15, 556
Otero, J.C., 12, 68
Otten, P.A., 11, 76; 12, 86
Otto, H.H., 15, 603
Otto, S., 14, 138
Ovchinnikov, K.L., 8, 31, 32
Ovechkina, E.V., 10, 6; 12, 87
Ovéras, A.T., 13, 98
Overman, L.E., 15, 157–159, 203, 419
Owen, D.A., 1, 156; 11, 139
Oxley, J.C., 12, 65
Oya, H., 4, 132
Ozaki, M., 4, 242
Ozung, H.B., 5, 10
Özkir, I.S., 6, 63
Padmakumar, R., 15, 176
Padwa, A., 6, 92; 8, 72; 14, 105, 112, 248; 15, 165
Pae, D.H., 6, 103
Pagalday, J., 14, 101
Page, M.I., 2, 297
Page, P.C.B., 14, 92, 93
Pai, S.G., 15, 499
Pain, G., 1, 59; 11, 34, 35
Paine, S.W., 2, 133; 10, 104, 105; 15, 104, 568
Pakkanen, T.A., 2, 90; 10, 90
Pakkanen, T.T., 2, 90
Pal, S., 7, 48
Palacios, F., 14, 101
Palacios, J.C., 14, 115, 116
Palacios-Gamba, F., 14, 86
Palanisamy, P.N., 5, 202
Palingo, L., 1, 61
Palluotto, F., 15, 67
Palma, J., 10, 85
Palma, P., 15, 533
Palmer, D.R.J., 12, 74
Palmer, W.S., 1, 82
Palmisano, L., 4, 71
Palomo, C., 14, 33, 34
Palopoli, C., 5, 13
Palstra, T.T.M., 4, 224
Palten, T.E., 3, 192
Palumbo, G., 8, 25
Pan, S., 2, 288
Pan, W., 15, 462
Pan, Y., 15, 113
Pan, Y.-M., 6, 54
Pande, S., 2, 202; 12, 104
Pandey, A., 5, 67
Pandey, I.K., 14, 71
Pandey, P.S., 14, 71
Pandey, R.K., 15, 409
Pandiaraju, S., 8, 51
Pandit, U.K., 14, 199
Pandolfo, L., 14, 36
Pandurangan, A., 5, 12
Pandurangi, R.S., 6, 70
Paneth, P., 2, 201; 12, 94
Pang, X.-Y., 1, 193; 3, 84; 4, 159
Pani, M., 7, 95
Panigrahi, A.K., 2, 149
Pankiewicz, K.W., 2, 235
P’ankov’a, M., 10, 106
Pankratov, V.A., 14, 274
Panov, M., 10, 119
Panwar, A., 5, 44
Panzeri, A., 9, 88
Papa, M., 2, 137; 10, 56
Papageorgiou, V.P., 1, 164
Papageorgiu, V.P., 13, 76
Papagiannakopoulos, P., 3, 106, 107, 110
Papez, M., 10, 159
Paradies, H., 12, 79
Parajo, M., 2, 123
Paredes, M.D., 14, 70
Paredes, R., 2, 198; 4, 43, 183, 184, 5, 194; 12, 48
Pareek, A., 5, 135, 136
Pareschi, P., 3, 74
Paris, J., 2, 312
Park, B.S., 4, 226, 227
Park, C.-I., 10, 154
Park, C.W., 15, 431
Park, H., 2, 225
Park, H.-Y., 2, 276, 277; 10, 139; 15, 19
Park, J., 2, 95; 3, 54
Park, J.K., 2, 76, 95; 10, 115
Park, J.W., 1, 166; 5, 242
Park, K.H., 4, 175; 15, 38
Park, K.-K., 1, 166; 2, 236; 5, 242
Park, Y.S., 2, 8
Parker, D., 10, 145
Parker, V.D., 3, 210; 4, 170, 194, 195
Parkes, R., 8, 34
Parlanti, L., 13, 28
Parrick, J., 15, 71
Parrick, M., 4, 201
Author Index

637

Ram Reddy, M.K., 5, 28
Ramsden, C.A., 1, 42; 13, 50; 15, 11, 40, 597
Ramsden, N.G., 5, 278
Ramatunga, T.D., 1, 183
Randall, M.L., 15, 192
Ranes, E., 8, 38; 15, 261
Rangappa, K.S., 5, 121–123, 139, 143
Ranslow, P.B., 14, 258; 15, 75
Ranson, R.J., 2, 55; 15, 60
Rao, B.S.M., 4, 299
Rao, K.V., 5, 21
Rao, M.A., 5, 50, 51
Rao, M.T., 5, 21
Rao, P.J., 10, 141
Rao, S.N., 12, 22
Rao, V.J., 9, 106; 15, 26
Raoos, G., 8, 42
Raphy, J., 1, 77
Rapoport, Z., 13, 81
Rapp, J., 14, 198
Rappoport, Z., 1, 20, 131; 4, 15, 16; 10, 1, 2; 11, 129; 12, 7; 15, 255
Rassmusen, A., 5, 58
Rasmmussen, K.G., 1, 28; 6, 46
Raspoet, G., 15, 493, 494
Rastelli, A., 14, 98
Rastogi, R.P., 5, 130
Rasul, G., 2, 302; 9, 16, 84, 85, 97, 136
Ratan, A., 5, 94
Rath, N.P., 14, 152, 291
Ratiquee, M.Z.A., 2, 82
Rattan, S., 2, 199; 8, 17
Rauk, A., 6, 79; 15, 572
Rault, S., 15, 69
Ravikrishna, C., 1, 96
Ravishankara, A.R., 3, 221, 228
Ravishankar, T., 3, 189
Ravlyuk, E.E., 4, 259
Rawal, V.H., 3, 24, 36, 47; 7, 92; 14, 213; 15, 582
Rawlings, J., 2, 186
Rayel, M.-T., 3, 108
Rayez, J.C., 3, 108
Rayle, H.L., 3, 52
Raymond, M., 5, 271
Rayner, C.M., 10, 38; 15, 578, 579
Razin, V.V., 9, 149
Re, M., 10, 94
Reed, G., 12, 24; 15, 646
Reau, R., 14, 102
Reboul, E., 1, 23
Recupero, F., 3, 132
Reddy, B.A., 5, 110
Reddy, M.K., 2, 101, 140
Reddy, M.M., 5, 61; 7, 48
Reddy, N.P., 7, 68
Reddy, P.V., 9, 7
Reddy, R.S., 11, 64; 13, 88
Reddy, S.H.K., 4, 219
Reed, A.D., 3, 179
Reed, C.A., 9, 132
Reed, R.W., 4, 224
Reeder, M.R., 15, 150
Reedijk, J., 5, 96
Rees, C.W., 6, 38; 8, 86; 15, 61–64, 111, 508
Rees, H.T., 2, 19
Rees, N.H., 2, 19
Reese, A., 5, 118
Reetz, M.T., 13, 18
Regains, M.L., 3, 102
Regitz, M., 15, 342, 343
Robeur, P., 6, 246; 15, 401
Regner, M., 15, 275
Reghe, M., 5, 195
Rehman, S., 2, 42
Reibenspies, J., 15, 276
Reid, I.D., 3, 149
Reider, P.J., 5, 254; 7, 90; 10, 46
Reindl, B., 9, 13, 113
Reinhoudt, D.N., 2, 177
Riesenauer, H.P., 6, 12
Reisinger, C.-P., 7, 67
Reissig, H.-U., 15, 248
Reister, S., 8, 21
Reiter, L.A., 2, 138
Reiter, R.C., 4, 215
Reitstoen, B., 4, 194
Relihan, C.M., 1, 21; 2, 122
Rell, S., 15, 241
Remacle, B., 11, 102
Remen, L., 15, 519
Remenar, J.F., 2, 31; 11, 137
Ren, D., 8, 10, 9, 124
Ren, J., 11, 150
Ren, K.-T., 2, 249
Ren, P., 2, 288
Ren, Y., 14, 57
Renard, E., 5, 241
Renaud, P., 3, 177
Renn, N.D., 2, 65; 12, 46
Renou-Gonnord, M.F., 8, 8
Renslo, A.R., 14, 144
Renzi, G., 10, 31
Rescorla, C.G., 2, 103
Resmihni, M., 14, 199
Resta, S., 3, 187
Revis, C.L., 2, 120
Rex, J.G., 15, 296
Reyes, L., 15, 510
Reynold, J.L., 5, 286
Reynolds, K.A., 5, 282
Reynolds, M.P., 5, 271
Rheingold, A.L., 3, 182; 15, 433
Rhodes, C.J., 3, 149
Rhodes, Y.E., 13, 14
Riad, Y., 5, 270
Ribes, S., 14, 278
Ricci, A., 15, 368
Riccitelli, M., 10, 31
Rice, C.V., 4, 257
Richard, B., 15, 262
Richard, J.P., 1, 60b; 2, 24; 9, 28, 72, 94; 10, 128, 153; 11, 138; 12, 19, 20
Richards, S.L., 10, 34
Richardson, C.M., 14, 21
Richardt, C., 3, 195–197
Riche, C., 14, 185; 15, 216
Richie, H.G., 1, 103a
Rickard, C.E.F., 9, 104
Rick, D.D., 11, 90
Ridd, J.H., 10, 104, 105
Ridgway, B.H., 1, 82
Riley, A.C., 13, 91
Ridvan, L., 10, 106; 11, 21
Riedl, Z., 3, 199
Riera, A., 1, 112
Riemeriere, T.H., 7, 67
Rietveld, M.H.P., 15, 531
Rigaudy, J., 15, 417
Rigby, J.H., 6, 97; 14, 287, 288, 290; 15, 297
Rigby, S.S., 15, 256, 257
Righetti, P.P., 14, 214
Rigoreau, L., 2, 297
Riguet, E., 7, 83
Rihis, G., 13, 83; 15, 603
Rinaldi, D., 13, 23
Rindone, B., 2, 185
Riner, M.E., 13, 27
Ringel, I., 1, 7
Rios, A., 2, 24; 11, 138
Rios, L.A., 4, 183, 184
Rios, R., 14, 168
Ripia, L., 7, 93
Ripoll, J.L., 15, 349, 350
Risch, N., 12, 99
Rise, F., 13, 98
Risistano, F., 13, 86; 15, 285
Rist, G., 4, 283
Ritter, E.R., 6, 34; 12, 60
Ritter, J., 13, 41
Ritzberger-Baumgartner, W., 14, 215
Riuza, M., 13, 107
Riuza-Lopez, M.F., 13, 23
Rivail, J.L., 13, 23
Rivera, A.D., 11, 115
Riveros, J.M., 11, 155
Rizzardo, E., 3, 62, 63
Robak, J., 4, 50
Robb, M.A., 14, 283; 15, 275
Robert, A., 5, 91
Robert, J., 2, 312
Schneider, M., 11, 103
Schneider, W.F., 3, 223
Schnettler, R.A., 15, 28
Schoeller, W.W., 4, 19
Schoenecker, B., 5, 236
Schofield, C.J., 2, 107
Schofield, K., 8, 2
Scholz, M., 4, 118
Schomburg, D., 14, 27
Schottland, E.Z., 10, 1
Schreiner, P.R., 9, 159; 10, 16
Schröder, D., 14, 161
Schröder, G., 7, 24; 11, 147
Schröer, J., 5, 286
Schoeter, K., 14, 161
Schubert, H., 1, 50; 11, 105
Schoeler, P.E., 13, 14
Schultz, P.G., 2, 225; 12, 78
Schultz, T.P., 1, 170; 15, 27
Schulz, G., 15, 260
Schulz, J., 2, 270
Schulz, M., 4, 43; 5, 194
Schulz, T.P., 7, 46
Schuster, D.I., 14, 18
Schutkowski, M., 15, 613
Schwarz, H., 4, 17; 14, 161; 15, 87
Schwarzenbach, R.P., 4, 56; 5, 263
Schweighofer, A., 4, 148
Selafani, A., 4, 71
Selafani, J.A., 5, 106
Seccaro, G., 4, 24
Scott, B.O., 12, 2
Scott, G.B.I., 13, 37
Scott, L.T., 6, 65; 11, 170; 15, 389
Scrattas, C.G., 4, 96
Scrimin, P.A., 2, 176
Secuseria, G.E., 14, 4
Sears, T., 3, 130
Sebastian, J.F., 11, 162
Sebo, L., 13, 83
Secchi, C., 15, 29
Secen, H., 15, 341
Sedlak, M., 2, 296
See, M.M., 10, 46
Seebach, D., 15, 465
Seefeld, M.A., 11, 46
Seeger, S., 10, 84
Seeley, J.V., 10, 76, 77
Segal, E., 4, 251
Segall, Y., 9, 30
Sehested, J., 3, 111, 215
Seid, M., 15, 516
Seinfeld, J.H., 3, 209, 231; 4, 52
Seitz, G., 14, 207
Seki, K., 15, 246
Seki, T., 15, 643
Sekiguchi, A., 11, 11
Sekiguchi, S., 4, 22
Sekine, M., 2, 264
Sekine, N., 4, 242
Seko, H., 1, 158
Sekusak, S., 3, 227
Semenov, V.P., 15, 90
Semenov, V.V., 8, 58
Semenova, R.G., 2, 27
Sen, A., 3, 79
Senanayake, D., 10, 145
Senda, Y., 13, 65
Sendega, V.A., 2, 283
Sendelbach, J., 4, 292
Senderowitz, H., 14, 149
Senge, M.O., 15, 409
Senger, S., 4, 241; 13, 25; 15, 252
Sengul, M.E., 15, 383
Sengupta, D., 12, 25; 14, 47
Sengupta, S., 7, 74
Sen Gupta, S.K., 2, 71
Senju, T., 5, 248
Senkan, S.M., 3, 56
Senn, M., 3, 26
Senn, P., 6, 89
Seo, J.-H., 10, 162
Seoane, C., 14, 165
Seoane, G., 15, 140
Sepiol, J.J., 15, 41
Sepulchri, P., 7, 114
Sepúlveda-Arques, J., 12, 95
Sera, A., 14, 231
Serebiakow, M., 7, 39
Serebryakov, E.P., 2, 214
Sereis, A.K., 14, 12
Seres, L., 3, 91, 92
Seresini, P., 14, 87
Sergi, C., 4, 58; 5, 264
Sergiamepriati, D., 10, 31
Serra, A.A., 14, 30
Serra, B., 2, 316
Server-Carrio, J., 14, 33
Servis, K.L., 2, 136
Setälli, J., 10, 152
Seth, P.P., 10, 47
Sevin, F., 11, 15
Seyed-Mahdavi, F., 14, 176
Sha, C.-K., 3, 32; 14, 52
Shabtai, E., 11, 9
Shackelford, S.A., 13, 27
Shadyo, O., 3, 26
Shafferman, A., 9, 30
Shaik, S., 4, 190, 211
Shakhlke'dyan, I.V., 7, 121
Shallcross, D.E., 3, 57, 165, 213, 220
Shamma, T., 9, 136
Shan, J., 5, 46
Shannugam, P., 15, 187
Shanthrokhra, A.V., 12, 14
Shao, R.T.L., 2, 248
Shapiro, I.O., 11, 5
Sharafutdinova, Z.F., 1, 176; 4, 304; 5, 216, 227
Share, A.C., 15, 144
Sharma, A.K., 14, 83
Sharma, K., 5, 67
Sharma, N.D., 12, 22
Sharma, P.K., 2, 179; 5, 7, 9, 37–39
Sharma, R.P., 15, 470
Sharma, S.B., 4, 299
Sharma, V.L., 15, 505
Sharp, J.T., 7, 47; 15, 311
Sharpes, K.B., 14, 120
Sharpless, K.B., 5, 100, 105; 13, 70, 72
Shashidhar, M.S., 2, 141; 15, 604
Shastry, L.V., 2, 202; 12, 104
Shastry, V.R., 2, 202; 12, 104
Shavrin, K.N., 6, 32
Shaw, C.J.G., 15, 71
Shaw, G., 2, 114
Shaw, J.T., 1; 82; 9, 79
Shawali, A.S., 2, 80; 12, 101
Shchepnov, I.Y., 4, 300; 15, 458
Shchelkunov, A.V., 1, 125
Sherbakov, A.A., 12, 14
Sherbakova, L.F., 12, 14
Shebelova, I.Yu., 13, 26
Sheik Davood, S., 1, 179
Sheldon, J.C., 1, 173; 11, 1
Sheldon, R.A., 5, 199
Sheldrick, W.S., 15, 554
Shellhammer, D.F., 13, 27
Shen, B., 5, 134
Shen, J.-J., 2, 163
Shen, M.Y., 6, 71; 15, 459
Shen, S., 5, 46
Shen, W., 7, 73
Shephard, M.S., 14, 19
Shersheshovets, V.V., 3, 77; 5, 188
Sheriff, A.I.A.M., 5, 14
Shering, C.L., 3, 30
Shestakov, A.F., 4, 120
Shested, J.H., 3, 223
Shestopalov, A.M., 15, 172
Shevlin, P.B., 3, 76; 15, 300, 462
Shi, J., 3, 103
Shi, Y., 5, 195, 196
Shibaeva, N.V., 7, 110
Shibata, N., 15, 445
Shibata, T., 9, 93
Shibayama, A., 12, 13
Shibuya, S., 15, 502
Shida, T., 4, 200
Shiels, L., 2, 90
Shigeta, Y., 1, 160; 5, 274; 15, 403
Shigetomi, Y., 15, 169
Tamao, K., 13, 33; 15, 217
Tamariz, J., 14, 226
Tamaru, Y., 14, 268
Tamayo, N., 7, 85
Tamura, Y., 3, 198
Tan, C.-E., 6, 91
Tanabe, G., 15, 509
Tanabe, K., 10, 53
Tanabe, Y., 8, 52; 10, 32
Tanaka, K., 4, 231; 6, 10
Tanaka, M., 7, 68; 8, 61; 9, 38, 141; 11, 23
Tanaka, R., 6, 61
Tanaka, S., 12, 40; 14, 268; 15, 110
Tanaka, Y., 14, 72
Taner, D.D., 3, 164
Tang, C.-C., 2, 255, 257
Tang, M., 1, 149
Tang, T.H., 10, 8
Tang, W.-M., 11, 63
Tang, W.Z., 3, 123
Tang, Y., 5, 134; 11, 85; 13, 114
Tang, Z., 6, 52; 10, 28
Tang, Z.-H., 15, 405, 562
Taniguchi, H., 6, 61
Taniguchi, T., 2, 28
Taniguchi, Y., 15, 625
Tanimoto, Y., 4, 4
Tanimura, R., 15, 163
Tani, K., 10, 37
Tano, J.M., 4, 104, 188
Tanner, D., 11, 118
Tanner, D.D., 3, 170
Tanskanen-Lehti, K., 9, 160; 10, 17
Tapia, O., 9, 17
Taran, N.A., 7, 99
Tararow, V.L., 3, 183
Tarasov, A.V., 2, 274
Tarasova, O.A., 4, 259
Tarbet, K.H., 1, 87a
Tardella, P.A., 6, 57
Tarver, G.J., 1, 65b; 2, 188
Tashiro, M., 8, 65; 9, 36; 14, 208, 264
Tasi, G., 15, 611
Tassi, S., 6, 39
Tasumi, M., 4, 138
Tasz, M.K., 15, 501
Tate, E., 15, 400
Tateiwa, J., 15, 335
Tateiwa, J.-i., 8, 53
Tatematsu, S., 5, 285
Tatsumi, T., 15, 496
Tavale, S.S., 14, 81
Tavani, C., 11, 50
Tavassoli, A., 15, 223
Tawfik, D.S., 12, 73
Taylor, E.C., 1, 174b
Taylor, M.J., 9, 104
Taylor, M.S., 12, 97; 15, 384
Taylor, N., 15, 15
Taylor, N.J., 10, 48
Taylor, P.C., 6, 102
Taylor, P.H., 3, 224, 234
Taylor, P.J., 2, 132
Taylor, P.L., 3, 207; 15, 224
Taylor, R.J.K., 5, 197; 12, 88; 15, 374, 375
Tchaney, C., 14, 190
Tecilla, P., 2, 176
Tedeschi, L., 6, 57
Tedrow, J.S., 15, 267
Tee, O.S., 1, 139; 2, 170–172; 7, 112
Teich, N.A., 5, 193
Teichmann, S., 14, 176
Teixido, J., 2, 316
Tejero, T., 14, 76
Teles, J.H., 6, 11
Tellez, J., 2, 12
Telo, J.P., 4, 51, 95
Templeton, J.L., 1, 30
Temps, F., 3, 113
Tenorio, M.J., 15, 543
Terada, M., 13, 33
Teramoto, M., 2, 204
Terasnishi, K., 2, 134
Terao, K., 15, 608
Terapan, M., 10, 100; 11, 178
Terenzani, A., 7, 20
Terlouw, J.K., 4, 17; 15, 87
TeroKubota, S., 4, 22
Terrier, F., 7, 114, 118, 119; 11, 141, 142; 14, 259
Terron, A., 4, 146
Testa, C.A., 12, 2
Tester, J.W., 14, 144
Téton, S., 3, 233
Tetzlaff, C., 9, 103
Tewary, G., 5, 83, 84
Tham, W.Y., 9, 77; 10, 33
Thang, S.H., 3, 62, 63
Thiblin, A., 7, 44; 9, 47; 10, 142, 143; 12, 4, 16–18
Thiebault, A., 4, 209; 7, 10
Thiel, W.R., 5, 200, 201
Thiemann, T., 14, 208, 264
Thies, M., 12, 79
Thoen, K.K., 4, 148, 232
Thomas, A.A., 5, 100, 102; 13, 72; 14, 120
Thomas, B.E., 14, 269; 15, 322
Thomas, D.B., 9, 115
Thomas, E.J., 1, 84a–c; 15, 178
Thomas, J.M., 5, 204, 205
Thomas, S., 15, 631
Thomas, T.D., 13, 11
Thompson, C., 5, 76; 7, 33
Tho Nguyen, M.M., 6, 15
Thorarensen, A., 14, 237, 239
Thornton, S.R., 15, 376
Thornton-Pett, M., 14, 107
Thorpe, A.J., 15, 572
Thouvenot, R., 3, 93
Thuet, V., 11, 142
Tian, A., 6, 52
Tian, A.M., 15, 405
Tian, S., 15, 359
Tian, X.F., 15, 474
Tidwell, J.H., 8, 47
Tidwell, T.T., 9, 89, 129, 130; 10, 131; 14, 6, 31; 15, 396
Tietze, L.F., 14, 188; 15, 260
Tiewsok, E., 5, 5
Tieze, L.F., 13, 68
Tiger, R.P., 2, 117
Tilson, J.L., 12, 62
Timmanagoudar, P.L., 5, 95
Timmerman-Vaughan, D.J., 15, 13
Timms, P.L., 8, 85; 9, 80
Timoshenko, D.O., 10, 39
Timoshenko, G.N., 2, 274
Tinant, B., 14, 253
Tipping, A.E., 7, 45
Tittman, R.B., 14, 64
Titov, E.A., 2, 27
Tkachev, A.V., 5, 238; 15, 507
Toader, D., 7, 37
Toan, V.V., 1, 93
Tobe, Y., 14, 25
Tobin, J.B., 1, 138a, 138b, 11, 136
Tobita, K., 8, 45
Tobita, S., 15, 271
Todd, A.K., 11, 14
Todd, W.P., 4, 185, 191; 10, 40
Tofani, D., 6, 57
Tojo, S., 4, 68, 121; 15, 194
Tokairin, M., 15, 550
Toke, L., 3, 42
Tokoroyama, T., 11, 40
Tokumatsu, M., 15, 580
Tokunaga, Y., 14, 72
Tokutake, N., 11, 132
Tokuyama, H., 14, 55
Tolbert, L.M., 4, 140; 10, 100; 11, 178
Tolomelli, A., 15, 586
Tolstaya, T.P., 7, 111, 124
Toma, Š., 13, 83
Tomariguchi, S., 12, 40
Tomas, F., 15, 640
Tomas, M., 14, 159; 15, 280
Tomasi, J., 10, 120
Tomasini, C., 15, 586
Author Index

Wan, T.S.M., 11, 180
Wan, Z., 14, 258, 261; 15, 74, 75
Wang, B., 15, 532
Wang, B.Q., 15, 540, 541
Wang, C.J., 15, 135
Wang, C.-L.J., 1, 111
Wang, D.F., 4, 21
Wang, D.-K., 1, 29
Wang, D.-X., 14, 227
Wang, F.P., 15, 489
Wang, G., 5, 134
Wang, G.-J., 2, 152
Wang, G.P., 11, 19
Wang, G.-W., 11, 180
Wang, H., 1, 185; 3, 210; 10, 76, 78–80
Wang, H.J., 4, 170, 195
Wang, H.-X., 6, 54, 91
Wang, J., 9, 133
Wang, J.Z., 15, 489
Wang, K., 4, 54; 5, 1, 32
Wang, L., 5, 19
Wang, P.A., 4, 230
Wang, Q., 2, 265
Wang, Q.-M., 2, 262
Wang, R., 2, 222
Wang, S., 14, 122, 123
Wang, W., 5, 232
Wang, W.N., 2, 197; 15, 561
Wang, Y., 1, 193; 3, 18, 84; 14, 227; 15, 189, 619
Wang, Y.H., 4, 159, 188
Wang, Z., 2, 23; 5, 62
Wang, Z.-X., 5, 195, 196
Wannowski, K.-J., 5, 207
Ward, D.E., 14, 219
Ward, D.L., 4, 237
Wardman, P., 4, 201
Warkentin, J., 6, 55, 56, 67; 7, 34; 12, 26; 14, 6; 15, 412
Warnet, R., 1, 156; 11, 139
Warschakon, N.C., 14, 290
Warshel, A., 2, 208, 229
Washida, N., 3, 219
Wasser, T., 4, 235, 236, 246
Wassmundt, F.W., 7, 4
Wasylina, L., 8, 11
Watanabe, K.A., 2, 235
Watanabe, S., 7, 77
Watanabe, T., 6, 23
Watari, T., 2, 204
Watelet, M., 2, 117
Watson, P.S., 14, 45
Watson, W.P., 2, 19
Watt, C.I.F., 1, 155; 11, 175
Wayne, R.P., 3, 57, 165, 213, 220
Wayner, D.M.D., 5, 204
Wazee, M.I.M., 14, 80
Weaver, D., 11, 81; 13, 108
Webb, T.R., 1, 188
Weber, J., 6, 51
Weber, M., 4, 45
Weber, V., 15, 398
Webster, R.D., 2, 310
Wedeking, T., 3, 58
Wedemann, P., 14, 177
Wedler, C., 11, 44
Wege, D., 14, 247
Weglinski, Z., 14, 99
Wegman, M.A., 15, 218
Wehling, B., 3, 203
Wei, H.-x., 11, 108
Wei, W., 9, 42; 15, 14
Wei-bel, J.M., 3, 140
Weidner, J.J., 15, 28
Weigel, K., 12, 12
Weigel, W., 4, 73
Weigl, H., 4, 236
Weikert, R.T., 15, 247
Weiner, D.P., 2, 227
Weingarten, M.D., 14, 105
Weinkotz, S., 4, 43; 5, 194
Weinreb, S.M., 15, 329
Weinsrein, R.D., 14, 144
Weintraub, P.M., 15, 28
Weisentein, D.K., 3, 230
Weiser, J., 9, 12
Weiss, D., 14, 292
Weitzel, K.-M., 4, 160
Welch, J.T., 4, 26
Welder, C.O., 4, 105, 106; 5, 245; 10, 98
Weldon, D., 3, 136
Welle, F.M., 4, 9
Wellman, M.A., 14, 211, 212
Wells, J.R., 3, 238
Wells, L., 3, 126
Wells, M.S., 15, 135
Wen, R., 2, 32
Wen, X.L., 4, 119
Weng, H.X., 4, 74, 141, 187; 15, 456
Wenger, J., 3, 233; 5, 156
Wennerberg, J., 15, 399
Wenthold, P.G., 11, 181
Wentrup, C., 6, 53; 14, 102; 15, 243
Wentworth, P., 2, 223, 227
Wenzel, P.J., 11, 144, 145
Werst, D.W., 4, 85
Werskiu, N.H., 6, 75; 15, 257
Werskiu, N.H., 15, 103
Wesdemiotis, C., 12, 97
Wesley, R.N., 1, 97; 13, 93
Wesseling, J., 15, 49, 53
Wessjoehann, L.A., 15, 449
West, S.C., 14, 172
Westaway, K.C., 10, 67, 68
Westerlund, C., 1, 43; 4, 103
Westwell, A.D., 12, 82
Westwood, N.J., 2, 107
Westwood, N.P.C., 4, 224
Whalen, D., 15, 572
Whang, J.P., 1, 145; 2, 289
Wheeler, R.A., 3, 86; 4, 151, 206
Wheildon, A.R., 15, 377
White, A.H., 1, 74; 11, 60, 159; 13, 92
White, D., 2, 59
White, E.H., 8, 1
White, J., 14, 21
White, J.B., 15, 188
White, J.M., 9, 77; 10, 33
White, R.D., 2, 88; 10, 63
White, W.E., 10, 93
Whitehead, B.J., 6, 41
Whitham, G.H., 3, 135
Whiting, A., 14, 205; 15, 404
Whittaker, M., 6, 42; 15, 94
Whybrow, D., 7, 43
Wiberg, K.B., 1, 174a; 9, 25; 11, 14, 100
Wickham, S.D., 12, 2
Wicki, M., 15, 6
Wieczorek, S.J., 12, 74
Wielogorski, Z., 15, 333
Wiemann, T., 2, 227
Wiener, D.F., 5, 109
Wienk, M.M., 4, 168
Wering, P.G., 4, 150
Wiersum, U.E., 12, 53; 15, 49, 50, 53
Wiest, O., 4, 189; 14, 3; 15, 250, 287, 288
Wigal, C.T., 1, 163; 4, 101; 11, 92
Wigstrom, J., 2, 166
Wijnenn, J.W., 12, 30, 31; 14, 134, 136
Wilamowski, J., 15, 41
Wilbrandt, R., 4, 150
Wilkins, D.J., 14, 64
Wille, G., 15, 245
Wille, U., 3, 50
Williams, A., 2, 3, 4, 217
Williams, D.C., 12, 80
Williams, D.J., 15, 508
Williams, D.L.H., 2, 300, 301; 5, 281
Williams, F., 4, 291, 292
Williams, I.D., 13, 91
Williams, I.H., 2, 50–52; 6, 13
Williams, J.M., 12, 82
Williams, K.B., 9, 72
Williams, P.G., 12, 80
Williams, S., 10, 145
Williams, T.D., 9, 101
Wills, M., 1, 168; 5, 256
Wilmes, O., 8, 75
Wilson, C., 3, 109
Zheng, L., 6, 61
Zheng, Y.F., 15, 477
Zheng, Y.-J., 7, 15, 16; 10, 92, 97
Zheng, Z., 11, 57
Zheng, Z.R., 4, 110
Zhong, D., 7, 12; 12, 59
Zhong, G., 2, 203, 226
Zhong, M., 11, 184
Zhong, M.L., 4, 233
Zhou, C., 13, 103
Zhou, C.M., 4, 102
Zhou, D.H., 4, 141
Zhou, H., 6, 52
Zhou, J., 14, 132
Zhou, P., 2, 151
Zhou, W., 2, 265
Zhou, X., 2, 193; 6, 33; 12, 33, 41
Zhou, X.S., 15, 540
Zhou, X.Z., 15, 539, 541
Zhou, Z.S., 12, 77
Zhu, C., 4, 269; 9, 92
Zhu, D., 14, 54
Zhu, G., 14, 58
Zhu, Q., 5, 155
Zhu, S.-R., 2, 153
Zhu, Z.D., 4, 298
Zhulin, M.V., 14, 143
Ziao, N., 10, 155
Ziessel, R., 7, 88
Ziller, J., 15, 157
Zilm, K., 9, 25; 11, 14
Zimin, Y.S., 1, 176; 4, 304; 5, 216, 227
Zimmerman, H.E., 15, 273
Zimmermann, G., 15, 301, 302
Zimmt, M.B., 4, 84
Zimny, B., 14, 27
Ziobrowski, T., 7, 39
Zipp, G.G., 15, 157, 158
Zipse, H., 3, 15, 16; 15, 272
Zolotova, N.V., 3, 214
Zong, H.-X., 2, 37
Zou, Y., 11, 151
Zschunke, A., 15, 279
Zub, L.L., 6, 99
Zubarev, V.E., 3, 217; 4, 143
Zubareva, T.M., 2, 284
Zückerman, E.J., 12, 35
Zuhse, R., 6, 53
Zuilhof, H., 4, 185, 186; 10, 40, 41
Zupan, M., 5, 119; 10, 159
Zwanenburg, B., 15, 218
Zwier, J.M., 4, 150
Zwierzak, A., 10, 45
Zwikker, J.W., 15, 53
Zyryanov, G.V., 7, 102
Subject Index

Ab initio calculations,
on carboxylic acid derivatives, 46, 47, 53, 54, 56, 70
on sulphur-containing acid derivatives, 85
Aceanthrylene, rearrangement, 482
Acenaphthylene, cycloaddition, 447
Acephenanthrylene, rearrangement, 482
Acetal cations, 3
Acetals,
hydrolysis, 1, 2
hydroxy–, 3
α-keto–, 3
pyrolysis, 3, 533
Acetanilide, nitration, 262
Acetates, organic, reactions, 131
Acetophenones, α-chloro–, rearrangement, 478 reduction, 205, 207
Acetylenic esters, rearrangement, 588
Acetyl nitrate, nitration by, 263
Acid anhydrides, 47–50
Acid halides, 50, 51
Acidity,
gas-phase, 355
of cubanes, 355
of enols, 345
Activation energy, 392, 397, 400, 446
Acylation, aromatic, 259, 260, 264, 266, 267
Acylaziridines, rearrangement, 582
N-Acyliminium ions, reactions, 267
Acylim ions, 3, 266, 277, 278 stabilization, 278
Acylxoy shift, 100
Acylphosphonates, 2, 3
Acylpyroles, formation, 260
Adamantanethione S-oxide, cycloaddition, 441
Adamantyl derivatives,
nucleophilic substitution, 302
rearrangement, 562
Addition–elimination mechanism, 299
Addition–oxidation reactions, nucleophilic, 391
Addition reactions, asymmetric, 391
electron-transfer mechanisms, 392
electrophilic, 391–409
facial selectivity of, 392
radical mechanism, 400
syn/anti selectivity of, 392
to alkenes, 391–409
to alkynes, 401
nucleophilic, 410–424, 436
remote substituent effects, 410
Ado3 mechanism, 399
Adenines, rearrangement, 494
Akuammicine, 523
Alanines, β-amino–, 571
Alcohols,
addition reactions, 395
oxidation, 143, 179, 180, 182, 186, 187, 189–191, 204
pyrolysis, 379
Aldehydes,
allylation, 344
oxidation, 183, 186, 199
reactions with enolates, 334
α-silyl, 580
Aldimine selectivity, 7
Aldol condensation, 10–15, 355
asymmetric, 10
carbon isotope effect, 332
intramolecular, 11, 332
Mukaiyama, 6
of boron enolates, to imines, 7
retro-, 385
stereoselective, 4, 6
Aldol rearrangement, retro-, 545
Aldonitriles, rearrangement, 569
Alkaloids,
amaryllidaceae, 539
aspidosperma, 567
morphine, 499
piperidine, 569
rearrangement, 566
strychnos, 499
Alkanes,
alkylation by, 264
hydroxylation, 143
photooxidation, 144
Alkene insertion, 14
Alkenes,
electrophilic addition, 391–409
epoxidation, 143
halogenation, 393–397
oxidation, 112, 185
polymerization, 399
pyrolysis, 165
radical reactions, 108, 117, 118
stereochemistry, 124–126
reactions, with: carbenes, 225
singlet oxygen, 143
Alkenyl benzyl ethers, rearrangement, 512
Alkenyl halides, alkylation by, 264
Alkenylphosphonates, 419
Alkoxamines, thermolysis, 111
Alkoxylfluorination, 395
Alkoxymercuration, 406
2-Alkoxophenols, reactions, 267
Alkoxymylyketenes, rearrangement, 520
Alkylation,
aromatic, 264–266
intramolecular, 265
of hindered ketones, 26
ortho-regioselective, 400, 401
transannular, 265
Alkyl formates, radical reactions, 131
Alkyl halides,
gas-phase reactions, 312, 314
pyrolysis, 378, 379
Alkylidenebutenolides, 488
Alkyl sulphides, reduction, 122
Alkynes,
 addition of sulphur-derived radicals, 104
carbometallation, 391
dimerization, 407
hydrometallation, 391
nucleophilic addition, 422
radical reactions, 108, 117, 118
Alkynylsilanes, rearrangement, 557
Allenals, divinyl-, 533
Allene, polymerization, 289
Allene oxides, 527
Allenes,
cycloaddition, 447, 448
racemization, 161
radical reactions, 105
sulphonyl, 576
Allylation, 15–17, 344
Allyl compounds, nucleophilic substitution, 301, 302
Allyl cyanates, rearrangement, 505
Allyl ethers, rearrangement, 496
Allylic alcohols, alkylation by, 265
formation, 383, 384
Allylic azides, rearrangement, 505
Allylic esters, chlorolated, rearrangement, 499
Allylic imidates, rearrangement, 503
N-Allylic tosylamines, isoazidiridination, 396, 397
Allylic xanthates, rearrangement, 507
Allylmetallic compounds, rearrangement, 519
Allyloxyamide enolates, rearrangement, 512
Allyloxyanthraquinones, rearrangement, 497
(Allyloxy)methylithium, rearrangement, 512
Allyl phenyl ethers, rearrangement, 521
2-Allyl-4-piperidones, formation, 416
Allylsilanes,
 addition reactions, 416
 rearrangement, 519
Allyl thiocyanates, rearrangement, 505
Allyl vinyl ethers, rearrangement, 496
Alpha effect, 311, 348
Aluminium intermediates, 402
Amadori rearrangement, 567
Ambient nucleophiles, 311
Amides, 53–56
Amidines, rearrangement, 481
Amidoximes, cyclic, 569
Amine oxides, rearrangement, 518
Amines,
oxidation, 192
reactions with organometallics, 126
Amino acids,
 α-allocenic, 499
deamination, 387
decarboxylation, 387
nitrosation, 355
synthesis, 125
unsaturated, 499
β-Amino acids, synthesis, 391
Aminooxaziridinium intermediates, 403
Aminochlorobenzophenones, 261
Aminodienes, rearrangement, 512
β-Amino esters, formation, 410
Aminonaphthoquinones, synthesis, 410
Aminonaphthyrindines, nitration, 263
Aminonitriles, 515
Aminopropanal, rearrangement, 552
Aminopyrins, formation, 419
Aminopyridines, 493
AM1 method, 2, 21–23
Ammonium ylides, rearrangement, 523
Anhydrides,
cyclic, acylation by, 267
pyrolysis, 378
Anilides, 53–56
Anisole, acylation, 267
Annulenes,
 formation, 268
 protonation, 289
Annulenum ions, 289
Anomeric effect, 4, 196
Anthracenedione, retro-Diels–Alder reactions, 372
Anthracenes, Diels–Alder reactions, 460
Anthracenophanes, Diels–Alder reactions, 461
Anthraquinones, nucleophilic substitution in, 244
9-Anthrylcarbinol, as chiral auxiliary, 439
Anti-aromaticity, 277, 283, 288
Antibodies, catalytic, 211
Arbusov reaction, 121, 383
Arenium ions, 285–288
Arn–Eistert reaction, 565
Aromatic substitution, radical, 119–121
Aroyl triflates, acylation by, 266
Arrhenius curvature, 223
Arsenonium ylides, addition reactions, 422
Artemisinin, 205
Arylation, 269
of hindered ketones, 25
Aryl ethers, hydrolysis, 261
4-Aryl-1-naphthol derivatives, synthesis, 265
1-Arylpyrroles, nitration, 263
Aryl stacking, 11, 14, 25
Asymmetric induction, 10, 15, 17, 18, 21, 439
Asymmetric reactions, of lithium enolate esters, 7
Atkinson’s aziridination, 404
Atom-transfer radical polymerization (ATRP), 126
Aurein, rearrangement, 566
Autoxidation, 203
Azabicyclo[3.3.0]octane, as nucleophile, 305
1-Aza-1,3-butanediene, Diels–Alder reactions, 451
Azafulvenes, formation, 227
Azahomopentaprismane, synthesis, 445
Azaphosphoridine oxides, 584
Azipines, 535
rearrangement, 495
Azipinoisoquinolines, 539
Azetinones, 584
Azeto[2,1-b]quinazolines, synthesis, 433
Azides,
 photolysis, 224, 225
 protonation, 234
 pyrolysis, 231
 radical reactions, 119
2-Azidoacetic acid, pyrolysis, 377
Azidobenzenes, pyrolysis, 227
Azidobenzhydroquinones, synthesis, 410
Azidopyrrolines, MO calculations, 227
4-Azido-2-pyrrolines, pyrolysis, 386
Azidostyrenes, reactions, 117
Azidothiazoles, 88
Azines, 223
cyclic, 492
cycloadition to 1,3-dienes, 511
Aziridination, 391
of imines, 6
Azidines, 490
nucleophilic substitution, 307
synthesis, 228, 235
vinyl-, rearrangement, 503
Aziridinium imides, 403, 540
Aziridinium ions, 580
Aziridinyl compounds, rearrangement, 582
Azirines, 487, 582
as intermediates, 227
Azo compounds, as radical initiators, 110
Azo coupling, electrophilic, 269
Azomethines, as intermediates, 7
Azomethine ylides, cyclodeletion, 442
Azoniaiellate salts, 538
Azo oxides, cyclodeletion, 440
Azoxy compounds, 480, 481
Azulenes, octahydro-, 483
Baccatin III, rearrangement, 566
Baclofen, 499
B_{AC}-2 mechanism, 44, 52, 56, 58
Bacteriochlorins, rearrangement, 552
Baeyer–Villiger reaction, 195, 198
Baeyer–Villiger rearrangement, 570
Baldwin’s rules, 332
Barbaralanes, rearrangement, 510
Barrelenes, synthesis, 459
Bartlett butterfly epoxidation transition state, 196
Baylis–Hillman reaction, 12, 334
Beckmann rearrangement, 568–570
Bell equation, 397
Belousov–Zhabotinskii (B–Z) oscillations, 191
Benaldehydes, radical reactions, 131
Benazocenes, 540
Benzene, alkylation, 264, 265
benzene, 264
Benzenediazonium ions, 269
Benzenethiols, reactions, 117
Benzenium ions, 260, 286, 287
Benzils, addition reactions, 411
rearrangement, 546
Benzimidazoles, 481
Benziodazole, rearrangement, 490
Benzisoxazolquinones, rearrangement, 488
Benzo-1,2:4,5-bis(1,3,2-dithiazolyl) (BBDTA), 161
Benzyocyclobutadiene, dimerization, 450
Benzyocyclobutenethiones, 232
Benzzodiazepinediones, rearrangement, 486
Benzoazepines, 486, 487
Benzothianes, 262
Benzo fluoranthenes, rearrangement, 482
Benzofurans, 497
formation, 126, 229
Benzophanes, cyclodeletion, 453
Benzophenones, reactions with Grignard reagents, 342
Benzoquinone methaned, 224
Benzothones, bromination, 262
Benzothiazines, bromination, 262
2H-Benz[d]thiites, cyclodeletion, 465
Benzothiophenones, rearrangement, 487
Benzotriazines, 492, 530
Benzotriazolyl leaving group, 354
Benzoxathionines, 515, 516
Benzoxepins, 535
Benzyl bromomethane, 90
Benzylation, 259, 264
Benzyl cations, 275, 276
crowded, 276
X-ray structure, 275
Benzylcaticions, 552
Benzylideneamines, rearrangement, 588
Benzy1trimethylammonium bromide (BTMAB), oxidation by, 191
Benzy1trimethylammonium tribromide, as brominating agent, 261
Benzylnes, 254
negative ions, 355
Betaines, epoxides from, 340
Bicucine, nitration, 263
Bicycloalkanes, dihalo-, 563
Bicyclobutanes, rearrangement, 536
Bicyclo[1.1.0]butanes, 577
Bicyclo[2.2.1]heptanes, 436
Bicyclo[2.2.1]heptanol, 560
Bicyclo[3.1.1]heptanol, 559
Bicyclo[3.2.0]heptatrienes, 530
Bicyclo[2.2.1]hept-5-enes, thiation, 527
Bicyclo[3.3.1]nonanes, 524
Bicyclo[4.3.0]nonanes, 555
Bicyclo[3.2.2]nonenediones, synthesis, 450
Bicyclo[4.2.0]octa-4,7-diene-2,3-dione, 533
Bicyclooctadienes, rearrangement, 534
Bicyclo[3.3.0]octanes, synthesis, 265
Bicyclo[3.2.1]octanones, 464
Bicyclo[2.2.2]octenes, 559
Bicyclo[3.2.1]octenes, 559
Bicyclo[2.2.2]octenes, 526, 559, 560
Bicyclo[3.2.1]octenes, 521, 559, 560
Bicyclo[4.4.2]ring systems, 496
Bicyclo[5.3.0] ring systems, synthesis, 465
Bicyclo[4.4.1]undecadiene, 526
Bicyclo[4.4.1]undecanones, synthesis, 464
Bicyclo[5.3.1]undecene, 526
Bicyclo[6.3.0]undecenones, 581
Bigeleisen–Meyer equation, 403
Biginelli synthesis, 9
Bio synthesis, of desmarestene, 510
dicytote, 510
ectocarpene, 510
lamoxirene, 510
urophosphorin III, 523
vitamin B12, 523
Biphenyl-2-carboxylic acid, nitration, 262
2,2’-Bipyridinium salts, oxidation by, 180
Biradicals, 160–164
cyclodeletion, 162
photochemically generated, 160
Birch reduction, 208
Bisadamantylidones, addition reactions, 403
Bisalkenylcyclopropanes, rearrangement, 510
Bis-allylic ethers, rearrangement, 507
Bis-ammonium salts, rearrangement, 523
Bisketenes, silylated, cyclodeletion, 429
Bis-β-lactams, rearrangement, 584
Bispophanes, synthesis, 429
Bond dissociation energies, 327
homolytic, 139
Boranes
diisopinocampheylchloride, 207, 208
Borinines, rearrangement, 519
Boronates, 577
Boronation, allyl-, 493
Boron cations, 29, 30
Brefeldine, synthesis, 414
Bromamine-B, oxidation by, 192
Bromamine-T, oxidation by, 191, 192
Bromination, 260–262, 267, 391, 393–396, 479
isotope effects, 393
kinetics, 395
solvation effects, 394
Bromine complexes, 395
Bromomethylsulphonium bromide, as brominating agent, 261
Bromonium ions, loss of, 480
Bromopropane, radical reactions, 131
Brsonted equation, for:
deprotonation, 348
elimination reactions, 363, 367
nucleophilic aliphatic substitution, 320
protonation, 348
Bromsted plots, 45, 84, 236
Brook rearrangement, 543
retro-, 543
Butadienes,
Diels–Alder reactions, 450
nucleophilicity, 285
4+4-photocycladdition, 464
thermal isomerization, 101
β-Butylperoxyiodane, oxidation by, 192
Butyrolactones, rearrangement, 484
C₆₀, radical reactions, 118
Caffeine, oxidation, 144
Calicheamicin γ₁, 514
Calix[4]arenes, 318
Calix[8]arenes, alklylation, 264
Cannizzaro disproportionation, 28
Carbamates, 51, 571
rearrangement, 474
Carbonbons,
aazaallyl, 341
aziridinyl, 355
benzyl, 353, 355
cubyl, 344, 355
cycloalkenyl, 342, 355
diamions, 329, 330, 341
cyclobutene, 548
pentenyl, 328
dithiane, 340
enolates, 330–339
fluorenyl, 327, 354, 355
fluoro, 361
formation, photochemical, 351
gas-phase acidities, 330
heteroatom-stabilized, 339–341
indenyl, 327
in Michael addition, 546
ion-pair acidities, 328, 330
MO calculations, 328, 335, 338
α-nitro, 339
nucleophilic substitution by, 332
organometallic, 341–344
oxiranyl, 355
reactions, 330–344
alkylation, 335, 339
diastereoselective, 335
gas-phase, 341
SET, 339
with imines, 334, 336
rearrangement, 337
stability and structure, 327–330
stabilized, 416
α-sulphonyl, 339
sulphur-stabilized, 342, 349
tetraanions, 329
thioketene, 355
trityl, 327
undecatetraenyl, 549
xanthyl, 327
Carbapenems, epimerization, 350
Carbazates, 58
Carbazoles, 486
Carbenes, 482, 492
abstraction reactions, 224, 229–231
acetoxy, 564
addition reactions, 223
alyl, 221
alkylicetoxy, 233
alkylidene, 229, 230
alkynylhalo, 225
aryl, 230
benzylfluoro, 233
chloromethylchloro, 233
cyclic, 564
cyclobutylidene, 231
cyclohexadiene, 231
cyclopentadienyldiene, 236
decamethyldiphényl, 224
dialkoxy, 228, 229, 231, 235, 553
dialkoxyvinyl, 229
dialkyl, 226, 231
diaryl, 224, 226
diazafluorenyldiene, 223
diduryl, 224
dihalo, 226, 228, 235
dihalo SO₂ complex, 222
dihydroxy, 225, 375
dimerization, 223, 224
dimethyl, 224
electrophilic, 223
ethylchloro, 233
Fischer, 221
fluorenylidene, 236
generation, 225–227
glycosylidene, 228
halo, 224, 233
heats of formation, 221
heterocycles from, 221
1,2-H shift in, 223
hydroxy, 222
imidazol-2-ylidene, 222
indanyl, 222
insertion reactions, 222, 229–231
keto, 232
lifetimes, 223
mesityl, 223
mesitylchloro, 223
methylenes, 221, 228, 229
tripllet, 221
methylidyne, 229
MO calculations, 221, 222, 224–226, 228, 229, 231–233
norbormydene, 231
nucleophilic, 222, 231
pentafluorophenyl, 224
persistent, 223
phenyl, 221, 223, 224, 229, 234
phenylacyloxy, 233
m-phenylene, 221
phosphinidene, 230
photolysis, 236
protonation, 222, 236
pyrolysis, 232
reactions, with:
alcohols, 236
alkenes, 225
alkynes, 229, 231
cyclopropenes, 228
β-diketones, 231
DMF, 235
enol ethers, 228
formaldehyde, 234
heterocumulenes, 222
imines, 228, 235
isocyanates, 235
methane, 229
methanol, 222, 223, 230
pyridine, 223
styrenes, 223, 228
water, 236
rearrangement, 231–234, 481, 482
rhodium, 504
singlet, planar, 221
spin-equilibrated, 223
p-tolyl, 223
1,2,4-triazol-5-ylidene, 222
tri(t-butyl)diphenyl, 224
tungsten alkynyl, 449
unsaturated, 579
vinyl, 221, 227, 233, 488
vinylidene, 224
Carbenium ions, 9, 18, 399
chemical shifts, 274
dithio, 279
gas-phase, 274
oxo, 278, 279
pyrenylmethyl, 276
Carbinolamines, 6
Carbocations, 273–293
adamantyl, 292
allylic, 285, 292
aromatic, 285, 286, 288, 289
aryl group migration in, 276
at surfaces and interfaces, 273
azulenyl, 277
benzenium, 286, 287
benzyldryl, 276, 277
benzylc, 275, 276
bridged, 292, 293
bridgehead, 283
cubylcarbinyl, 291
cycloaddition, 285
cyclohexadienyl, 287
cyclopentadienyl, 288
cyclopropylyl, 399
cyclopropylcarbinyl, 273, 562
destabilized, 282–284
ethoxy, 557
fluorenly, 276, 277, 288
FTIR spectra, 292
fullerene, 289
halogenated, 281–284
heats of formation, 274
heteroatom-containing, 284, 285
 homoallylic, 291
 homoaromatic, 293
 hyperconjugation, 274
 hypervalent, 274
in cryogenic matrices, 292
indanyl, 288
in interstellar media, 287
in superacids, 273, 292
in zeolites, 285
isotope effects, 273
β-lactam, 283
lifetimes, 275, 285, 287
nitirenium, 286–288
norbornyl, 291, 292
oxyallyl, 285
poly cyclic, 291, 292
protaadamantyl, 292
protonation, 274
rearrangement, 291
silicon-stabilized, 279–281
solvolysis, 283, 284
stereoselectivity, 292
structure, 274, 281, 292
sulphur-stabilized, 279
β-thiolactam, 283
trityl, 276, 277
ultrastable, 480
vinyl, 285, 286
xantheryl, 276
X-ray structure, 273, 279
Carbocyclization, 402
Carbocations, 273, 285, 289–291
bis(pentadienyl), 290
diynylalyl, 289
of benzene, 289
structure, 289
vinyl, 289
β-Carbolines, 486
Carbometallation, 391
Carbon acids, 344
Carbonium ions, 274, 550, 552, 557, 562
anthracenium, 480
cinnamyl, 496, 497
cyclohexadienyl, 474
cyclopropylcarbinyl, 565
dimethoxybenzenium, 474
diphenylmethylyl, 474
pentadienyl, 531
rearrangement, 550, 554
Carbon monoxide, as radical scavenger, 132
Carbon suboxide, cycloaddition, 432
Carbonyl anion equivalents, 21
Carbonyl compounds, acylation, 278
addition reactions, 20–22
auld reactions, 10–15
allylation, 15–17
enolization, 23–27
hydration, 19, 20
protonation, 18, 19
redox reactions, 27–29
Carbonyl oxides, formation, in ozonolysis, 193
Carbonyl ylides, cycloaddition, 442
Carboxamides, rearrangement, 571
Carboxybenzoxazoles, decarboxylation, 385
Carboxylic acid derivatives, catalysed reactions, association-prefaced, 64–68 enzymic, 72–76 in aprotic solvents, 61
in hydroxyl solvents, 42–61
intramolecular, 42–61
intramolecular, 61–64
metal ion promoted, 68–70
Carotenoids, rearrangement, 587
(−)-Cassioside, synthesis, 345
Catalysis, acid, in enolization, 345
aluminium complex, in Diels–Alder reactions, 447
aluminium trichloride, in rearrangement of phthalides, 552
antibodies, in: aldol reactions, 355
cationic reactions, 391
elimination reactions, 381, 382
hetero-Diels–Alder reactions, 452
hydrolysis, 76
association-prefaced, 64–68
barium(II), 68
bismuth(III) triflate, in acylation, 267
boryl, in Diels–Alder reactions, 455
cerium(IV), 70
in nucleophilic addition, 423
chromium, in oxidation of formic acid, 70
chromium(0), in cycloaddition, 464, 531
cobalt(II) chloride, in acylation, 267
cobalt(III), 68
copper(II), 68
copper, in: nucleophilic aliphatic substitution, 301
nucleophilic aromatic substitution, 248
copper nitrate, in Diels–Alder reactions, 446
cyclodextrins, in Smiles rearrangement, 480
electrophilic, 9
enzymic, by β-lactamase, 73, 74
by lipases, 42, 73, 74
by oxygenases, 75
by papain, 74
by serine proteinases, 73
in elimination reactions, 380
in reactions of carboxylic acid derivatives, 72–76
ethylzinc reagents, in zincene reactions, 542
Subject Index

π-Complexes, in electrophilic addition, 394
Coniines, synthesis, 416
Conjugate addition, 414, 415, 419
Cope cyclization, reverse, 546
Cope elimination, 382
Cope rearrangement, 507–512
amino-, 512
anionic oxy-, 507
dianionic oxy-, 352
photo-stimulated electron-transfer, 146
silyloxy-, 508
Coumarins, rearrangement, 497
Cresols, nitrosation, 268
Criegee–Corey–Noe (CCN) 3+2 model, 188
(+)-Crotanecine, synthesis, 455
γ-Crotonolactone, lithiated, addition reactions, 414
Crown ethers, complexation with diazonium ions, 241
Crownophanes, 497
Cubane, 344
apidity, 355
Cuprates, in nucleophilic aliphatic substitution, 301
Curtin–Hammett principle, 383
Curtius rearrangement, 571
Cyanoethylenes, cycloaddition, 432
Cyanohydrines, rearrangement, 481
α-Cyano-4-nitrostilbene, addition reactions, 416
Cyclization, electrophilic, 283
intramolecular, 265
manganese-promoted, 126
transannular, 108, 399, 402
Cycloaddition reactions, 404
1,1, 462
2+1, 429, 462
2+2, 429–434, 454, 461, 511, 534, 536, 584
2+3, 429, 435–446
2+4, 429, 430, 446–461, 540
3+2, 429
4+1, 429, 463
4+2, 429, 431, 511, 534, 536
4+3, 463
4+4, 512
5+2, 429, 464
6+2, 531
8+2, 464
3, 13-dipolar, 435–445
high-pressure, 460
intramolecular, 429, 441, 442, 463
isomunchnone procedure, 531
of biradicals, 162
of 1,2,4-triazines, 487
photochemical, 429–432, 434, 454, 464
radical cation-initiated, 156
Cycloalkanes, alklylation by, 264
rearrangement, 509
Cycloalkenediols, reactions with hydroquinones, 497
Cycloalkenes, oxidation, 188
Cycloalkenol, oxidation, 187
Cyclobutanochromans, rearrangement, 556
Cyclobutadienes, dimerization, 429
Cyclobutanation, 156
intramolecular, 429
Cyclobutane diesters, rearrangement, 501
Cyclobutanedione, mass spectra, 226
Cyclobutanes, synthesis, 430
Cyclobutanols, pyrolysis, 375
Cyclobutenediones, rearrangement, 353, 548
Cyclobutenes, rearrangement, 535
Cyclobutynes, perfluoro-, 342
Cyclodecenes, 228
Cyclooctenes, 509
Cyclohexenonol, synthesis, 482
Cycloextrin complexes, 66
Cycloextrins, 25
β-Cycloexetrins, 28, 205
effect on photo-Claisen rearrangement, 496
Cyclooctadecenes, 228
Cyclohexadiene ionon compounds, synthesis, 449
Cyclohexane-1,4-dienes, rearrangement, 476
Cyclohexanones, deprotonation, 346
rearrangement, 554
Cyclohexenes, 228
Cyclohexenethiones, 542
Cyclohexynes, 576
Cyclone, 228
Cyclooctadienes, 228
alklylation by, 265
Cyclooctatetraene dianion, 330
Cyclooctatetraenes, 536
cycloaddition, 443, 447
Cyclooctatrienes, formation, 342
Cyclooctenes, 228
Cyclooligomerization, 462
Cyclopentadienes, Diels–Alder reactions, 446, 448, 453–455, 457
synthesis, 462
Cyclopentadienyl cations, 550
Cyclopentenes, 522, 538
alkylidene, 531
Cyclopentenethiones, 542
Cyclopentenones, 556
Cyclophanes, 274, 276
Cyclopropanation, 222, 223, 233, 391, 510
of styrenes, 228
stereocontrolled, 341
Cyclopropane cation radicals, 307
Cyclopropanes, acidity, 344
addition reactions, 397
formation, 225, 403
photoreactions, 147, 148
protonated, 274
thermolysis, 164
Cyclopropenes, Diels–Alder reactions, 450
Cyclopropenyl anion, 355
Cyclopropyl cations, 552, 562
Cyclopropylamines, rearrangement, 523
Cyclopropylalylene, rearrangement, 535
Cyclotrimerization, 462
Darzens reaction, 14
Davis oxaziridines, 190
DBU, addition reactions, 413, 422
Deamination, 387
Decarbonylation, MO calculations, 374
Decarboxylation, 70–72
MO calculations, 376, 385
of amino acids, 387
of carboxybenzoxazoles, 385
of β-ketocarboxylic acids, 376
of β-lactones, 377
Decyanation, 546
Dediazoniation, 241, 242
Dehalogenation, 488
Dehydration, 370
Dehydrohalogenation, 363, 518
Dehydroxylation, 366
Density functional theory, 41, 225, 234, 429
Denuudatine, rearrangement, 568
Dephostatine, synthesis, 410
Deprotonation, 346–349
MO calculations, 349, 350
Desilylation, 545
Dess–Martin periodinane (DMP), oxidation by, 192
Desulphonation, 383
DFT calculations, 188, 196
Dialkylbenzenes, sulphonation, 268
1,ω-Diaryalkanes, sulphonation, 268
Diarylfurans, reactions, 226, 269
Diarylmethanes, 476
Diazaprophosphate anions, 340
Diazoalkenes, formation, 235
Diazeridine, formation, 392
Diazirines, 223
photolysis, 233
rearrangement, 584
Diazocarbonyl compounds, rearrangement, 510, 514
Diaz compounds, photolysis, 222, 223, 226, 228, 233, 236
Diaz coupling, 260, 269
α-Diazo keto esters, 235
Diaz ketones, rearrangement, 577
Diazoethanes, rearrangement, 484
Diazonium salts, 269
complexation with crown ethers, 241
dediazoniation, 241, 242
Diazoization, nitration during, 263
Dibenzobicyclo[2.2.2]octatetraenes, 410
1,2-Dibromo-3-chloro-2-methylpropane, alkylation by, 264
Dicarbonyl compounds, addition reactions, 412, 417, 423
gem-Dichlorocyclohexadienones, 261
Dicinnamates, photocycloaddition, 429
Diels–Alder reactions, 372, 446–461, 476, 530
asymmetric, 452, 453
aza-, 15
catalysis, by Lewis acids, 10
hetero-, 29, 372, 451–453, 455, 459
high-pressure, 450, 460
in supercritical CO2, 447
intramolecular/intramolecular, 455
intramolecular, 447, 454, 534
ionic, 454
of allenes, 447, 448
of anthracenes, 460
of anthracenophanes, 461
of o-benzoquinones, 476
of butadienes, 450, 451
of 1-(2-butadienyl)pyridinium bromide, 450
of cyclohexa-1,3-diene, 372
of cyclooctatetraenes, 447
of cyclopentadienes, 372, 446, 448, 453–455, 457
of cyclopropene, 450
of fumarates, 457
of furans, 447
of 5-methylene-2(5H)-furanones, 451
of nitrosobenzenes, 372
of pyrrole-3-carboxylic esters, 456
of radical cations, 156
of tetrazines, 461
of thebaine, 446
of thiobenzophenone, 452
of triazines, 460
of trienes, 447
radical cation-catalysed, 148
retro-, 372, 446, 452, 533
reverse electron demand, 449, 460
solvent effects, 446, 447
Dienes, oxidation, 189
Dienones, addition reactions, 411
Diepoxides, rearrangement, 554, 580, 581
Diethylzinc, reactions with carbonyls, 20
Dihalosulphenes, 222
Dihydroflavin, 204
Dihydrofulvalene, formation, 109
Dihydrofurans, reactions, 228
Dihydrofuranylcobinolins, rearrangement, 556
Dihydroisoxazoles, rearrangement, 488
Dihydrolicochalcone A, rearrangement, 527
2,3-Dihydroxyepin, deprotonation, 350
Dihydroprpyranicobinolins, rearrangement, 556
1,4-Dihydroprpyridines, synthesis, 449
Dihydroxylation, of cyclohexene, 187, 188
of cyclohexenols, 187
Dihydroxychlorins, rearrangement, 552
Diindoylalkanes, formation, 266
Diisopinocephylborane, 207
1,4-Diketones, 546
1,5-Diketones, formation, 421
β-Diketones, 23, 25
Dimroth rearrangement, 487
4,6-Dinitrobenzofuroxan, reactions with nucleophiles, 253
Dinitrogen pentoxide, nitration by, 263
Diols, oxidation, 180, 186
α,ω-Diols, 552
Dioxanes, spirocyclic, 278
1,3-Dioxanes, 556
Dioxepane, 585
Dioxetanes, 304
Dioxines, 581
Dioxiranes, as oxidizing agents, 143
Dioxocanones, 524
Diphasphanes, 541
Diphenyldiphenylphosphates, 536, 541
Dipropynyl ethers, rearrangement, 512
Dipyridynyls, synthesis, 585
3,3'-Dipyrromethane, acylation, 260
Diquinanes, 509
Diquinolinyl sulphides, rearrangement, 493
Diradicals, 450
Discharge-flow/resonance fluorescence, 131
Disilaallyl fluorides, rearrangement, 519
Disilaanthracenes, rearrangement, 588
Dissociation energies, of benzyl bromides, 110
Disulphide enolate probe, 352
Diterpenes, eunicelline, 565
Dithiane anions, addition reactions, 419
1,3-Dithiane dioxide anions, 340
Dithianes, 543
1,3-Dithianes, 349
Dithiazines, rearrangement, 534, 535
Dithiiran 1-oxides, rearrangement, 584
Dithiocarbonates, 88
Divinylalllenes, rearrangement, 533
Divinylalllenic acetals, rearrangement, 531
Divinylcyclohexanol, rearrangement, 509
DNA, alkylation, 8
cross-linking, 4
DNA cleavage, by antitumour antibiotics, model system
for, 167, 168
Domino reactions, 391
Donor–acceptor complexes, 269

E1cB mechanism, 52, 58, 84
irreversible, 77
Edwards equation, 321
Effective molarity, 1
Electrocyclic reactions, 429, 530–542
Electronic effects, 406
Electron transfer, 144–151
inner-sphere, 355
in nucleophilic aliphatic
substitution, 315
photo-induced, 144–148
single, 8, 28
Electrophilic addition, 391–409
Electrophilic aliphatic
substitution, 355, 356
Electrophilic aromatic
substitution, 259–269
acylation, 259, 260, 264, 266, 267
alkylation, 264–266
gas-phase reactions, 259
halogenation, 260–262, 267
mechanism, 286, 287
nitrification, 260, 262, 263
nitrosation, 260, 268
of aromatic hydrocarbons,
259, 261–265, 267, 268
of heteroaromatics, 260, 262, 263
of phenols, 261, 262, 268
sulphenylation, 268
sulphonation, 267, 268

Electrophilicity,
parameters, 8
scale for carbonyl groups, 17

Electrostatic effects, 346
Electrostatic repulsion, in 4+2-
cycloaddition, 451

Elimination–addition
mechanism, 300

Elimination reactions,
catalysed by biomolecules,
380–382
cycloreversion, 371–375
deamination, 387
decarboxylation, 374
decarboxylation, 376, 377,
385, 387
dehydration, 370
dehydrohalogenation, 362
dehydrosulphonation, 366
desulphonation, 383
E1cB mechanism, 361–365
E2 reactions, 379

Endo, 345
protonation, asymmetric, 346

Enones,
addition reactions, 412
carbohydrate, 342, 420
cyclopropanation, 341
rearrangement, 526

Enyne sulphones, addition
reactions, 417
Epichlorhydrins, 305
Epipasminoids, 538
Episelenonium ions, 397, 402
Episulphones, 198, 339
Epoxidation, 194–200, 391, 392
Cr–salen-catalysed, 181
Mn–salen-catalysed, 181
of alkenes, 143
Epoxides, 404
formation, 21, 340
rearrangement, 501, 548, 549,
553, 580
ring opening, 305
Epoxysulphones,
eliminative desulphonation,
383
rearrangement, 546
EPR spectroscopy, 102, 115, 118,
122, 129, 130
Esperamin A, 514
Esters,
olization, 347
nitrification, 284
pyrolysis, 377

Ethers,
macro cyclic, 497
reduction, 144

Exterior Frontier Orbital
Extension (EFOE) model,
205

Favorskii rearrangement, 545
Felkin–Ahn model, 27, 126,
416
Fenchone, 559
Fenton’s reagent, 116
Ferrier rearrangement, 567
Ferrocenyl derivatives, 412
Fischer–Hepp rearrangement,
480
Fischer indolization, 504
Flash photolysis resonance
fluorescence, 116
Fluoroanilene, rearrangement,
482
Fluorene oxide, 553
9-Fluorenone, reactions, 228
Fluorenyl anions, SET reactions,
354
Fluorination, 395
Fluoroketones, iodofluorination,
396
Fluoroenols, 23
Fluorosterynes, 482
Fluoroxysulphate, oxidation by, 190
Formaldehyde,
 addition reactions, 400
cycloadition, with ketene, 5
hydrate, 3
 reactions, with:
epoxyxilanes, 17
guanosine, 4
α-olefins, 30
Formamidines, 284
Formates, acylation by, 266
Formic acid, 225
Formylation, 266, 267
Formyl cation, 277, 282, 550
Forrester–Hepburn mechanism, 142
Fourier transform ion cyclotron resonance (FT-ICR)
spectrometry, 150
Friedel–Crafts reaction, 259, 264,
 265, 267, 406, 475
reductive, 476
retro-, 287
Fries rearrangement, 473
photo-, 474
Fullerenes, 429, 430
cycloaddition, 435, 449, 450
Fulleroids, rearrangement, 532
Fulminate anion, rearrangement, 549
Fulminic acid, cycloaddition, 442
Fulvenes,
 addition reactions, 414
 rearrangement, 231, 482
Fumarates, Diels–Alder reactions, 457
Furandione, decarbonylation, 374
Furanones, 504
 rearrangement, 505
Furanoparacyclophanes,
cycloadition, 432
Furans,
cycloaddition, 447, 511
diaryl-, 226, 269
 rearrangement, 485
thermolysis, 164, 165
 thiazyl-, 485
Furanylfullerenes, synthesis, 430
Furanilidenediones, rearrangement, 485
Garner’s aldehyde, 188, 209
Garudane, synthesis, 455
Gattmann–Koch formylation,
 266
Germanes, 90
Germylene ylides, 577
Gif reaction mechanism, 117
Glucosamine, 421
Glucosides, reactions, 4
Glyceridic acid acetones, 413
Glyceridic acid-3-phosphate,
 hydrolysis, 364
Glycine derivatives, 515
Glycols, oxidation, 185
C-Glycosidation, 550
O-Glycosides, rearrangement,
 543
Glyoxyl acid, reactions, 267
Grignard reagents, 150
 in nucleophilic aliphatic
 substitution, 301, 304
 in nucleophilic aromatic
 substitution, 247
 reactions, with:
alicyclic acyls, 343
benzenophene, 342
imines, 343
quiones, 27, 28
Groth fragmentation, 554
Grunwald–Winstein equation,
 50, 303, 316, 317, 319
Guaniades, nitrosation, 355
Haber and Weiss cycle, 129
Halocids, pyrolysis, 376
Halobenzenes,
 deprotonation, 349
 reactions, 121
Halobispropellanes,
 rearrangement, 483
Halobutynols, addition reactions,
 416
α-Halocarboxylic acids,
 synthesis, 421
Halocyclobutanones,
 rearrangement, 545
Halogen abstraction, 115, 116
Halogenation, 116, 393–397
 aromatic, 260–262, 267
Halophenyl ethers, reactions, 126
N-Halosuccinimides, 421
Hammett constants, and
 regioselectivity, 406
Hammett correlation analysis, of
 electrophilic addition, 394,
 408, 409
Hammett equation, 259
Hammett plots, 44, 223, 227
Hammett ρ–σ relationship, for:
adol reactions, 332
carbarnions, 339
stability, 327
elimination reactions, 364,
 366, 387
 nucleophilic aliphatic
 substitution, 307, 319
 rearrangement of
cyclobutenolides, 353
Hammett ρ values, for reactions of
carboxylic acid
derivatives, 38, 51, 68, 70
Hammett σ values, 392, 411
 for reactions of carboxylic acid
derivatives, 42, 57
Hammond postulate, 259
Hartree–Fock calculations, 43
Heck reaction, 408
Hemiaminals, 5
Hemithioacetalts, 2
Henry reaction, 14
Heptatrienes, autoxidation, 171
Heterocyclic derivatives, rearrangement, 484–495
Heterocyclic N-oxides,
cycloadition, 442
Hexadienes, rearrangement, 510
Hexa-1,4-dienes, synthesis, 449
Hexadienynes, rearrangement,
 532
Hexahalobispropellane, rearrangement, 483
Hexapyransoines, rearrangement, 566
Hexenes, addition reactions, 395
HFE-7100, 131
HOF–CH$_3$CN complex, oxidation by, 191
Hofmann rearrangement, 571
Homobenzaldehyde, photocycloadition, 434
Homoserine, oxidation, 180
Homotropylienes, addition reactions, 399
Horner–Wadsworth–Emmons reaction, 13
Horner–Wittig reaction, 383
Houk transition state model, 439
Huisgen–White rearrangement,
 570
Hydantoins, 235
Hydrazines, addition reactions,
 410
 rearrangement, 504
Hydrazones, 9, 10
 cyclizations onto, 105
 radical reactions, 119
 rearrangement, 512
Hydride-ion shifts, 476, 564
 1.2, 550
 1.7, 552
in acetal group, 562
metal-to-carbon, 573
transannular, 565
Subject Index

Hydroboration, 405
Hydrocarbons,
 hydrogen abstraction from, 112–115
 oxidation, 143
 radical reactions, 131
Hydrodediazoniation, 242
Hydrofluoroethers, 131
Hydrogen, vicarious substitution of, 245
Hydrogen abstraction,
 by carbon-centred radicals, 112, 113
 by heteroatom-centred radicals, 113–115
Hydrogen bonding, to carbonyl, 15
Hydrogen bonding interactions, in enolization, 23
Hydrogen bonds, formyl, 10
Hydrogen halides, addition reactions, 397
Hydrogen migrations,
 1,2, 524
 1,3, 521
 1,5, 522
 1,6, 535
 1,7, 526
Hydroindoles, 235
Hydrometallation, 391
Hydroquinones, reactions with cycloalkenediols, 497
Hydrosilylation, 406
radical, 118
Hydroxamic acids, 53, 65
 rearrangement, 571
Hydroximates, rearrangement, 352, 543
Hydroxyandrost-4-ene-17-ones, 405
Hydroxychlorones, cyclization, 416
Hydroxylamine ammonium salts, rearrangement, 480
Hydroxylamines, 53
 formation, 266
Hydroxylamino oximes, rearrangement, 569
Hydroxylation, of alkanes, 143
Hydroxyxiranones, 222
Hyperconjugation, negative, 361
Imidates, rearrangement, 503
Imidazole N-oxides,
 rearrangement, 487
Imidazoles, rearrangement, 487
Imidazo[2,1-b]oxazoles, acylation, 260
Imidazo[1,2-α]pyrazines, nitrification, 263
Imidazopyridines, 487
Imidazquinazolinones,
 rearrangement, 487
Imidazothiazoles, rearrangement, 487
Imidazotriazocines, 487
Imidazoylindazoles, 490
Imidium ions, 284
Imines, 6–8
 aziridination, 6
 cyclizations onto, 105
 formation, 246, 364
 isomerization, 6
 radical reactions, 119
 reactions, with:
 enolates, 334, 336
 Grignard reagents, 343
 organozincs, 344
 reduction, 144
 β-sulphinylated, 117
Iminium ions, 8, 9, 456, 489
 reactions with alkynes, 401
Iminobenzodioxoles, 490
Iminophosphoranes,
 rearrangement, 526
Iminothiazoles, 534
Indanediones, rearrangement, 546
Indanes, 531
Indenes, 260
 cycladdition, 447
 rearrangement, 523
Indolene, 523
Indoles,
 nuleophilic aromatic substitution, 250
 reactions with nitrones, 266
 rearrangement, 485
 sulphonylation, 268
Indolines, formation, 126
Indolinones, 520
Indolizidines, 514
 formation, 419
Induction, asymmetric, 416, 418
Infrared spectroscopy, 109, 395
Ingold–Fischer persistent radical effect, 126
Intrinsic barriers, 344, 348
Intrinsic rate constants, solvent effects, 348
Iodine, hypervalent, 395
Iodine monochloride, as iodinating agent, 262
Iodoaziridination, 396
Iodochlorination, 396
Iodofluorination, 396
Iodoalcoholization, 501
Iodonium tetrafluoroborate, 265
Iodoxybenzoic acid, oxidation by, 192
Ionization energies, 391, 392, 397
Ion pairs, intimate, 377
Ireland–Claisen rearrangement, 499
Isatin, 59
Isobenzenes, 532
Isobutane, protonated, 274
Isochromanones, formation, 408
Isochromenones, 522
Isochromones, 577
Isocyanates,
 cycloadition, 452
 cyclotrimerization, 462
Isocynic acid, cycloaddition, 431
Isoformyl cation, 278
Isopulvenes, 231
Isomunchnones, cycloaddition, 443
Isonitrile epoxides,
 rearrangement, 548
Isoprene, sulphonation, 267, 268
Isopropylation, 264
Isosteres, dipeptide, 503
Isothiazoles,
 reactions, 269
 synthesis, 485
Isothiochromanones, pyrolysis, 493
Isothyocyanates, 89
 cycloaddition, 461
 reactions with dithiocarboxyls, 534
Isothiomunchnones, cycloaddition, 443
Isotope effects,
 calculation, 385
 carbon, 332, 344
deuterium, 311, 312, 345, 349, 382, 385
 secondary, 311, 339, 375
 for keto–enol equilibrium, 25
 in carbocation-forming reactions, 273
 in elimination reactions, 361, 365, 366
 in nucleophilic aromatic substitution, 246
 kinetic, 13, 19, 20, 28, 30, 315, 403, 446
 inverse, 393
 muonium, 30
 nitrogen, 311, 385
 secondary, 8
 solvent, 20, 25, 312, 362, 386
 in enolization, 345
 substrate, 25
 tritium, 362
Isoxazoles, pyrolysis, 373 rearrangement, 487
Isoxazolidines, rearrangement, 489 synthesis, 438, 439
alkoxy groups, 520, 553, 563 alkyl groups, 543, 552, 557, 568 alkyll groups, 503 aryl groups, 476, 478, 545 azido groups, 505 boron, 519, 577 carbanion groups, 473 dimethylamino groups, 520 ethynyl groups, 482 germyl groups, 543 halogen, 520, 536 phenylsulphynyl groups, 526 phosphoryl groups, 474 platinum, 576 silicon, 519, 523, 543, 544, 557 silyl groups, 543 vinyl groups, 534 Mills–Nixon effect, 23, 457 Mills–Nixon hypothesis, 260 Molarities, effective, 380 Molecular field analysis, 43, 44 Molecular mechanics calculations, cation parameters for, 274 Molecular-orbital calculations, on:
acylation rates of amines, 42 azepeine ring formation, 535 azidopyrrolines, 227
Baeyer–Villiger rearrangement, 570
Beckmann rearrangement, 568
bond shift in halogenocyclooctatetraenes, 588
butadiene isomerization, 588
carbanions, 328, 335, 338
carbenes, 224, 226, 229, 231, 233
addition, 228
formation, 222, 225
reactions, 221
rearrangement, 232
chelotropic reactions, 451
Claisen rearrangement, 496
cyclodaddition, 432–434, 436, 440, 442
cyclopropane acidity, 344
decarboxylation, 374
decarboxylation, 376, 385
deprotonation, 350
gas-phase, 349
Diels–Alder reactions, 446, 447, 449, 450, 454, 459, 530
effect of solvation on Stevens rearrangement, 523
electrocyclic reactions, 531
electrophilic aromatic substitution, 259, 262, 263, 267, 268
elimination reactions, 365
eine reactions, 461, 538
enolate protonation, 347
isomerizations, 587
nitrenes, 234
nitrenium ions, 234
nucleophilic aliphatic substitution, 301, 302, 305, 309, 311–315, 319
nucleophilic aromatic substitution, 243
Payne rearrangement, 548
phenyl group migration in protonated ketones, 478
proton transfer, 344
pyrolysis, 373, 378, 379, 386
radical cations, 563
reactions of lactones, 46
rearrangements, of fulminate anion, 549
of isof orm yl cation, 550
of methylv silacyclopropane, 584
sigmoidic, 519, 523
retroene reaction, 380
ring contraction–ring expansion processes in polyaromatics, 482
ring opening of cyclopropane, 577
1,2-shifts in carbenes, 564
tautomerism, 588
unimolecular dissociation of ethylene oxide, 580
[2,3]-Wittig rearrangement, 512
Molecular volume, 45
Möller–Plesset (MP2) calculations, 43
Molybdenum oxidoreductase enzymes, 185
Monomorine, 514
Monophosphates, cyclic, 81
Monte Carlo simulations, 400, 432, 446, 447
Morpholine, addition reactions, 410
Muonium, 30
Myco phenolic acid, 521
Nametkin rearrangement, 559
Naphthalenes, addition to singlet oxygen, 461
nitrination, 262
Naphthophanes, cycloaddition, 453
Naphthyl esters, rearrangement, 473
Naphthyrines, 487
Natural products, rearrangement, 565–568
synthesis, 391
asymmetric, 429
Nazarov cyclization, 556
Neighbouring-group participation, in acetal hydrolysis, 2
in nucleophilic aliphatic substitution, 311
in reactions of carboxylic acid derivatives, 45, 61–64
Neurotransmitters, 116
Nitramines, decomposition, 111
Nitrates, organic reactions, 131
Nitration, 260, 402
ammonia, 262, 263
by dinitrogen pentoxide, 523
dimethylpyridines, 523
of α,β-unsaturated esters, 284, 550
ozone-mediated, 263
Nitrenes, 489
addition, 228, 229
alkoxy carbonyl-, 229
cyclization, 225
fluorinated, 481
2-fluorophenyl, 234
lifetimes, 224
MO calculations, 234
pentfluorophenyl-, 229
phenyl-, 224
photolysis, 229
reactions, with: alkenes, 228, 229
cyclohexane, 231
pyridine, 224
tetracyanoethene, 225
rearrangement, 234
Nitri um ions, 234, 286–288, 490
diaryl-, 287
formation, 401
Nitric oxide, 268
Nitride aldol reaction, 14
Nitride anions, 338
Nitride group, thermodynamic preference for axial orientation, 419
Nitride oxides, cycloaddition, 441
Nitrites, 90
α,β-unsaturated, 419
unsaturated addition to, 338
Nitrium ions, 5
rearrangement, 538
Nitroalkane anions, 339
Nitroalkanes, addition reactions, 416
Nitroalkenes, addition reactions, 417, 418
prochiral, 417
Nitroaromatic explosives, detonation, 159, 160
Nitrocyclohexene, addition reactions, 418
Nitrocyclopentene, addition reactions, 417
Nitrogen compounds, pyrolysis, 379
Nitrogen dioxide, nitration by, 263
Nitrogen extrusion, 371, 372, 386
Nitromethanes, addition reactions, 413
deprotonation, 348, 349
4-Nitronaphthalenediazonium ions, 269
Nitronate ions, 14
Nitrones, 546
cyclodaddition, 437–440
formation, 374
reactions with indoles, 266
N-Nitrosamides, 259
Nitrosamines, α-acetoxy-, 8
α-hydroxy-, 8
Nitrosation, 260, 268
 of amino acids, 355
 of guanidines, 355
 of ureas, 356
Nitrosation–oxidation, 262, 263
N-Nitrosoamines, rearrangement, 480
S-Nitrosothiols, 88, 211
Nitrosoureas, carcinogenicity, 41
Nitrostyrenes, addition reactions, 418
Nitrothiazoles, formation, 121
2-Nitrotoluene, nitration, 262
Nitrooxides,
 as oxygen-centred biradicals, 163
 reactions with thyl radicals, 141
 spin trapping, 141, 142
Norbornadienes, 563
Norbornenes, addition reactions, 395
Norbornyl cations, 292
Norbornyl compounds,
 nucleophilic substitution, 302
Normalincide, 571
Norsnoranes, 17
Nuclear magnetic resonance
 spectroscopy,
 13C, 410
 1H, 422
 ID-EXSY, 43
Nucleophiles, organometallic, 414, 415
Nucleophilic addition, 7, 8, 41,
 410–424, 436
 π-facial selectivity, 17
Nucleophilic aliphatic
 substitution,
 allylic systems, 301, 302
 ambident nucleophiles, 311
 anchimeric assistance, 311, 317
 at elements other than carbon, 308
epoxides, 305–307
 gas-phase reactions, 312–315
 intramolecular, 310, 311
 isotope effects, 311, 312
 kinetic studies, 322
 leaving-group effects, 321, 322
 linear free energy
 relationships, 319
MO calculations, 301, 302,
 305, 309, 311–315, 319
norbornyl systems, 302
phase-transfer catalysis, 318
polycyclic systems, 302–305
radical reactions, 315, 316
salt effects, 318
small rings, 305–308
solvent effects, 316, 317
 structural effects, 319–322
vinylcyclic systems, 299–301
Nucleophilic aromatic
 substitution,
 by amine nucleophiles, 243
 by ANOROC mechanism, 251
 by carbanions, 332
 by Grignard reagents, 247
 catalysis,
 by copper, 248
 by nickel, 249
 high-pressure, 243
 intramolecular, 246
 isotope effects, 246
 molecular beam studies, 242
 nitro-group displacement, 244
 of heterocyclic systems, 250–252
 of indoles, 250, 251
 of pyridines, 250
 of thiophenes, 250
 of triazines, 251
photolytic, 246, 247
 solvent effects, 244
 substituent effects, 244
 theoretical studies, 242, 243
 vicarious, 245, 354
Nucleophilic attack,
 intramolecular, 20
Nucleophilicity, 321, 322
Nucleophilic substitution, at
 phosphorus, 309
Nucleoside diphosphate sugars, 82
Nucleosides, reactions, 4
Octadecatrienoates,
 rearrangement, 522
Octadienes, rearrangement, 511
Olefination, 391
Oligonucleotides, 565
Oligophenylene, 482
Oppenauer oxidation, 204, 209
Oppenauer's sultam, 12, 14
Orbital interactions, secondary,
 403
Organoaluminium compounds,
 rearrangement, 577
Organoberyllium compounds,
 reactions, 420
Organoboron compounds,
 rearrangement, 577
Organochromium compounds,
 569
Organocobalt compounds,
 Co(III)–salen complex, 517
rearrangement, 576
Organocopper compounds, 344
 in nucleophilic aliphatic
 substitution, 301
Organohafnium compounds,
 rearrangement, 571
Organoiridium compounds,
 rearrangement, 576
Organoiron compounds,
 rearrangement, 573
Organolithium compounds,
 in nucleophilic aliphatic
 substitution, 301
 reactions, with:
 BeCl_2, 420
 enones, 342
 triazenes, 342
 rearrangement, 544
vinyl-, 343
Organometallic compounds,
 additions to activated double
 bonds, 420–422
Organomolybdenum compounds,
 rearrangement, 572
Organosilicon compounds,
 rearrangement, 576
Organopalladium compounds,
 rearrangement, 576
Organoplatinum compounds,
 rearrangement, 572, 576
Organotin compounds,
 rearrangement, 572
Organouranium compounds,
 rearrangement, 574
Organosilanes, photoreactions,
 146
Organosulfur compounds,
 reactions, electron-transfer,
 149
Organotantalum compounds,
 rearrangement, 572
Organotitanium compounds,
 rearrangement, 571
Organotungsten compounds,
 rearrangement, 572
Organozinc compounds, 344
 rearrangement, 576
Organozirconium compounds,
 rearrangement, 571
Ortho esters, 344
Oximes, 408
Oxadiazoles,
 pyrolysis, 166
 rearrangement, 493
Oxadiazolines,
 pyrolysis, 371
 rearrangement, 553
 thermolysis, 228
Oxadiazolium salts,
 rearrangement, 492
Subject Index

Oxalic acid, 225
pyrolysis, 375
Oxamacrolides, rearrangement, 499
Oxathiazinanes, 546
Oxathiazole dioxides, 86
Oxatryclocundecenones, ring opening, 343
Oxazaborolidine, 208
Oxazinediones, 484
Oxazines, 542
synthesis, 145
Oxaziridines, 584
Oxazirinyl anion, 549
Oxazoles, 542, 582
Oxazolidines, addition reactions, 421
Oxazolium salts, rearrangement, 489
Oxepins, 535
Oxetanes, 15
ring opening, 308
Oxidation, electrochemical, 563
radical mechanisms, 143, 144
Oxidation, by:
atomic oxygen, 203
bismuth(III), 185
cerium(IV), 183, 184
chromium, 179–181
cobalt(III), 184
copper(III), 183
alcoholox, 191–193
iridium(III), 185
iron(III), 186
lignin peroxidase, 204
manganese(II), 181, 182
manganese(IV), 181, 182
manganese(V), 181
manganese(VI), 181
molybdenum, 185
nickel(III), 182
nickel(IV), 183
nitrogen, 190
osmium, 187
palladium(II), 185, 186
peracids, 194–197
permanganate, 181, 182
peroxides, 197–200
rhodium, 185
ruthenium, 186, 187
selenium, 190
silver(III), 183
singlet oxygen, 200, 201
sodium perborate, 584
sulphur, 190
superoxide, 200
thallium(III), 183
triplet oxygen, 203
vanadium(V), 184
Oxidation, of:
6-adducts, 245
alcohols, 143, 179, 180, 182,
186, 187, 189–191, 204
aldehydes, 183, 186, 191
alkenes, 185
amines, 192
aryldiamines, 584
carboxylic acids, 183, 184,
191
cycloalkenes, 188
cycloalkenols, 187
dienes, 189
diols, 180, 186
glycols, 185
homoserine, 180
hydrocarbons, 143
phenols, 192
phenylhydrazine, 235
phosphonates, 190
sugars, 181, 186
sulphides, 180, 181, 191, 192
vitamin K, 201
N-Oxides,
heterocyclic, 260
rearrangement, 518
Oxidoperyridiniums,
cycloaddition, 445
Oximate ions, α-effect, 348
Oxime ethers, cyclizations onto,
105
Oximes, 9, 10
cyclization, 439
Oxiranes,
formation, 228
rearrangement, 580
ring opening, 305
Oxoadenines, rearrangement,
494
Oxocarnibium ions, 4, 278
cycloaddition, 279
Oxone, oxidation by, 190
Oxonium ions, 278, 279, 399,
556
reduction, 279
silicon-stabilized, 281
Oxonium ylides, rearrangement,
524
Oxopyrans, rearrangement, 536
Oxoylal intermediates, 530
Oxymercuration, 406
Ozonation, 193, 194
Ozonides, rearrangement, 588
Ozonolysis, 193, 194
Paracyclophanes,
formation, 230
rearrangement, 483
Paracyclophanes, cycloaddition,
432
Paterno–Büchi reaction, 15, 434
Payne rearrangement, 548, 580
aza-, 205, 580
Penicillins, 56
Pentacyclocdecanes, ions from, 329
Pentenes, addition reactions, 395
t-Pentyl cation, 550
Peptides, ion spectra, 512
Perezone, rearrangement, 565
Peroxides, as radical initiators, 110
mixed, synthesis, 126
pyrolysis, 165
reactions, 129
α-Peroxylactones, addition reactions, 404
Perturbation theory, 221
Perylenes, dications, 290
Peterson reaction, 463
Phase transfer, 225
Phenanthrenes,
dications, 291
protonation, 267
Phenethyamine auxiliary, 418
Phenols,
halogenation, 261, 262
nitrination, 262
nitrosation, 268
oxidation, 192
rearrangement, 476
Phenothiazines, bromination, 262
Phenoxyde ions, addition reactions, 422, 423
Phenoxyde reactions with
nitroaromatics, 252
Phenoxyacetic acids,
chlorosulphonation, 268
ω-Phenylalkanols,
rearrangement, 478
Phenylene, rearrangement, 482
Phenyl esters, rearrangement,
473, 474
Phenyldihyrazine, oxidation, 235
N-Phenylmaleimide, 226
3-Phenylxetane, nitration, 262
Phenyltropanes, synthesis, 445
Phosphaalenes, cycloaddition, 459
Phosphalkynes, 536, 540, 584
Phosphabicyclo[2.2.2]octene,
cyclov version, 375
Phosphanaphthalenes, formation, 230
Phosphanes, 540
Phosphates, 76–78
Phosphazenes, 78
Phosphates, rearrangement, 534, 536
Phosphatases, 530
Phosphatides, 530
Phosphates, reactions with
alkynes, 391
Phosphatides, 530
Phosphatides, rearrangement, 534
Phosphatides, 530
Phosphatides, rearrangement, 536, 540
Phosphorides, 530
Phosphorides, 530
Phosphorides, 530
Phosphorus-containing acids and
derivatives, 74–83
Phosphorylation, 567
Photoacoustic calorimetry, 110
Photocycladdition, 420–432, 434
4+2, 454
4+4, 464, 511
intramolecular, 430–432
of dicinnamates, 429
Photodesilation, 431
Photoionization, 429
Photolysis, of:
azides, 224, 225
carbones, 236
deoxyribose phosphate, 167, 168
diazirines, 233
diazo compounds, 222, 223,
226, 228, 233, 236
nitrenes, 229
nitrosopregnone steroids, 167
sulphoxides, 167
thiazol-2-carboxylic acid, 222
tosylhydrazone salts, 232
Photooxidation, of alkanes, 144
Photo-oxygenation, 200
Photorearrangement, of:
acetylpyrrole, 524
benzisoxazolequinones, 488
chloroacetophenones, 478
cyclobutenes, 535
diazoketones, 565
dienes, 530
imidazole N-oxides, 487
octadienes, 511
oxadiazoles, 493
phenyl esters, 474
N-pyrrole enamide, 527
quinones, 530
tosylsulphonimides, 524
vinylmethylene cyclopropanes,
522
vinylnorcaradiene derivatives,
577
Phthalaziniumolates, rearrangement, 494
Phthalides, rearrangement, 552
Pictet–Spengler reaction, 486
Pinacols, cyclization, 290
dehydrative, 478
Piperidines, 2-lithio-, 341
Polya(mido) acids, in epoxidation
of α,β-unsaturated ketones, 194
Polycyclic aromatics, synthesis, 265
Polycyclic enol ethers, rearrangement, 496
Polydentate ligands, 407
Polyhaloethanes, reduction, 144
Polymerization,
ball-and-chain, 289
by electrophilic addition, 399
radical, 126, 130
Porphyrins, 228
Potential energy surfaces, 398
Precatalysts, in cycloaddition,
464
Prephenate, 496
Presqualene diphosphate, rearrangement, 565
Preussin, 571
Prilaschajew reaction, 196
Proanthocyanidins,
rearrangement, 566
Prolines, rubidium salt, 413
Propargyl acyclic esters,
rearrangement, 499
Propargyloxystannanes,
rearrangement, 513
Propene oxide, rearrangement,
580
Propylene glycol, rearrangement,
552
Propyl phenyl ethers,
rearrangement, 497
Propyne, polymerization, 289
Protoadmantyl compounds, 562
Protodiazonation, 129
Proton affinity, 260
Protonation, 347, 348
asymmetric, 346
MO calculations, 347
N- vs O-, 53, 54
of Meisenheimer adducts, 253
of phenanthrenes, 267
Proton transfer, 344–351, 398
intramolecular, 25
MO calculations, 344
rate-limiting, in nucleophilic
aromatic substitution, 252
Proton tunnelling, 348
Pseudo-phase model, 65
Pulsed laser photolysis, 131
Pummerer rearrangement, 457,
476, 562
abnormal, 563
Pyranones, rearrangement, 585
Pyrons, 533
Pyrazines, pyrolysis, 165
Pyrazoles, formation, 411
Pyrazolines, cycloaddition, 442
Pyrazolobenzotriazole, 225
Pyrazol[3,4-d]pyrimidines,
synthesis, 460
Pyrenium cations, 289
Pyridines,
nitration, 263
nucleophilic aromatic
substitution, 250
pyrolysis, 165
reactions with N-acyliminium
ions, 267
rearrangement, 493
Pyridinium salts,
nucleophilic substitution in,
251
oxidation by, 179, 180
Pyridinium ylides, addition
reactions, 412
Pyridinolysis, of carboxylic acid
derivatives, 39
Pyridones, 536
cycloaddition, 434
Pyridopyrimidones, 487
Pyridyl intramers,
rearrangement, 493
Pyridynes, 254
Pyrimidines, pyrolysis, 165
Pyrolysis, of:
acetics, 3, 533
alcohols, 379
alkanes, 165
alkyl halides, 378, 379
anhydrides, 378
anhydrocenes, 230
azides, 231
azidobenzenes, 227
azido compounds, 377
4-azido-2-pyrolinones, 386
carbazole dicarboxylic
anhydrides, 486
carbones, 232
cylobutanol, 375
esters, 377
haloacids, 376
haloalkanes, 225
heterocycles, 165, 166
hydrocarbons, 165
isothiochromanones, 493
isoxazoles, 373
nitrogen compounds, 379
nonatrienes, 447
oxidiazolines, 371
oxalic acid, 375
peroxides, 165
phenylene, 482
phosphorus ylides, 490
pyroles, 487
sulphur compounds, 378
tetrazoles, 371
TFA, 166
thiosemicarbazides, 481
vinyphosphirane, 584
ylides, 227
Pyrones, diaryl-, addition reactions, 422
Pyrole carboxylic esters, Diels–Alder reactions, 456
rearrangement, 523
N-Pyrole enamide, rearrangement, 527
Pyroles, pyrolysis, 487
rearrangement, 485, 524
Pyrrolidine N-oxides, 546
Pyrrolidines, 541
2-lithio-, 341
Pyrrolidinones, rearrangement, 489

Quadricyclanes, 563
Quantum Rice–Ramsperger–Kassel (QRK) theory, 144
Quercitrol, 540
Quinodimethanes, cycloaddition, 450
Quinolines, 539
Quinolines, rearrangement, 493
Quinolinium salts, oxidation by, 180
Quinolinones, rearrangement, 497
Quinolizidines, formation, 419
Quinone radical anion, 342
Quinones, 476
addition reactions, 410
photocycloaddition, 434
reactions with organometallics, 27, 28
QUIVER program, 403

Radical anions, 128, 158–160
quinone, 342
Radical cations, 129, 151–158
DMPO, 142
generation, 429
in cycloadditions, 457
in Diels–Alder reactions, 148, 450
in rearrangements, 170
of carbones, 222, 226
of cyclopropanes, 307
of propene, 226
of thiaole, 490
PBN, 142
reactions with alkenes, 226
rearrangement, 563
TMPO, 142
vinylcyclopropane, 170
Radical dications, 478
Radical initiators, 110
Radical polar cross-over reactions, 126
Radical reactions, addition, 117–119
catalysts for, 118
intramolecular, 104–109
polar effects, 117
stereoselectivity, 124–126
annulation, 109
aromatic substitution, 119–121
atom abstraction, 112–116
stereoselectivity, 126
autooxidation, 171
cyclization, 103–106
stereoselectivity, 123, 124
fragmentation, 101–103, 110, 111
group migration, 100, 101
halogenation, 116
nucleophilic aliphatic substitution, 315, 316
diazonium ions, 242
photolysis, 167–169
pyrolysis, 165, 166
radiolysis, 169–171
reactivity effects, 122, 123
rearrangement, 100–103
recombination, 109
reduction, 126–128
ring expansion, 103
ring opening, 101–103
S_N1 mechanism, 242
tandem, 106–108
thermolysis, 164–166
Radicals, acetyl, 130
acyl, 121, 123
(β-acyloxy)alkyl, 100
adamantyl, 117
alkenyl, 112
alkoxy, 102, 103, 130, 581
cyclization, 106
decomposition, 111
alkyl, 104, 112
allyl, 111
cyclization, 104, 105
formation, 105
amidyl, 119
amino acid, 102, 118
aminooxyl, decomposition, 143
aminyl, 115
aryl, cyclization, 126
benzyl, decomposition, 111
benzyloxy, 111
bicyclo[1.1.1]pent-1-yl, 121
bromo, 115
<insert text>
<insert text>
Radicals (cont.)
sulphonyl, 104, 105
TEMPO, 148
tetraphenylxyl, 536
thyl, 108, 111, 141
trichloromethyl, 117
triphenylmethyl, 111, 130
tris(trimethylsilyl)silyl, 122
vinyl, 104, 108
Radical translocation, 113
Radiolysis, 169–171
in liquid methanol, 169
Raman spectroscopy, time-
resolved, 129
Ramberg–Backlund reaction, 383
Ramberg–Backlund
rearrangement, 464, 546
Reactivity–selectivity principle,
259
Rearrangement,
acetylene–vinylidene, 573
acylone, 559
aldehyde cyanate–isocyanate, 505
anionic, 543–549
aromatic, 473–495
azulene–naphthalene, 483
benzidine, 481
cationic, 550–565
circumambulatory, 352, 512
cyclopropyl-π-methylene, 526
di-π-methylene, 526
dyotropic, 524
hydroxyamine, 563
intramolecular, 246
involving electron-deficient
heteroatoms, 568
isomerization, 587–589
lumiketone, 526
metallate, 576
methylmalonyl—succinyl, 549
norbornyl–norbornyl, 291
oxadi-π-methylene, 526
oxidative, 476, 578, 579
oxiranylcarbinyl radical, 581
phosphoxy, 524
pinacol, 279, 552, 555
protopadamantyl–adamantyl,
292
prototropic, 267
pyranose–furanose, 566
ring-opening, 577–587
semipinacol, 552
sigmatropic, 436, 481,
496–530
silicotropic, 543
sulphenyl, 577
tautomerie, 588–590
thiacyclohexatriene–
thiophenylcarbene, 564
trichloroacetimidate, 503
vinylcyclopropane–
cyclopentene, 522
vinylidene–acetylene, 564
Rearrangement, of:
acenaphthylene, 482
acephenanthrylene, 482
acetylenic esters, 588
acylaziridines, 582
adamantyl sulphonates, 562
adenines, 494
aldonitrones, 569
alkaloids, 566
alkenyl benzyl ethers, 512
alkoxyvinylketenes, 520
alkynylsilanes, 557
allyl cyanates, 505
allylic azides, 505
allylic imidates, 503
allylic xanthates, 507
allyloxyamide enolates, 512
allyloxyanthraquinones, 497
(allyloxy)methylithium, 512
allyl phenyl ethers, 496, 521
allylsilanes, 519
allyl thiocyanates, 505
allyl vinyl ethers, 496
amidines, 481
amine oxides, 518
aminodienes, 512
aminopropylan, 552
ammonium methylides, 515,
523
ammonium ylides, 523
artemisin, 565
asparagines, 571
aurine, 566
azepines, 495
aziridinylbenzaldoximes, 582
aziridinyltosylhydrazones, 582
azoxy compounds, 481
azulene, 483
baccatin III, 566
bacteirichlorins, 552
barbaralanes, 510
benzil, 546
benziodazole, 490
benzodiazepinediones, 486
benzofluoranthenes, 482
benzothiophenes, 487
benzoaxathionines, 516
benzylfluorocarbenes, 482
benzylidenearilines, 588
bicyclobutane, 536
bicyclooctadienes, 534
bisalkenylcyclopropanes, 510
bis-allylic ethers, 507
bis-ammonium salts, 523
bis-β-lactams, 584
borinines, 519
boronates, 577
bromindiane, 551
bromoxiranes, 580
butyroloactones, 484
carbamates, 474
carbonions, 337
carbones, 231–234, 481, 482
carbocations, 291
carbonium ions, 550, 554
carboxamides, 571
carotenoids, 587
chelated allyl esters, 499
chorismate, 496
cinnamylxoybenzene, 496
cinnolines, 494
coumarins, 497
cyanoxydrazines, 481
cycloalkanes, 509
cyclobutachromanols, 556
cyclobutane diesters, 501
cyclobutenediones, 353, 548
cyclohexane-1,4-dienes, 476
cyclohexanones, 554
cyclopropenone carbonyl
oxide, 579
cyclopropylamines, 523
cyclopropylsilylene, 535
denudatine, 568
diarylcarbenes, 481
diaryl ketoximes, 568
diazirines, 584
diazocarbonsyls, 510, 577
diazomethanes, 484
diepoxides, 580, 581
vinical, 554
dihydroarxivin B, 565
dihydrofuranylcarbinols, 556
dihydroisoxazoles, 488
dihydrolochloral A, 527
dihydropripanylcarbinols, 556
dihydroxyacetaldehyde, 568
dihydroxychlorins, 552
diisopropyl ethers, 512
diquinonyl sulfides, 493
disilaaryl fluorides, 519
disilaantracenes, 588
dithiazines, 534
dithiane 1-oxides, 584
divinyllallenals, 533
divinyllene acetals, 531
divinycyclohexanol, 509
diendeperoxides, 527, 548
α,β-enones, 526
epoxides, 501, 548, 549, 553,
580
α,β-epoxyacylates, 553, 554
epoxyamines, 580
epoxyisilanes, 580
epoxysulphides, 580
epoxysulphones, 546
fluoranthene, 482
Rearrangement, of: (cont.)
fluorene oxide, 553
fulleroids, 532
fulminate anion, 549
fulvenes, 231, 482
furanes, 505
furans, 485
furanylidenones, 485
germylene ylides, 577
O-glycosides, 543
halocyclobutanones, 545
heterocyclic derivatives, 484–495
hexadienes, 510
hexadienynes, 532
hexahalobispellane, 483
hexopryranosides, 566
homoharringtonine, 568
hydrazines, 504
hydrzones, 512
hydroxamic acid, 571
hydroximates, 352, 543
hydroxylamine ammonium salts, 480
hydroxylamino oximes, 569
imidazoles, 487
imidazoquinazolinones, 487
imidazothiazoles, 487
iminophosphoranes, 526
indanediones, 546
indenones, 523
indoles, 485
isonitrile epoxides, 548
isoxazoles, 487
isoxazolines, 489
ketene dithioacetals, 506
ketenes, 501, 522
ketocarbones, 565
ketophosphonates, 520
β-lactams, 571
β-lactones, 524
lignin model, 480
naphthyl esters, 473
natural products, 565–568
nitrenes, 234
nitritium salts, 538
nitrosoamines, 480
octadecatrienoates, 522
glyphenyles, 482
organometallics, 544, 571–577
oxadiazoline, 553
oxadiazolium salts, 492
oxamacrolides, 499
oxaziridines, 584
oxazolium salts, 489
N-oxides, 518
oxiranes, 580
oxoacids, 494
oxonum ylides, 524
oxopyrans, 536
ozonides, 588
paracyclophanes, 483, 557
perezone, 565
phenols, 476
ω-phenylalkanols, 478
phenyl esters, 473, 474
phosphates, 534, 536
phosphinoyl hydroxylamines, 571
phosphonamidates, 569, 584
phthalazinomolates, 494
phthalides, 552
polycyclic enol ethers, 496
presqualene diphosphate, 565
proanthocyanidins, 566
propargylic esters, 499
propargyloxystanannes, 513
propene oxide, 580
propylene glycol, 552
propyl phenyl ethers, 497
pyranones, 585
pyridines, 493
pyridyl nitramines, 493
pyrole carboxylic esters, 523
pyroles, 485, 524
pyrrolidonines, 489
quinolines, 493
quinolinones, 497
radical cations, 563
ribofuranosylamine, 571
salicyclic acid esters, 480
selenides, 544
selenium ylides, 518
selenoxides, 518
silacyclopropane, 584
silanes, 557
silyl ketene acetalts, 501
silyloxyacetylenes, 519
spiroheterocycles, 493
spirioindolenine, 486
squarates, 548
steroids, 565
stilbenes, 587
strictamine, 523
styrenyl ethers, 574
sulphenates, 538
sulphonylenamines, 563
sulphonylphenols, 476
sulphonium ylides, 517
sulphoxides, 563
sulphur ylides, 515
taxoids, 565
tetrahydropranyl ethers, 550
tetralins, 475
tetrazaoles, 501
thiadiazoles, 493
thiazetidinone dioxides, 582, 585
thiazines, 495
thiazolemines, 490
thionocarbonates, 507
triaryl methyl anilines, 480
triazoles, 490
triazolines, 490
triazolium dipoles, 490
triazolium salts, 492
tricarbonyliron complexes, 501
trichloroacetic acid, 503
trithioorthocarboxylates, 552
trynes, 576
tropinones, 568
uracils, 497
vinylaziridines, 503, 513
vinylcyclopropanes, 522
vinyl groups, 553
vinylxiranes, 543
vinyl sulphoxides, 514
xyluloses, 566
Rebek imide benzoazole, 441
Redox potentials, 392
Redox reactions, 126–128
Reduction, asymmetric, 405
radical mechanisms, 143, 144
samarium(II), 410
Reduction, by:
borylhydrides, 204, 205
complex hydrides, 204–207
DIBAL, 207
LAH, 205, 206
NAD(P)H model compounds, 211
Reduction, of:
acetophenones, 205, 207
alcohols, 207
aldehydes, 208
α-amino oximes, 204
artemisinin, 205
benzophenones, 207
cyclohexanones, 205, 210
enediones, 204
epoxyamines, 205
halides, 205
heterocyclic N-oxides, 208
ketones, 207–209
oxindoles, 205
oxonion ions, 279
sulphonamides, 210
Reformatsky reagents, 150, 417
Retinoidic acids, radical reactions, 130
Retroene reactions, MO calculations, 380
RHF methodology, 431
Ribofuranosylamine, rearrangement, 571
Ring closure, conrotatory, 342
Ring opening, entropic factors, 353
gas-phase, 314
Ring opening (cont.)
of oxatricycloundeceneones, 343
ring-size effects, 353
Ritter reaction, 403
Roberts and Steel empirical algorithm, 112
Salicylates,
aminoysis/methanalysis, 65
rearrangement, 480
Saytzeff orientation, 365
Schiff bases,
formation, 6
hydrolysis, 7
S_{E}Ar substitution, in reactions of
thiophenes, 253
Selenides, 518, 544, 545
homoallylic, 518
Selenoalkanes, 518
Selenium ylides,
rearrangement, 518
Selenophilic attack, 397
Selenothioesters, 507
Selenoxides,
syn-elimination, 381
rearrangement, 518
Self-exchange electron-transfer
(SEET) processes, 149
Self-recombination reactions, 130
Semiempirical calculations, for
reactions of carboxylic acid
derivatives, 42, 49
$S_{E}^{2''}$ reactions, 356
Sharpless asymmetric
dihydroxylation (AD)
system, 188, 189
Sharpless asymmetric
epoxidation, 184
S_{R}^{2} reactions, 121, 122
Sigmatic rearrangements,
[1,2], 524
[1,3], 519–523
[1,4], 515
[1,5], 522, 523
[1,7], 526
[2,3], 507, 512–518
[3,3], 496–512
[3,4], 527
[3,5], 527
[9,9], 481
Silacyclobutene, 535
Silacyclopropane, rearrangement, 584
Silagermiranes, 237
Silanes,
alkeynyl-, 557
allylenilsilane imines, 539
allyl-, 544
enoxy-, 542
β-γ-epoxy-, 280
rearrangement, 557
Silanols, 557
Siloxanes, radical reactions, 132
Siloxyacetals, 554
Siloxysulphides, 563
Silylalenes, 557
Silyl cations, 281
Silylenes,
dichloro-, 237
reactions, with:
alkenes, 237
aromatics, 269
methanol, 237
Silyl enol ethers, protonation,
enantioselective, 400
Silyl ketene acetals,
rearrangement, 501
Silylketenes, cycloaddition, 452
Silyloxyacetlenes,
rearrangement, 519
Single electron transfer (SET),
311, 315, 339, 354, 417
Singlet oxygen,
addition to alkenes, 540
addition to cyclohexadiene, 540
oxidation by, 143
Smiles rearrangement, 480
SN1-ANOROC mechanism, 251
SN1-2Ar mechanism, 242–249
SN1 reactions, 582
SN2 reactions, 304, 308, 318,
320
SN2 reactions, 81, 304, 308,
312–314, 316, 318, 320,
321, 582
electron-transfer, 149, 150
SN2$'$ reactions, 301, 316, 343
Solkelot crotornates,
cycloaddition, 437
Solvent effects,
in Diels–Alder reactions, 446,
447
in dissociation of benzoic
acids, 49
in Mannich cyclization, 402
in nucleophilic aliphatic
substitution, 316, 317
in nucleophilic aromatic
substitution, 244
Solvolysis, 317
Sommelet–Hauser
rearrangement, 504
Spark ignition engines, knock in,
203
Spin trapping, 141, 142
Spiro compounds, 497, 504
rearrangement, 486, 493
spirocyclic bis-C,C-
glycosides, 556
spirocyclic ketones, 556
7-(Spirocylcopropene)-
quadricyclane, 563
spirodecanones, 496, 555
spiroheterocycles, 493
spiroindolene, 486
spiroketalactams, 486
spiroketone, 475
spiroktaetams, 538
formation, 126
spiro[4.4]nonan-2-one, 556
spirosulphanes, 87
spirotetronate, 501
trioxadispiro[4.1.5.3]-
pentadecane, 561
Squalene, 565
Squarate ester cascade, 352
Squarate esters, 342
reactions with allenic/alkenyl
anions, 508
rearrangement, 548
$S_{RN}1$ mechanism, 121, 148, 150,
302, 331
$S_{RN}1$ radical chain mechanism,
242
$S_{RN}1$ reactions, 316
Stannylene, difluoro- 237
Stereoelectronic control, 4
Stereoelectronic effects, 9
Stereoelectronic stabilization,
423
Steric effects, 406
Steroids,
photolysis, 167
rearrangement, 565
Sterols, biosynthesis, 400
Stevens rearrangement, 504, 515,
523
Stilbenes,
bromination, 393, 394
rearrangement, 587
1,3-Strain control, 417
Strictamine, rearrangement, 523
Styrenes,
cycloaddition, 447
polymerization, 126, 130
Styrenyl ethers, rearrangement,
574
Styrlyalkynes, 526
Substitution, ipso-, 119
Sugar ketonitrones,
cycloaddition, 438
Sugars, oxidation, 181, 186
Sulphamides, 86
Sulphenamides, 87
Sulphenates, rearrangement, 538
Sulphonylation, 268
Subject Index

Sulphenyl halides, 85
Sulphides,
 divinyl, 582
 oxidation, 180, 181, 191, 192
Sulphinimides, formation, 236
Sulphinamides, 85
Sulphinates,
 alkylnyl, 576
 hydrolysis, 85
Sulphines,
 cycloaddition, 440
 formation, 384
Sulphinimines, 7
Sulphinyl compounds, rearrangement, 476, 563
Sulpholenes, extrusion of SO2, 375
Sulphonamides, 86
 reactions, 121
 trifluoromethylated, 417
 \(\alpha,\beta\)-unsaturated, 417
Sulphonates,
 aromatic, reactions, 121
 methanolysis, 84
 solvolysis, 275
Sulphonation, 267, 268
Sulphones, 546
 allenic, 538
 aryl, cycloaddition, 437
Sulphonium ylides,
 reactions, 21
 rearrangement, 517
 semistabilized, 6
\(\alpha\)-Sulphonyl carbamions, 339
Sulphonyl halides, hydrolysis, 83, 84
Sulphonylim ion intermediates, 87
Sulphoxides,
 \(\beta\)-keto-, addition reactions, 419
 photolysis, 167
 rearrangement, 513, 514, 563
 synthesis, 383
 vinyl, 513, 514
Sulphoximines, 339
 addition reactions, 414
Sulphuranes, as intermediates, 85
Sulphur compounds, pyrolysis, 378
Sulphur-containing acids and derivatives, 83–90
Sulphur extrusion, 535
Sulphur trioxide, sulphonation by, 267
Sulphur ylides, rearrangement, 515
Sultams, Oppolzer’s, 12, 14
 \(\beta\)-Sultams, hydrolysis, 86, 87
Superacids, natural product
 chemistry, 273
Surfactants, cationic, 53
Suzuki coupling, 248
Swain–Scott equation, 321
Swern oxidation, 190
Sydnones, reactions with nucleophiles, 251
Synchrotron radiation, 391
Synzymes, 380
TADDOL ligands, 437
Taft \(\sigma^*\) constants, 45
Taft equation, 320, 321
Tautomerism, acylimine–enamide, 589
 annular, 23
 imine–enamine, 589
 indole–indolene, 486
 keto–enol, 589
 MO calculations, 589
 prototropic, 589
 ring–chain, 590
Taxoids, rearrangement, 565
Taxols, 447
Telluronium ylides, addition reactions, 421
 Template effects, peg-in-a-pocket, 340
TEMPO, 115
Terpenoids, biosynthesis, 566
Terpyridinyls, synthesis, 585
Tetrachlorobenzoquinone,
 addition reactions, 423, 424
Tetracyanoethylene, reactions, 392
 Tetracyclo[5.3.2.0\(^2,10\)\(^3,5\)]-dodeca-4,8,11-triene, 562
Tetracyclotrudecadienes, 511
Tetracycloundecadienes, 445
Tetradehydroanthracene, cycloaddition, 461
Tetraenal, 523
Tetraethylammonium salts, oxidation by, 180
Tetrafluorobenzobarelene, bromination, 395
Tetrahedral intermediates, in reactions of carboxylic acid derivatives, 38–41, 46
 zwiterionic, 38, 39
Tetrahydropyrans, 508
Tetrahydroprynyl ethers, rearrangement, 550
Tetrahydroprydrazines, addition reactions, 396
Tetralins, rearrangement, 475
 synthesis, 265
Tetraneopentylethylene, bromination, 394
Tetraoxa cages, 561
Tetraphosphorabrelene, synthesis, 459
Tetrapyroles, linear, 530
Tetrazines, Diels–Alder reactions, 461
Tetrazoles,
 pyrolysis, 371
 rearrangement, 501
Tetrazolones, 501
 (—)-Tetradotoxin, 438
Thallium trinitrate, 554
Thebaine, Diels–Alder reactions, 446
Thermolysis, of:
 cellulose, 164
cyclopropanes, 164
furans, 164, 165
heterocycles, 166
oxadiazolines, 228
starch, 164
sucrose, 164
Thiadiazepinepinoxides, 582
Thiadiazoles, 485, 495
 formation, 493
 rearrangement, 493
Thiafulvalenes, 495
Thiamines, reactions with base, 252
Thiatriazoles, 493
Thiazetidinone dioxides, 582
Thiazines, rearrangement, 495
Thiazol-2-carboxylic acid, matrix-isolated, photolysis, 222
Thiazoleimines, rearrangement, 490
Thiazoic acid, pyrolysis, 166
Thiazolidine \(N\)-oxides, 546
Thiazolidinone dioxides, 585
Thiazolidium-4-olates, cycloaddition, 445
Thiazoloisoxazoles, 488
Thiazyl chloride, 269, 485
 reactions, 226
Thienacycines, synthesis, 432
Thienazines, 515
Thieno[3,2-b]benzofuran, reactions, 260
Thietanes, hydroxy-, ring cleavage, 385
Thirane intermediates, 582
Thiranium ions, 580
Thioacylum ions, 278
Thiobenzophene, Diels–Alder reactions, 452
Thiocarbonyl compounds, radical reactions, 119
Subject Index

Thioformates, 88, 222
Thioindoles, sulphenylation, 268
\(\gamma \)-Thiolactones, formation, 121
Thiolecarbonates, 507
Thiols, allyl-, 546
 aromatic, 89
 oxidation, 111
Thiomaleimides, cycloaddition, 461
Thionation, with boron sulphide, 527
Thionformates, 88
Thionformic acid, 222
Thionocarbonates, rearrangement, 507
Thionucleosides, 89
Thiophenicarboxylates, 90
Thiophenes, 582
 nucleophilic aromatic substitution, 250, 253
Thiophenoxide ions, 411
Thiophosphates, 80
Thiosemicarbazides, pyrolysis, 481
Thiotetronic acids, 507
Thioureas, 88
Thioxothiazetidine, 535
Thioxothiazoles, 534
Thymidine, 89
Time-resolved frequency modulation spectroscopy, 117
Tishchenko reaction, 28
Titanium chelation, 411
Toluene, chloromethylation, 264
 nitrination, 262
sulphonation, 267
Toluene–benzene mixtures, benzylation, 259
Toluenium ions, 260
Tosylhydrazone salts, photolysis, 232
Transannular interactions, 21
Transesterification, 42, 43
Transmetallation, 497, 571
Triallylboron, reactions with pyridines, 493
Triarylalkylamines, rearrangement, 480
Triazapentaleniodanones, 494
Triazines, nucleophilic aromatic substitution, 251
reactions with organolithiums, 342
1,2,4-Triazines, cycloaddition, 460, 487
Triazoles, 493
 rearrangement, 490
Triazolinediones, addition reactions, 403
Triazolines, 540
 rearrangement, 490
Triazolium dipoles, rearrangement, 490
Triazolium salts, rearrangement, 492
Tricarbonyliron complexes, rearrangement, 501
Trichloroacetamides, cyclization, 126
Trichloroacetimidates, rearrangement, 503
Trichloroacrylanuric acid (TCICA), oxidation by, 191
Trichloromethyl-\(\beta \)- propionic acid, acylation by, 267
Tricyclo[4.4.0.0\(^{1,5}\)]deca-7,9-dien-4-ones, 577
Tricyclo[4.1.0.0\(^{1,4}\)]heptanols, 562
Tricyclo[3.2.0.0\(^{1,6}\)]heptenes, 572
Tricyclo[5.2.2.0\(^{1,5}\).0\(^{4,7}\)]undecadienones, 454
Tricyclo[5.3.1.0\(^{1,5}\)]undecanes, 559
Tricyclo[5.3.1.0\(^{1,5}\)]undecatrienyl anion, 352
Trenes, cycloaddition, 447
cycloligomerization, 462
Trienones, addition reactions, 411
Trifluoroacetic acid, diprotonation, 282
Trifluoroacetylation, 267
Trifluoroacetyl nitrate, nitration by, 263
Trihomocyclopropenyl cations, 562
Trimethylphosphins, radical reactions, 131
Triphenylmethyl cations, 279
Triquinanes, angular, 545
Trithiazyl trichloride, reactions with alkenes, 495
Trithiocarbonate oxides, 342
Trithioorthocarboxylates, rearrangement, 552
Triton B, 413
Triones, rearrangement, 576
Tropenones, synthesis, 445
Tropinones, rearrangement, 568
Tropolones, 555
Tropones, reactions with nitrilium salts, 489
Tunnelling effects, 30, 397
Ullman-type coupling, 248
Ultraviolet spectroscopy, 111
Undecanones, autoxidation, 171
Unsaturated esters, nitration, 550
Uracils, rearrangement, 497
Ureas, hydrolysis, 51
 nitrosation, 356
 nitroso-, 41, 51
Uroporphyrinogen III, 523
UV absorption spectroscopy, 130
UV–VIS spectroscopy, 1,3-dipolar cycloaddition, 442
Valence bond calculations, 264
Veratrole, acylation, 267
Vilsmeier reagent, 235
Vilsmeier–Haack formulation, 260
Vinyllkenes, cycloaddition, 463
Vinylic aromatics, muonium addition, 118
Vinyldiaziridines, rearrangement, 513
Vinyldiboranes, cycloaddition, 449
Vinylic cations, 557
Vinylic compounds, nucleophilic substitution, 299–301
Vinylicyclopropanes, addition reactions, 399
 formation, 421, 422
 rearrangement, 522
Vinylic substitution, 365
Vinyllindoles, cycloaddition, radical cation-initiated, 156
Vinyloxiranones, rearrangement, 543
Vinylyphosphinidene intermediates, 584
Vinylyphosphonates, 342
Vinylpurines, addition reactions, 416
Vinylic sulphones, reactions with tetracyanoethylene, 392
Vinylic sulphonides, rearrangement, 514
Vitamin B\(_2\), 523
Vitamin K, 201
 oxidation, 201
Wacker reaction, 185
Wagner–Meerwein rearrangement, 403, 559
Walsh orbitals, 392
Water, supercritical, 446
Weiss reaction, 12, 335
Whiffen effect, 392
Wittig–Horner reaction, 340